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Abstract

The 21st century has redefined the way we communicate, our concept of individual and
group privacy, and the dynamics of acceptable behavioral norms. The messaging dynamics on
Twitter, an internet social network, has opened new ways/modes of spreading information. As
a result cyberbullying or in general, the spread of offensive messages, is a prevalent problem.
The aim of this report is to identify and evaluate conditions that would dampen the role of
cyberbullying dynamics on Twitter. We present a discrete-time non-linear compartmental model
to explore how the introduction of a Quarantine class may help to hinder the spread of offensive
messages. We based the parameters of this model on recent Twitter data related to a topic that
communities would deem most offensive, and found that for Twitter a level of quarantine can
always be achieved that will immediately suppress the spread of offensive messages, and that
this level of quarantine is independent of the number of offenders spreading the message. We
hope that the analysis of this dynamic model will shed some insights into the viability of new
models of methods for reducing cyberbullying in public social networks.
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1 Introduction

Social media networking websites like Twitter and Facebook have fundamentally changed how
people communicate and socialize in the 21st century. With over 200 million users on the popular
microblogging site Twitter in 2011 [1], exploring the social impact of using such a service becomes
ever more important. Although Twitter has been considered by critics as a site where people tweet
(i.e. update statuses) about mundane things such as what they are having for dinner, researchers
have recently taken an interest in Twitter to study social-behavioral attitudes [2], positive and
negative influences of popular users [3], and even temporal patterns of happiness using ideas from
linguistics [4]. In this emerging culture of Tweeters (i.e. one who tweets) that connect from places
all over the world, there also comes the bigger problem of cyberbullying [5].

Twitter connects people by allowing them to send short bursts of information, called tweets,
consisting of up to 140 characters in length, to other users. What makes Twitter different from
other social networking sites is the character limit imposed on tweets, along with its asymmetrical
nature: you may follow someone, but they do not have to follow you. A user has three different
types of relationships with fellow Tweeters: you can have followers (i.e. friends), which are people
who follow you and can see your tweets; you can also have people who you are following; and finally
there are bi-directional friends, which are people who are mutually following each other.

Despite the different relationships that occur on Twitter, when a user tweets to the Twitter
community, a response is not necessary. User’s friends can see all the tweets sent by the user. To
involve a particular person in a tweet or a conversation, common practice is to use ‘@’ followed by
a unique identifier address. To join a conversation, one can reply to a tweet, which uses ‘@’. One
can also retweet, which allows a user to tweet the same message to all his/her friends while giving
credit to the original tweeter, allowing the message to reach a wider range of Twitter users [6].
For simplicity of presentation in this analysis, we use the term “retweet” to describe both types of
message repetition. In their retweets, users can use a hashtag, denoted by ‘#,’ which declares a
tweet as being a part of a larger conversation whose topic is related to the phrase which comes after
the hashtag [7]. We differentiate between keywords and hashtags: hashtags are used to identify the
topic of a tweet, while keywords are found in the actual tweet.

Since the advent of social media sites like Twitter, there has been research on cyberbullying
[8–10]. Some research into methods for stopping cyberbullying on Twitter can be found in Xu
et al. [10]. In their report, the authors used natural processing techniques to recognize traces of
bullying tweets [10], and Gorzig and Frumkin suggested raising awareness for adolescents, especially
with regard to privacy settings [8]. While a user can block another person specifically on Twitter,
no current method exists to block offensive or hurtful tweets from the Twitter community. Per
the terms of services, Twitter does not currently suspend accounts for cyberbullying (available at
http://twitter.com/tos). In this study, we employ a concept refered to as “quarantine” that
would enable Twitter to temporarily separate offenders from the Twitter community, therefore
protecting users from the spread of offensive messages.

In this analysis, we extended the deterministic compartmental model developed by Zhao et al.
for rumor spreading in the new media age [11]. In the model, they built on the pioneering work
of Daley and Kendall [12], who in 1965 introduced a model that looks at the spread of rumors as
a non-standard contagion process. The Daley-Kendall model was the first rumor spreading model
developed, it used the terms Ignorants, Spreaders and Stiflers analogous to the disease model classes
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of Susceptible, Infected and Recovered, respectively. Zhao et al. also looked at the Maki-Thompson
rumor model [13], which showed the spreading of rumors through direct contact between spreaders
and others, and the model developed by Nekovee et al. which combined the SIR epidemic model
and the Maki-Thompson model on complex social networks [14]. By drawing inferences from these
models, Zhao et al. developed their own model which included a “Hibernator” class where the
members of this class become disinterested in spreading the rumor but could become interested in
spreading the same rumor again. We considered instead a model where users are “quarantined,” i.e.
users are limited in their ability to spread the rumor through the enforced limitation on their contact
with other members of the population. To do this, we developed a discrete-time compartmental
model that simulates the dynamics of rumor spreading in social networks, and examined how user’s
degree of quarantine hinders the spread of offensive messages. We estimated model parameters by
comparing the model predictions to patterns observed in Twitter data related to a topic that
communities would find offensive.

