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Abstract

We propose a discrete model to investigate the role of contact tracing program

reducing the newcases and prevalence of tuberculosis. We observe that the tuberculosis

contact tracing program has no effect on the basic reproduction number R0 but the

size of social cluster has. On the other hand a contact tracing program can speed up

the process of TB elimination. We compute the partial rank correlation coefficient

(PRCC), based on Latin hypercube sampling (LHS), to evaluate the effect of input

parameters on the magnitude of the newcases and prevalence. The most influential

parameters are identified and ranked.
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1 Introduction

Tuberculosis (TB) is an infectious bacterial disease caused by Mycobacterium tuberculosis,

which most commonly affects the lungs. The disease can also attack any part of the body

such as the kidney, spine, and brain. If not treated or treat improperly, TB disease can

be fatal.

The disease is transmitted from person to person via droplets from the throat and

lungs of people with the active respiratory disease[16, 20]. In most people who breathe in

TB bacteria and become infected, the body is able to fight the bacteria to stop them from

growing at the beginning, we call this latent TB period. People with latent TB infection

do not feel sick, do not have any symptoms, and cannot spread the disease. However,

active TB individuals are able to spread the disease to others [2, 20]. It is well known

that TB can not be spread by shaking hands, sharing food or drink, touching bed linens

or toilet seats, sharing toothbrushes or kissing [20].

As an ancient disease, TB remains one of the major causes of disability and death

worldwide. In 2010, an estimated 8.8 million people fell ill with TB. Of the 1.4 million

deaths, 95 percent occurred in developing countries[17]. Figure 1 shows the new cases

of active TB per year in the U.S.A from 1953 to 2011, data taken from [18, 19], which

continues to exhibit a downward trend. The annual case of TB has been declining steadily

but raise sightly in the 1990s in the U.S.A.. The change in this trend had been labeled

as a period of TB reemergence. TB reemergence over the past decade and a half has

challenged existing prevention and control TB programs in developing nations[2].
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There are some global research communities committed to finding new ways to better

understand, diagnose, treat, and ultimately prevent TB. Contact tracing with subsequent

treatment of individuals latently infected with Mycobacterium tuberculosis is a corner-

stone of tuberculosis control in the United States and other low burden countries. In

epidemiology, contact tracing is defined as the identification and diagnosis of people who

may have come into contact with an infected person. This is the method that has been

used to control endemic contagious diseases for decades. A disease investigation begins

when an individual is identified as having a communicable disease. An investigator in-

terviews the patient, family members, physicians, nurses, and anyone else who may have

knowledge of the primary patient’s contacts, anyone who might have been exposed, and

anyone who might have been the source of the disease. Then the contacts are screened to

see if they have or have ever had the disease.

It is well known that smallpox is one of the few infectious diseases that was conquered

by human beings. However, the final elimination of smallpox was not attributed to the

smallpox vaccine, but to contact tracing. Smallpox could be controlled only because

the sores and scars prevented infected persons from escaping detection. Fellow villagers

and tribesmen were encouraged in various ways to identify infected persons. When a

person with smallpox was identified, he or she was quarantined, and all the persons in the

surrounding community or village were vaccinated. In this way smallpox was eventually

reduced to isolated outbreaks and then eradicated.

A disease that is spread by respiratory contact, such as tuberculosis, may require
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Figure 1: Tuberculosis new cases in USA from 1953 to 2011.

screening tens to hundreds of persons. Can TB contact tracing eventually eradicate this

long-standing infectious disease, as in the case of smallpox? There are at least two epi-

demiological factors that distinguish smallpox and TB. First, latent TB is asymptomatic.

The other is that latent TB has a much longer latent period than smallpox. We suspect

there is a long way to go for the elimination of TB by using contact tracing (if even possi-

ble). This research will quantify the TB contact tracing program, then use mathematical

models to test this hypothesis, and ultimately to compare this strategy with other ones.
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2 Discrete-time TB model with contact tracing

One efficient way to exercise TB contact tracing is to look into the social cluster where

a great deal of intimate contacts takes place. To treat latent TB, we begin with tracing

the contacts within the social cluster after identifying an active TB. A social cluster of an

individual may include the co-workers, family members and acquaintances.