In the following sections we describe the sources of data used in this analysis and give a de-
scription of the discrete-time compartmental model used to simulate spread of tweets, followed by
a presentation and discussion of results.

2 Methods and Materials

2.1 Data Collection

Twitter uses Application Programming Interface (API) version 1.1 which allows us to “scrape” pub-
lic data off the website (https://twitter.com). To be able to access the API, we use the R pro-
gramming language package “twitteR” (http://cran.r-project.org/web/packages/twitteR/).
This package acquires the information about a tweet such as the time created, the screen name of
the person who tweeted or retweeted, and their follower and friend counts. In order to decide which
keywords to use, we conducted a search on the Twitter website and searched for trending hashtags
which contained offensive language. We noticed that anti-gay sentiment is prevalent on Twitter so
we chose words that expressed disgust towards the gay community to use as an example. There is
no doubt that these tweets are offensive to most people. We used the “searchTwitter” function to
search within the days of July 6-10, 2013 for offensive tweets or retweets containing the keywords
“disgusting” and “gay” yielding a total of 884 tweets. The data showed that there were 100 tweets
from this sample of 478 original tweets that had been retweeted at least once. This is in qualitative
concordance with Kwak et al. where they found the fraction of not retweeting to be 79% [6], and
Grabowicz et al. who found that 85% of tweets were not retweeted [15]. The average duplication
of a tweet in our sample was 1.85 times. In addition, we estimated the probability of a message
being retweeted by using (1−α) = (number of retweets)/(number of friends of offensive tweeters),
yielding (1−α) = 478/275960. Thus α ∼ 0.999, which will be included as a parameter in our model
below.

Rodrigues et al. found that 99% of Twitter users have fewer than 20 followers [16]. Furthermore,
the degree of social networks has been found to follow a power law functional relationship, with
exponent 2 ≤ γ ≤ 3 [6]. The probability of having m Twitter followers is thus P (m) = m−γ [6].
With the power law relationship, most users have few followers and a very few users have many
followers. The average degree of the network, k, is E[m], which has a value of 1.5 to 10 for γ ∈ [2, 3].

3



For our model analysis below, we assume k = 10.

2.2 Model

We developed a discrete-time model to simulate the dynamics of the spread of messages on Twit-
ter, because tweets occur at discrete times, whereas a continuous-time model includes a variable
window of times between the tweets. In the following subsections, we describe a basic model of
Twitter message spreading dynamics that does not include a Quarantine class. We determined
an expressions for the threshold value of this model, then we extended the model to include a
Quarantined class and discuss the implications that the addition of this class has for the threshold
values of the system.

2.2.1 Basic Twitter Model Without Quarantine Class

A simple discrete-time rumor model for describing the spread of a message in a social network is:

Ut+1 = UtG1,t

Ot+1 = (1− α)(1−G1,t)Ut +G2,tOt

St+1 = St + α(1−G1,t)Ut + (1−G2,t)Ot, (1)

which was proposed by Zhao et al. [11], where Ut, Ot, St are the Uninformed, Offender, and Stifler
classes at time t, respectively, where the constant population size is N = Ut + Ot + St, and α is
the probability that an uninformed user becomes a stifler after seeing an offensive tweet (which we
estimated from Twitter data in the previous section). The parameter (1−G1,t) is the probability
of seeing an offensive tweet, and (1−G2,t) is the probability of an offender becoming a stifler. To
ensure that these two probabilities lie between 0 and 1, we use the form [17]:

G1,t = e−
k
N
(Ot)

G2,t = e−
k
N
(St),

where k is the degree of the network, which is estimated from studies of Twitter data in the
published literature, as described in the previous section. The parameters of the model are shown
in Table 1 and the compartmental diagram is shown in Figure 1.