We develop a social-cluster model in a discrete-time scale via extending the previous

work in [1, 5] in order to quantify the practice of TB contact tracing. Social clusters

are divided into two types: TB active clusters and TB inactive clusters. Each TB active

cluster contains one active TB, while TB inactive cluster does not. Let S1 and E1 be the

respective total number of susceptible individuals and latent TB in the TB active cluster,

and let S2 and E2 be the respective total number of susceptible individuals and latent

TB in the TB inactive clusters; Let I be the total number of active TB. N1 = S1 + E1 is

the total number of people in TB active clusters, while N2 = S2 +E2 is the total number

of people in TB inactive clusters (as shown in Table 1). We assume that each social

cluster includes exactly the same number of n individuals on average. When a latent TB

individual becomes infectious, her/his social cluster moves to TB active cluster.

Let p be the survival rate for populations in the absence of the disease. Latently-

infected survivals of a TB inactive cluster, are assumed to develop active TB at the rate

kpE2. Each new infectious individual ’activates’ a new cluster and in the process ’moves’

(n−1)kpE2 individuals from TB inactive clusters into TB active cluster ones. It is assumed

that a fraction S2
N2

of these individuals goes to the S1 class per time step while the last
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Table 1: Model variables. Each TB active cluster contains one active TB.

Variables Description

S1 total number of susceptible individuals in the TB active cluster

E1 total number of latent-TB individuals in the TB active cluster

I active TB

S2 total number of susceptible individuals in the TB inactive cluster

E2 total number of latent-TB individuals in the TB inactive cluster

N1 = S1 + E1 total number of people in TB active cluster

N2 = S2 + E2 total number of people in TB inactive cluster

N = N1 +N2 + I total number of population

fraction E2
N2

goes to E1 class per time step. The number of people who do not change their

status of social cluster in the S2 subpopulation is counted by

pS2(t)− (n− 1)kpE2(t)
S2(t)
N2(t)

= p(S2(t) + (k + 1− kn)E2(t))
S2(t)
N2(t)

.

Similarly, the number of people who do not change their status of social cluster in the E2

subpopulation is

(1− k)pE2(t)− (n− 1)kpE2(t)
E2(t)
N2(t)

= p((1− k)N2(t)− (n− 1)kE2(t))
E2(t)
N2(t)

.

Furthermore, since infectious individuals recover or die (at rate γI(t)) then the rate

at which TB active clusters become inactive is γI(t). Bookkeeping requires that recovery

(or cluster dissolution) must be accompanied by the returned of cluster members to the
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TB inactive cluster population. It is assumed that (n − 1)γpI(t) S1(t)
N1(t) individuals are

returned to S2 and (n−1)γpI(t)E1(t)
N1(t) are returned to E2 respectively. The identity N1(t) =

(n − 1)I(t) reduces the last expression for the flow from S1(t) to S2(t) into γpS1(t) and

that from E1 to E2 into γpE2(t). The (assumed) low prevalence of active TB implies

that N1 << N2. We use this observation to neglect births into the TB active cluster

population. TB progression in the E1 class is extremely unlikely because of the short

average life of TB active clusters. The above considerations lead to the following basic

discrete time model:

S1(t+ 1) = (1− β − γ)pS1(t) + (n− 1)kpE2(t)
S2(t)
N2(t)

,

E1(t+ 1) = βpS1(t) + (1− γ)pE1(t) + (n− 1)kpE2(t)
E2(t)
N2(t)

,

I(t+ 1) = kpE2(t) + (1− γ)I(t),

S2(t+ 1) = Λ + γpS1(t) + p(S2(t) + (k + 1− kn)E2(t))
S2(t)
N2(t)

,

E2(t+ 1) = γpE1(t) + p((1− k)N2(t)− (n− 1)kE2(t))
E2(t)
N2(t)

.

(1)

It can be checked that the evolution of the total population (N(t) = S1(t)+E1(t)+I(t)+

S2(t) + E2(t)) is governed by

N(t+ 1) = Λ + pN(t) + (1− γ − p)I(t).

Recall that 1−γ is the survival rate of the active-TB individuals, we have that 1−γ ≤ p. If

there is no treatment and no the TB-induced death, then 1−γ = p, that means the survival

proportion of the infectious is the same as no-infectious. Then N(t+ 1) = Λ + pN(t) has

a closed and simplest form in population dynamics. We note β + γ < 1 and nk < 1

7



guarantee all terms in model (1) are positive. Therefore, all solutions will remain positive.

TB contact tracing is applied when a TB inactive cluster change into TB active cluster

ones. Of (n−1)kpE2(t)E2(t)
N2(t) newly found latent TB, a proportion q of them are treated and

the remaining is left untreated (of course, when q=1, we treat all newly identified latent

TB). The parameter q contains much more tractable information about treating latent

TB, such as the adherence of the antibiotics administration, capability of identifying all

members of a social cluster, and vulnerability of members in social clusters. Therefore,

TB contact tracing campaign treat q(n−1)kpE2(t)E2(t)
N2(t) of latent TB cases in active social

cluster per unit time. Model (1) equipped with TB contact tracing now has form:

S1(t+ 1) = (1− β − γ)pS1(t) + (n− 1)kpE2(t)
S2(t)
N2(t)

+ q(n− 1)kpE2(t)
E2(t)
N2(t)

,

E1(t+ 1) = βpS1(t) + (1− γ)pE1(t) + (1− q)(n− 1)kpE2(t)
E2(t)
N2(t)

,

I(t+ 1) = kpE2(t) + (1− γ)I(t),

S2(t+ 1) = Λ + γpS1(t) + p(S2(t) + (k + 1− kn)E2(t))
S2(t)
N2(t)

,

E2(t+ 1) = γpE1(t) + p((1− k)N2(t)− (n− 1)kE2(t))
E2(t)
N2(t)

.

(2)

The size of social cluster n and parameter q are the key players in analyzing model (2).

We will focus on simulating model (2) based on our analytic work on model (1). The

impact of cluster size n and treatment parameter q to the TB contact tracing campaign

should be quantified from this model.
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3 Model analysis

3.1 The basic reproduction number and stability

To calculate the basic reproduction number of the model, the next generation operate

approach can’t be applied [6]. We compute the reproduction number by considering the

stability of disease-free equilibrium.

There always exists the disease-free equilibrium e0 = (0, 0, 0, Λ
1−p , 0) for model (2).

Next we study the stability of e0. The Jacobi matrix evaluated at e0 is

J |e0 =



(1− β − γ)p 0 0 0 (n− 1)kp

βp (1− γ)p 0 0 0

0 0 1− γ 0 kp

γp 0 0 p −(n− 1)kp

0 γp 0 0 (1− k)p


. (3)

The characteristic equation is

[λ− (1− γ)](λ− p)
{

[λ− (1− β − γ)p][λ− (1− γ)p][λ− (1− k)p]− (n− 1)kγβp3
}

= 0.

(4)

Clearly, we have two eigenvalues λ1 = 1− γ and λ2 = p, both of them satisfy |λi| < 1, i =

1, 2. The other eigenvalues satisfy the equation

F (λ) = [λ− (1− β − γ)p][λ− (1− γ)p][λ− (1− k)p]− (n− 1)kγβp3 = 0. (5)
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Figure 2: Three cases for eigenvalues. Case 1: three different real eigenvalues; Case 2: a

real double root happens; Case 3: a pair of imaginary roots happens.

Let

f(λ) = [λ− (1− β − γ)p][λ− (1− γ)p][λ− (1− k)p],

and

g(λ) = (n− 1)kγβp3.