In Lemma 1 in Appendix A we show that if the initial values of U , O, and S are non-negative,
then all future populations in those classes will be non-negative. Taken in conjunction with the
fact that the system is bounded such that the populations in each of the classes sums to N (see
Lemma 2 in Appendix A), we see that the population within each class can be at most N . We note
that as a result, the population in the uninformed class monotonically decreases asymptotically to
zero, because G1,t ≤ 1 when k > 0 and Ot ≥ 0 (for a formal proof, see Lemma 3 in Appendix A).
Additionally, the population in the Stifler class monotonically increases, because the last two terms
in St+1 = St + α(1−G1,t)Ut + (1−G2,t)Ot are both at least zero for all 0 ≤ Ut ≤ N , 0 ≤ Ot ≤ N ,
0 ≤ α ≤ 1 and k > 0. Further, when the population in the Stifler class is N we note that Ut = 0
and Ot = 0, and that from System 1 we see that St+1 = St. Thus, St asymptotically monotonically
increases to N .
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In Theorem 1 in Appendix A we show that if

Z =
k(1− α)Ut

N(1−G2,t)
< 1 (2)

then Ot+1 < Ot. Since Ut monotonically decreases to zero, and (1 − e−kSt/N ) monotonically
increases because St monotonically increases, we see that Z montonically decreases to zero. Thus
there will always exist a point at which Z < 1, and Ot+1 < Ot. We thus conclude that even without
quarantine, the Offender class will eventually begin to die out. In the next section, we will discuss
how the implementation of a Quarantine class ensures that the Offender class will begin to die out
more quickly.

Ut+1

Ot+1

St+1

1−G2( )
1−α( ) 1−G

1

( )

α 1−G1( )

Figure 1: Compartmental Model Structure for Basic Twitter Model

Before we move on to the quarantine model, we examine the equilibrium points for this basic model.
There are two equilibrium points:

(U∗
1 , O∗

1, S∗
1) = (0, N, 0)

(U∗
2 , O

∗
2, S

∗
2) = (U, 0, S)

The first equilibrium point represents the case where there are only offenders, because the only
way for an offender to leave the class is to come in contact with a stifler, of which there are none.
The second equilibrium point is analogous to the disease-free equilibrium because there is no one
in the Offender class. We refer to this point as the offender-free equilibrium (OFE).

The Jacobian for this basic model is:

J =

⎛
⎝ G1,t − k

NG1,tUt 0

(1− α)(1−G1,t)
k
N (1− α)G1,tUt +G2,t − k

NG2,tOt

α(1−G1,t)
k
NαG1,tUt + (1−G2,t)

k
NG2,tOt + 1

⎞
⎠ .

The eigenvalues of the Jacobian corresponding to the first equilibrium point, (0, N, 0), which we
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refer to the offender-only equilibrium, are:

ΛOOE =

⎛
⎝ 1

e−k

k + 1

⎞
⎠ .

We note that k > 0 and thus the third eigenvalue is always greater than 1. We thus conclude that
the first equilibrium point is not stable.

Evaluating the Jacobian at the offender-free equilibrium, (U , 0, S), we obtain

JOFE =

⎛
⎝

k
N (1− α)Ut +G2,t 0 0

k
NUt 1 0

k
NUt + (1−G2,t) 0 1

⎞
⎠ , (3)

with eigenvalues

ΛOFE =

⎛
⎝

k
N (1− α)Ut +G2,t

1
1

⎞
⎠ .

Note that if U = 0 and S = N the first eigenvalue is Λ(1) = e−k which is always greater than zero
and less than 1 since k > 0. Thus there always exists at least one value of (U, S) such that the first
eigenvalue is less than 1. However, the other two eigenvalues, Λ(2,3) are equal to 1, which does not
a priori indicate that the equilibrium point is unstable, but neither does it imply stability.

Eigenvalues equal to one can result from system constraints not being applied. We note that one
of the equations in System 1 can be removed if we apply the constraint Ut+St+Ot = N . Evaluating
the eigenvalues of the Jacobian of this reduced system about the offender-free equilibrium yields

ΛOFE =

(
k
N (1− α)Ut +G2,t

1

)
.