We observe that f(λ) = 0 has three roots λ̃1 = (1−β−γ)p, λ̃2 = (1−γ)p and λ̃3 = (1−k)p,

and |λ̃i| < 1, i = 1, 2, 3 satisfied. The eigenvalues are the point where the two equations

f(λ) and g(λ) intersect. Three cases may happen, see Figure 2 for details. From Figure

2, when g(λ) = (n− 1)kγβp3 < f(1) is satisfy, the absolute values of λi, i = 3, 4, 5 are less

than unity. That is

(n− 1)kγβp3 < [1− (1− β − γ)p][1− (1− γ)p][1− (1− k)p],
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which can be rewritten as

βp(n− 1)
1− (1− β − γ)p

· γp

1− (1− γ)p
· kp

1− (1− k)p
< 1.

Therefore we define

R0 =
(

βp(n− 1)
1− (1− β − γ)p

)
·
(

γp

1− (1− γ)p

)
·
(

kp

1− (1− k)p

)
.

Each term in R0 has clear epidemiological interpretation. The first term βp(n−1)
1−(1−β−γ) repre-

sents the number of infections produced by one infectious individual [5] as follows:

When one inactive latent TB progresses to active TB, all the rest n − 1 members in

his/her social cluster move to the active cluster. Thus, the dynamic satisfies

S1(t+ 1) = (1− β − γ)pS1(t),

E1(t+ 1) = βpS1(t).

with the initial conditions S1(0) = n− 1, E1(0) = 0. Thus,

S1(t) = (n− 1)[(1− β − γ)p]t,

The number of infections produced by one active TB during his/her lifetime is

∞∑
i=1

E1(i) = βp

∞∑
i=0

S1(i) = lim
i→∞

(n− 1)βp(1− (1− β − γ)ipi)
1− (1− β − γ)p

=
(n− 1)βp

1− (1− β − γ)p
.

The second term γp
1−(1−γ)p stands for the fraction of people who progress from active

latent TB to inactive latent TB. The last fraction of R0
kp

1−(1−k)p represents the fraction

of infected people who develop active-TB during their lifetime.

Following the above analysis, we have the theorem.

Theorem: The disease-free equilibrium e0 of model (2) is locally asymptotically stable if
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R0 < 1 and unstable if R0 > 1.

In this section we considered the stability of the disease-free equilibrium, and got the

expression of the basic reproduction number R0. From the expression, we note that the

contact tracing rate q has no effect on R0. This means that we can not eliminate the

disease if R0 > 1.

3.2 The endemic equilibrium

If there is no treatment and no the TB-induced death, then 1 − γ = p, that means the

survival proportion of the infectious is the same as no-infectious. Then

N(t+ 1) = Λ + pN(t), (6)

N∗ = Λ/(1− p) is a global attractor for (6). Using limiting equations limt→∞N(t) = N∗,

we reduce the five dimensional system (2) into four dimensional one



E1(t+ 1) = βp(N∗ − E1(t)− I(t)− S2(t)− E2(t)) + (1− γ)pE1(t) + (n− 1)kpE2(t)
E2(t)
N2(t)

,

I(t+ 1) = kpE2(t) + (1− γ)I(t),

S2(t+ 1) = Λ + γp(N∗ − E1(t)− I(t)− S2(t)− E2(t)) + p(S2(t) + (k + 1− kn)E2(t))
S2(t)
N2(t)

,

E2(t+ 1) = γpE1(t) + p((1− k)N2(t)− (n− 1)kE2(t))
E2(t)
N2(t)

.
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First of all, we consider about the epidemic equilibrium while q = 0 as follows:

E1 + E2 = βp(N∗ − E1 − I − S2 − E2) + pE1 + (1− k)pE2, (7)

I = kpE2 + (1− γ)I, (8)

S2 = Λ + γp(N∗ − E1 − I − S2 − E2) + pS2 − (n− 1)kp
E2S2

N2
, (9)

E2 = γpE1 + p(1− k)E2 − (n− 1)kp
E2

2

N2
. (10)

From (8), we have

E2 =
γ

kp
I. (11)

From (7) we obtain

(1− p+ βp)E1 + [1− (1− k)p+ βp]E2 = βp(N∗ − S2 − I).

Rewrite it we get

S2 = (N∗ − I)− 1− p+ βp

βp
E1 −

1− (1− k)p+ βp

βp
E2, (12)

N2 = (N∗ − I)− 1− p+ βp

βp
E1 −

1− (1− k)p
βp

E2. (13)

Substituting (13) into (10),

(n− 1)kpE2
2 =[γpE1 − (1− p(1− k))E2]

(
(N∗ − I)− 1− p+ βp

βp
E1 −

1− (1− k)p
βp

E2

)
=− γp1− p+ βp

βp
E2

1 +
(
γp(N∗ − I) +

1− p+ βp− γp
βp

(1− (1− k)p)E2

)
E1

+
(1− p(1− k))2

βp
E2

2 − (N∗ − I)(1− p(1− k))E2. (14)

Substituting (11) into (14), we get an equation of variables E1 and I,

0 =γp
1− p+ βp

βp
E2

1 −
(
γp(N∗ − I) +

1− p+ βp− γp
βp

(1− (1− k)p)
γ

kp
I

)
E1

+
(

(n− 1)kp− (1− p(1− k))2

βp

)
(
γ

kp
I)2 + (N∗ − I)(1− p(1− k))

γ

kp
I. (15)
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From (9) we have

(1− p+ γp)S2 + (n− 1)kpE2
S2

N2
= Λ + γp(N∗ − I − E1 − E2). (16)

After submit (11),(12) and (13) into (16), we obtain

A1(I)E2
1 +A2(I)E1 +A3(I) = 0, (17)

where

A1(I) =[(1− p)2 + p(β + γ)(1− p)](1− p+ βp),

A2(I) = {(1− p+ βp) [2(1− (1− k)p) + βp(1− (n− 1)kp− γp)]− βpγp(1− (1− k)p)} γI
kp

+ [βpγp(1− p+ 2βp)− 2βp(1− p+ βp)](N∗ − I) + βp(1− p+ βp)Λ,

A3(I) =(1− p+ γp)

([
(1− (1− k)p)

γI

kp
− βp(N∗ − I)

]2

+ βp(1− (1− k)p)(
γI

kp
)2

)

− β2p2(1− p+ γp)
(

(N∗ − I)
γI

kp

)
+ kβ2p3(n− 1)(N∗ − I)

γI

kp
− (n− 1)kβp2(1− (1− k − β)p)(

γI

kp
)2

− γβp2(1− (1− k)p)(
γI

kp
)2 + γβp2(1− (1− k − β)p)(N∗ − I)

γI

kp

+ βpΛ(1− (1− k)p)
γI

kp
− β2p2(N∗ − I)(Λ + γp(N∗ − I)).

By calculation of the two equations of (15) and (17) we can consider the endemic equilib-

rium of System (2) in the absence of contact tracing.

4 Numerical simulation

In this section, we will estimate the parameter values using least square method to let

the simulation fit the annual reported new cases in Figure 1 as well as we can. Based on
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Figure 3: The best-fit solution obtained by fitting βpS1(t) in model (2) to the reported

number of TB new cases in Figure 1.

the estimation, the impacts of social cluster and the contact tracing on the dynamics of

TB can be studied. Finally, we will compute the partial rank correlation coefficient to

evaluate the effect of input parameters on the magnitude of TB new cases and prevalence.

4.1 Estimation of parameter values

We estimate the parameter values by using the Least Square Method (LSM) to make sure

the simulation curves based on the model fit the reported TB new cases in U.S.A. as well

as possible. That is, let

h(Θ) = Σ2011
t=1953‖βpS1(t)−RN(t)‖2

where Θ is the vector composed of fitting parameters β, γ, p, n, k, q,Λ. RN(t) is the number

of reported TB cases at the year t as show in Figure 1, βpS1(t) is the solution of TB new
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Figure 4: Behavior of model (2) based on the parameter estimation.

cases in system (2). Then the values for the parameters are estimated such that h(Θ)

achieves its minimum. The estimated parameters are shown in Table 2 and the best

fitted curve is shown in Figure 3. The simulations for other variables of model (2) are

shown in Figure 4. From the website [15] we know the total population of U.S.A. is about

3.12 ∗ 108, the total number of population in our simulation fits the reported number well.