The Jury Criterion is an algorithmic method based upon the characteristic equation of the Jacobian
that is used to assess the stability of discrete systems[18]. A prior condition for use of the method
is that the characteristic equation D(Λ), must be greater than zero when Λ = 1. This condition
is not met for this model, thus we cannot apply the Jury criterion. Thus, in order to assess the
stability of this equilibrium point, we would have to resort to higher-order methods, rather than
just linearization of the system about the offender-free equilibrium [19]. This is beyond the scope
of this paper, and we thus conclude that that the stability of the offender-free equilibrium in this
model is currently indeterminate.

To calculate the Next Generation Matrix of the model, we use the methods of Allen and van
den Driessche, 2008 [20], and we reorder the columns and rows of the offender-free Jacobian in
Equation (3) such that the Offender (infected) class comes first, and the Uninformed and Stifler
(uninfected) classes follow. Then, as in [20], we identify the components of this Jacobian with the
following form:

JOFE =

(
F + T 02x1
A C

)
.

Then the matrix F is given by
F = k

N (1− α)Ut,
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the matrix T is
T = G2,t,

and the matrix C is

C =

(
1 0
0 1

)
.

The Next Generation Matrix (NGM) is defined by F (I − T )−1. The spectral radius of this
matrix is

Z =
k
N (1− α)Ut

1−G2,t
. (4)

We note that the spectral radius of the matrix C, ρ(C), is exactly equal to one; in order for
the spectral radius of the NGM to be identified with the reproduction number of the system, ρ(C)
must be less than one [20]. We thus do not identify Z with the reproduction number, but note
with interest that it matches the expression in Equation (2) that we had shown could be used as a
threshold expression for Ot+1 < Ot.

2.2.2 Twitter Model With Quarantine Class

To examine how isolation of offending users would hinder the spread of offensive tweets, we extend
the basic model in Equation (1) by adding a Quarantine class where the parameter 1 − λ is the
probability that an offender becomes quarantined. We also include a parameter 1−μ that describes
the probability that a person in the Quarantine class becomes a stifler. When μ is close to one
the offenders spend longer in the Quarantine class then when μ is close to zero. The discrete-time
equations of this extended model are:

Ut+1 = UtG1,t

Ot+1 = (1− α)(1−G1,t)Ut + λG2,tOt

Qt+1 = (1− λ)G2,tOt + μQt

St+1 = St + α(1−G1,t)Ut + (1−G2,t)Ot + (1− μ)Qt, (5)

where G1,t and G2,t are as in the basic model,

G1,t = e−
k
N
Ot

G2,t = e−
k
N
St .

The parameters of the model are shown in Table 1 and the compartmental diagram is shown in
Figure 2.

As before in the basic model, the sum of the populations in each of the classes adds to a constant,
N . We also note that the population in the uninformed class monotonically asymptotically decreases
to zero, and that the population in the Stifler class monotonically asymptocally increases to N .

In Theorem 2 in Appendix A, we show that if

Z =
k(1− α)Ut

N(1− λG2,t)
< 1 (6)
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Ot+1

St+1

1−G2( )

1−α( ) 1−G
1

( )

α 1−G1( )

Ut+1 Qt+1
1− λ
(

)G
2

1−
μ

(
)

Figure 2: Compartmental Model Structure

then Ot+1 < Ot. Since Ut monotonically decreases to zero, and (1 − λe−kSt/N ) monotonically
increases because St monotonically increases, we see that Z montonically decreases to zero. Thus,
just as in the basic model, there will always exist a point at which Z < 1, and Ot+1 < Ot. However,
we note that the smaller the λ (ie; the higher the quarantine fraction (1 − λ)), the faster Z will
decrease to 0.

In Theorem 3 in Appendix A, we show additionally show that if

Z =
k(1− α)

(1− λ)
< 1 (7)

then Ot+1 < Ot regardless of the values of (U,O,Q, S)

Further, we show in Theorem 4 in Appendix A that if k(1−α) < 1 and λ ≤ 1− k(1− α), then
Ot+1 < Ot, regardless of the current values of (U,O,Q, S). We note that k = 10 and (1−α) ∼ 0.001
for Twitter data, thus k(1 − α) < 1. Thus for Twitter data there exists a quarantine fraction λ
such that the spread of offensive messages will be guaranteed to decline at the next time step.

There are two equilibrium points for the model with the Quarantine class:

(U∗
1 , O

∗
1, Q

∗
1, S

∗
1) =

(
0,

λ(μ− 1)Q

λ− 1
, Q,

ln(λ)N

k

)
(8)

(U∗
2 , O

∗
2, Q

∗
2, S

∗
2) = (U, 0, 0, S) (9)

The first equilibrium point is biologically irrelevant because it implies that the Stifler class will
have a negative population since 0 ≤ λ < 1. Therefore we disregard this equilibrium point. The
second equilibrium point is analogous to the offender-free equilibrium of Equation (1).