From Figure 4, we also know that the disease in U.S.A. is decreasing.

4.2 Social cluster size impact on R0

The basic reproductive number R0 is the expected number of secondary infectious cases

generated by an average infected individual during the infective period in an entirely
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Table 2: Model parameters and the estimated values (R0 = 0.1750).

Parameter s Description Estimation

β effective transmission rate 0.15

γ removed rate of infectious individual 0.7750

p survival rate for susceptible and latent TB 0.9649

n average size of social cluster 10

k progression rate from inactive latent TB to active TB 0.0055

q effective treatment rate of active latent TB 0.9

Λ recruitment 1.22 ∗ 107

susceptible population. This quantity determines the potential for an infectious agent to

start an outbreak, and the extention of transmission in the absence of control measures.

From the above estimation, we know the basic reproductive number is estimated to be

R0 = 0.1750 for the TB transmission in U.S.A, which means the disease is going to

extinction. However, we are still interested in the variance in R0 caused by the varied

control parameters, to try to decrease the secondary infections and thus the new infection

each year.

Figure 5 shows the contour plot of R0 versus the removed rate out of active TB γ and

the size of social clusters n. It indicates that the basic reproduction number decreases as

the number of social clusters n declines. For a fixed social clusters number n, the basic

reproduction number R0 will firstly increase and then decrease as the remove rate γ varies
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Figure 5: Contour plot of R0 vs. removed rate of active TB γ and the size of social clusters

n.

from 0 to 1. This shows that increasing the treatment rate of active TB, which leads to

an increase in γ, is not always helpful to decrease the new infections, it can sometimes

exacerbate the disease transmission. From this figure we can also give the critical values

for the remove rate out of active TB γ for various number of social cluster n to keep the

basic reproduction number below unity. For example, when the number of social cluster

n is fixed at 30, to keep R0 < 1, the remove rate γ should be less than 0.02 or bigger than

0.328.

4.3 Contact tracing impact on TB dynamic

From the expression of the basic reproduction numberR0, we know that the contact tracing

has no effect on R0, which means that we can not eliminate the disease by implementing
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the contact tracing strategy when the disease is an epidemic originally. To investigate how

the contact tracing affects the disease dynamics, we consider the numerical numbers of

the latent active TB according to different levels of the contact tracing.

Figure 6 shows the number of active latent TB (E1) with q varying from the baseline

value to its 90% and 110%. Figure 6(a) indicates that the disease declines faster with an

increased q. If we define a critical value for E1 as the elimination value of the disease (for

example, while the number of E1 is less than 1, then the disease is eliminated), then the

simulation with a larger q can reach the elimination level earlier than the simulation with

a smaller q, we omit plots here. That means the strategy with a stronger contact tracing

(q is larger) can eliminate the disease earlier than others. In other words, the contact

tracing can speed up the process of TB elimination. Figure 6(b) shows that the steady

state size of the active latent TB decreases greatly when the contact tracing p increases.

This indicates that the contact tracing is an effective control measure even though it can

not help to eliminate the disease.

In a summary, by implementing the strategy of contact tracing, we can speed up the

process of TB elimination, or we can effectively control the total infection numbers.

4.4 Sensitivity and uncertainty analysis

In this section, an uncertainty and sensitivity analysis, based on the Latin Hypercube

Sampling (LHS) scheme ([8, 9, 11, 14]), are carried out to examine which parameter

is sensitive to the disease spread or which measure is most effective to lower the TB
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Figure 6: Contact tracing affects on the disease while n = 10 (a) and n = 100 (b). All

other parameters are as shown in Table 2.

incidence and prevalence. The LHS scheme is an extremely efficient scheme that enables

the exploration of the entire parameter space of the model with a minimum number of

computer simulations.