The Jacobian of the system is:

J =

⎛
⎜⎜⎝

G1,t − k
NG1,tUt 0 0

(1− α)(1−G1,t)
k
N (1− α)G1,tUt + λG2,t 0 − k

N λOtG2,t

0 (1− λ)G2,t μ k
NOt(1− λ)G2,t

0 k
NαG1,tUt + (1−G2,t) (1− μ) 1 + k

NG2,tOt

⎞
⎟⎟⎠ .
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The eigenvalues of the Jacobian evaluated at the offender-free equilibrium are Λ1,2 = 1, Λ3 = μ,
and Λ4 = (μ+ λG2,t) +

k
N (1− α)Ut.

As in Section 2.2.1, we note that the constraint Ut + Ot + Qt + St can be used to reduce the
number of equations by one. The eigenvalues of the reduced system are Λ1 = 1, Λ2 = μ, and
Λ3 = (μ+ λG2,t) +

k
N (1− α)Ut. We note that if k(1− α) < 1 (which it is for Twitter data, which

has (1 − α) ∼ 0.001 and k = 10, as seen in the previous section) then μ and λ can always be
chosen to ensure that the second and third eigenvalues are less than 1. However the first eigenvalue
is exactly equal to one. As before, we find that the Jury criterion cannot be applied to assess
the stability of this equilibrium point, so we conclude that we find the stability to be currently
indeterminate.

As in Section 2.2.1, we begin computation of the Next Generation Matrix for this system
by reordering the equations such that the infected classes (Offender and Quarantine) classes come
first, and the uninfected (Uninformed and Stifler) classes follow[20]. The Jacobian of the rearranged
equations, evaluated at the disease-free equilibrium is thus:

JOFE =

⎛
⎜⎜⎝

+ k
NU(1− α) + λG2,t 0 0 0

(1− λ)G2,t μ 0 0

− k
NU 0 1 0

+ k
NαU + (1−G2,t) (1− μ) 0 1

⎞
⎟⎟⎠

As before, we identify the components of this matrix with [20]

JOFE =

(
F + T 02x1
A C

)
.

Then the matrix F is given by

F =

(
+ k

NU(1− α) 0
(1− λ)G2,t 0

)
,

matrix T is

T =

(
λG2,t 0
0 μ

)
,

and the matrix C is

C =

(
1 0
0 1

)
.

The Next Generation Matrix is defined by F (I − T )−1. The spectral radius of this matrix is

Z =
k(1− α)Ut

N(1− λG2,t)
. (10)

We again note that the spectral radius of the matrix C, ρ(C), is exactly equal to one and thus
we do not identify Z with the reproduction number, but again note with interest that it matches
the expression in Equation (10) that we have shown could be used as a threshold condition for
Ot+1 < Ot in the Quarantine model.
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Symbol Definition Value

N Number of users in the population 107

Ut Number of uninformed users at time t Varies

Ot Number of offenders at time t Varies

Qt Number of quarantined users at time t 0 at t = 0

St Number of stiflers at time t Varies

(1−G1,t) Probability an uninformed user sees the offensive tweet Based on Ot&Qt

(1−G2,t) Probability an offender becomes a stifler Based on St

(1−α)
Probability an uninformed user becomes

0.001
an offender (after seeing the offensive tweet)

α
Probability an uninformed user becomes

0.999
a stifler (after seeing the offensive tweet)

(1− λ) Probability an offender becomes quarantined Varies

(1− μ) Probability a quarantined user becomes a stifler Varies

k The average degree of the network 10

Table 1: Parameter values for the discrete-time models.

3 Results

We determined the parameters of Equation (5) using current Twitter data:

• α, the probability that the user becomes a stifler

• S0
N the fraction of the population that is initally in the Stifler class.

• k, the degree of the network.

We assumed based on our data and information from the literature that α = 0.999 and k = 10
as described in Section 2.1. We examined values of S0

N between 0.01 to 1 in steps of 0.01 and
determined the model prediction for the number of retweets, and compared this to the number of
retweets we observed in the data (namely approximately one retweet per tweet). This can be seen
in Table 1. We found the value of S0

N = 0.07 best fit the data. We let N = 10, 000, 000 but we
found our results were not sensitive to the value of N , for large N . Figures 3 and 4 are numerical
simulations of our basic and quarantined models respectively. These Figures visually show the
dynamics of the systems.