4.4.1 Preparation for sensitivity and uncertainty analysis

In the absence of available data on the distribution of parameters β, γ, n, q, we use normal

distribution as in [14]. We assume the distribution of parameters p and k are a triangular

shape. Let the values of parameters in Table 2 be the mean value of parameters, or be

the peaking values for the triangular distributed parameters, respectively. Secondly we

select appropriate variances or minimum and maximum values for the distribution. The

details are as follows. The nature death rate equals to 1/60 year−1 in [5], 0.0189 year−1

in [12] and 0.01 year−1 in [3], respectively. Thus the survival rate equals to 0.9833, 0.9811
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and 0.99 correspondingly. Here we let the survival rate p be triangular peaking at 0.9649,

which is also the minimum value for the simulations. The progression rate from latent

inactive TB to active TB k is beween 0.00256 and 0.0016 in [2] and [1]. The progression

rate k has a triangular distribution peaking at 0.0055 and the minimum value is 0.0016.

See details in Table 3.

The LHS-matrix is then built by assembling 2000 samples from each parameter’s dis-

tribution. Each row of the LHS-matrix is a combination of parameter values. So, 2000

solutions are then simulated [11, 14].

4.4.2 Results of sensitivity analysis

A sensitivity analysis, carried out by estimating the partial rank correlation coefficients

(PRCC) for each input parameter and each outcome variable, can identify which parame-

ters are important in contributing to the variability of outcomes ([7, 8, 10, 11]). The sigh of

PRCC indicates the qualitative relationship between each input variable and each output

variable, that is, the positive value of the PRCC for the majority of the variable implies

that when the value of the input variable increases, the future number of the outcomes

increase. The magnitude indicates the contribution of input parameter to the prediction

of the value of outcome variable.

To know whether the contribution of any input parameter to the outcomes vary over

an entire time interval during model dynamics, PRCC values are calculated for multiple

time points and plotted versus time. This allows us to assess whether the contribution of
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one parameter is obvious over an entire time interval during the progression of the model

dynamics [14]. Figures 7(a) and 7(b) show PRCC values for new cases and prevalence

plotted over 10 years, respectively. There are two PRCC values (the progression rate k

and the survival rate p) for both new cases and prevalence are significantly different from

zero. This may conclude that new cases and prevalence are quite sensitive to k and p.

We can observe from Figure 7(a) that the PRCC values of the survival rate p varies much

while the rest of others vary little over time. Comparing the two figures we know the

PRCC for prevalence varies much more than that for new cases, especially at the very

beginning of the simulation.

Figure 8 focuses on the PRCC values between the input parameters and the two

outcomes (new cases and prevalence) 10 years later (at the year of 2021). The PRCC

values together with the p-values are calculated as shown in Table 3. If p-value is small,

say no more than 0.05, then the correlation between the input parameter and the outcomes

is statistically significant at the level 0.05. The correlations between biological behavioral

transmission parameters p, n, k and the two outcomes are statistically significant at the

level 0.0001 (p−NC < 0.0001), and that between γ and the two outcomes are significant

at the level 0.01. From Table 3, the correlation between q and the outcomes are not

significant (p−NC > 0.1).

The PRCC value between the progression rate from inactive latent TB to active TB

k and the new cases (equals to 0.9314) is larger than the ones between other parameters

and new cases, followed by the PRCC between the survival rate p and new cases (equals
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Figure 7: PRCC of the parameters for new cases (left) and prevalence (right) over 10

years. All the parameters came from LHS.

to -0.2495). This implies that the progression rate k contributes the most to new cases.

Thus an increase in k will greatly increase new cases, and an increase in p will lead to an

obvious decrease in new cases. From Figure 8(b), the PRCC value between the survival

rate p and the prevalence (equals to -0.9253) is largest among all the PRCCs, then followed

by PRCC between the progression rate k and prevalence (equals to 0.2748). So that the

prevalence is sensitive to p and k. An increase in p and a decrease in k can both lead to

a obvious decline in prevalence. From Figure 8 and Table 3, decreasing the cluster size n

can also effectively reduce new infections and prevalence (the PRCCs between n and new

cases equals to 0.1027, between n and prevalence equals to 0.1027).
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4.4.3 Results of uncertainty analysis

A Latin Hypercube Sampling (LHS) uncertainty analysis is performed to explore the

variability of the outcomes due to the uncertainty in estimating the input parameters

[10, 11]. This uncertainty analysis technique enables the degree of prediction imprecision

to be quantified. In this subsection, we explore the uncertainty in estimating the values of

the input six variables on the prediction precision of the two outcomes: the new TB cases

and the prevalence of TB at the year of 2021 in U.S.A. The frequency distributions for

the two outcome variables are derived from the results of the uncertainty analysis. The

frequency distribution of new cases is skewed slightly to the right (the skewness equals to

-0.3249) and the frequency distribution of prevalence is skewed to the left (the skewness

equals to 0.4418) (see Figure 9). The descriptive statistics for the two distributions are

shown in Table 4. The maximum (equals to 9729 for new cases, equals to 0.3116% for

prevalence) and minimum (equals to 2626 for new cases, equals to 0.2943% for prevalence)

of the two distributions reflect the likely ranges of possible outcomes, rather than the

absolute upper (Λ/(1 − p)) and lower (0) bounds of the system; These show that at the

year 2021, at least 2626 new TB infections will be produced and the prevalence will be lager

than 0.2943%. The 90% confidence interval for new cases is 3707 to 8384, this prediction

imprecision is due to the uncertainty in estimating the values of the input parameters.

The 90% confidence interval for prevalence is 0.2969% to 0.3078%, which indicates about

3 persons living with active TB per 1000 persons in the year of 2021. The prediction

precision of the prevalence is fairly high because of the narrow distribution interval of the
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prevalence.

5 Conclusion and discussion

We studied a discrete model considering the TB contact tracing and social cluster. From

the expression of R0, we know that the basic reproduction number has no relationship

with effective treatment rate of active latent TB q. Therefore the contact tracing cannot

help to eliminate the active TB when R0 > 1. However, the contact tracing can speed

up the process of TB elimination when R0 < 1 and reduce the epidemic size when R0 >

1 (see Figure 6). By implementing contact tracing, both the new infections and the

prevalence of the disease can be reduced from the results of sensitivity analysis. In fact,
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Table 4: Descriptive statistics from the uncertainty analysis

Statistic new cases prevalence(%)

Minimum 2626 0.2943

Maximum 9729 0.3116

Mean 6305 0.3017

Median 6515 0.3013

Variance 2.09 ∗ 106 1.12 ∗ 10−5

Standard 1.45 ∗ 103 0.0033

5th percentile 3707 0.2969

95th percentile 8384 0.3078

Skewness -0.3249 0.4418
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Figure 9: The frequency distribution of new cases and prevalence of U.S.A, after 10 years,

produced by 2000 numerical simulations in the LHS/PRCC sensitivity analysis.

27



comparing with the parameters, the contributions of contact tracing to both the new

infections and the prevalence of the disease vary slightly during the whole progression

of the disease transmission. Thus, the effect of contact tracing on disease transmission

depends less on time. The contribution of the social cluster size to the two outcomes, new

cases and prevalence, also depends less on time; However, the correlations between them

are statistically significant as shown in the sensitivity analysis. The sensitivity analysis

also indicates that decreasing the social cluster size can effectively reduce the new cases

and prevalence. The contour plot of R0 (Figure 5) illustrates that TB infection can be

reduced by cutting down the communication between the active TB and the surrounding

community (R0 decrease as the social cluster size decrease).

Additionally, from the sensitivity analysis, new infections are very sensitive to the re-

moved rate from active latent TB to inactive latent TB and to the survival rate. The

result is consistent with the sensitivity results in [13], where they got the same conclusion

that the disease transmission is quite sensitive to the progression rate from latent TB to

active TB. They also got the result that their model is quite sensitive to the transmission

probability. However, in our TB model, the transmission probability contributes not so

much to the disease.
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