We used the parameter values in Table 1 to find solutions to Equation (5). In our computations,
we assume the probability a quarantined user becomes a stifler, (1 − μ) is zero. To do this we
examined values of (1− λ), the quarantine fraction, between zero and one and obtained the model
prediction for the number of retweets. The results are seen in Figure 5.

By looking at the number of offenders over time, while varying λ we can see how the quarantine
fraction, (1 − λ), affects the life-time of the tweet. As (1 − λ) increases, the model predicts a
decrease in the average life-time of the tweet, see in Figure 6, i.e. the tweet on average dies out
more quickly.

10



0

100

200

300

400

500

0 1 2 3 4 5
Time (minutes)

N
um

be
r o

f U
se

rs

Classes

Uninformed

Offenders

Stiflers

Basic Model Output

Figure 3: This is the basic output of the model without quarantining. The parameters are α =
0.999, k = 10. the Uninformed and Offender classes tend to zero while the Stifler class
tends to N which is the total population.

0

100

200

300

400

0 1 2 3 4 5
Time (minutes)

N
um

be
r o

f U
se

rs

Classes

Uninformed

Offenders

Quarantined

Stiflers

Quarantined Model Output

Figure 4: This is the model with Quarantine class. The parameters are α = 0.999, k = 10, μ = 0.99,
λ = 0.5. The Uninformed, Offender, and Quarantined classes tend to zero while the Stifler
class tends to N which is the total population.
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Figure 5: Prediction of the quarantine model for the number of retweets per original tweet as a
function of the quarantine fraction, (1 − λ). For (1 − α) = 0.001, k = 10, S0/N = 0.07.
We assume that quarantined users are fully isolated from the rest of the community. As
the probability of quarantine increases, the number of retweets decreases.
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Figure 6: Comparison of the number of offenders over time as 1−λ varies. the parameters α = 0.999,
μ = 0.99, and k = 10. For a low probability of being quarantined, there is a high number
of offenders over time. As the probability of the quarantined increases, the offenders
deceases
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4 Discussion

In this paper we presented a discrete-time non-linear compartmental model to simulate the dy-
namics of the spread of offensive messages on Twitter. We developed the model to gain insight
into reducing the number of offensive tweets seen by Twitter users. We then extended the model
to include a Quarantine class whereby offending users were isolated from contact with the rest of
the Twitter community. We found that the implementation of quarantine was an effective way to
quickly reduce the spread of offensive messages. Further, we proved that if k(1− α) < 1, where k
is the degree of the network, and (1− α) is the probability of retweeting, then if λ < 1− k(1− α)
the number of offenders at the next time step will always be less than the number of offenders the
time step before. We showed that this was independent of the the number of uninformed, offenders,
quarantined, and stiflers at that time step. From data we obtained from Twitter, and the published
literature, we determined that k = 10 and (1−α) ∼ 0.001, thus for Twitter k(1−α) < 1 and there
thus exists a λ such that offensive tweets will be effectively suppressed.

We performed numerical simulations to examine the effect of quarantine. As shown in Figure
3, the quarantine of a certain fraction of offending Twitter users led to a disproportionately larger
reduction in the number of new offenders.

Previous studies in this area have used a wide variety of statistical, computational, and math-
ematical methods to understand the spread of information in social networks (see [14, 21–24], for
instance). The use of a Quarantine class to hinder the spread of messages has not been previously
considered.

There are some limitations of the model we have developed. For instance, we assume that once
offenders leave the Quarantine class, they have learned their lesson and do not offend again. This
is not realistic in all cases. Also, while we find that the quarantine of offenders is effective, we have
not determined how such a quarantine can be implemented. One way to potentially implement the
quarantine is to have Twitter use an algorithm that flags tweets as being potentially offensive based
on keywords [10]. Another way to implement a quarantine is to have users give negative rating to
tweets they find offensive, for instance, a rating system that goes from zero to minus ten by integer
values and lets each user choose the value that fits the type of tweets they want to see.

With this basic and quarantine model, there are other routes that could be taken to further
this research. For instance, performing an analysis of a Markov chain model. We can also examine
how quarantined users or stiflers stop the spread of a tweet through a network graph. Performing
a network analysis on such a model would provide insight into which users should be quarantined
first, or which groups to isolate from the overall population, to reduce the spread of these tweets.

In conclusion, our model indicates that quarantine of users that spread offensive message would
likely be effective. Our use of a discrete-time non-linear model highlights the usefulness of mathe-
matical models in understanding the underlying dynamics of social networks, and opens up many
interesting possibilities for future research.
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5 Appendix A

Lemma 1. If U0, O0, S0 ≥ 0 in the basic model in System 1, then Ut, Ot, St ≥ 0

Proof. Let U0, O0, S0 ≥ 0

U1 = U0e
−k
N

O0 (11)

U2 = U1e
−k
N

O1 = U0e
−k
N

(O0+O1) (12)

... (13)

Un+1 = Une
−k
N

On = U0e
−k
N

(O0+O1+O2+···+On) (14)

Since e
−k
N

(
∑n

i Oi) > 0, we can see that Ut ≥ 0 for all t. Therefore, as Ot+1 ≥ Ote
−k
N

St , we can use a
similar argument to show that for O0 ≥ 0

Ot+1 ≥ Ote
−k
N

St = O0e
−k
N

(S0+S1+S2+···+St) (15)

Lastly to show that St ≥ 0 for all t we notice that St+1 ≥ St since Ut and Ot are always non-negative.
Therefore since S0 ≥ 0, and St+1 ≥ St then St ≥ 0

Lemma 2. The basic model given by System 1 is bounded such that the sum of the compartments
remains constant.

Proof. Let Nt = Ut +Ot + St;

Nt+1 = Ut+1 +Ot+1 + St+1

= Ute
−k
N

Ot + (1− α)(1− e
−k
N

Ot)Ut +Ote
−k
N

St + α(1− e
−k
N

Ot)Ut + (1− e
−k
N

St)Ot + St

= Ute
−k
N

Ot + (1− α)(1− e
−k
N

Ot)Ut + α(1− e
−k
N

Ot)Ut +Ote
−k
N

St + (1− e
−k
N

St)Ot + St

= Ut +Ot + St

= Nt

Lemma 3. If U0, O0 > 0 in the basic model in System 1, then 0 < Ut+1 < Ut for all t.

Proof. Let U0, O0 > 0. From (7),(8) we know

Ut+1 = U0e
−k
N

(O0+O1+O2+···+Ot)

Ot+1 ≥ O0e
−k
N

(S0+S1+S2+···+St)

Notice that if
∑t

i=0Oi > 0 then e
−k
N

(
∑t

i=0 Oi) ∈ (0, 1). Since U0 > 0, we can see that Ut > 0 for all
t and consequently

Ot+1 = (1− α)(1− e
−k
N

Ot)Ut +Ote
−k
N

St

=⇒ Ot+1 > Ote
−k
N

St > 0

Therefore since {Oi}ti > 0, we can say
∑t

i=0Oi > 0 and Ut+1 < Ut.
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Theorem 1. When Z = k(1−α)Ut

N(1−G2,t)
< 1 then Ot+1 < Ot in the basic model in System 1.

Proof. For the basic model in System 1 we have

Ot+1 = (1− α)(1−G1,t)Ut +G2,tOt (16)

Note that for all (kOt/N) > 0 the following is true

(1− e−kOt/N ) < kOt/N (17)

Since G1,t = e−kOt/N , this implies that

(1−G1,t)N/k < Ot (18)

Now, we wish to show that when

Z =
k(1− α)Ut

N(1−G2,t)
< 1 (19)

then

Ot+1 < Ot.

Note that Equation (26) implies that

(1− α)Ut <
N

k
(1−G2,t).

Substituting this into Equation (23) yields

Ot+1 <
N

k
(1−G1,t)(1−G2,t) +G2,tOt (20)

From Equation (25) we know that N
k (1−G1,t) < Ot, thus

Ot+1 < Ot(1−G2,t) +G2,tOt (21)

The LHS is equal to Ot. Thus

Ot+1 < Ot. (22)

Theorem 2. When Z = k(1−α)Ut

N(1−λG2,t)
< 1 then Ot+1 < Ot in the Quarantine model.

Proof. For the Quarantine model we have

Ot+1 = (1− α)(1−G1,t)Ut + λG2,tOt (23)

Note that for all (kOt/N) > 0 the following is true

(1− e−kOt/N ) < kOt/N (24)
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Since G1,t = e−kOt/N , this implies that

(1−G1,t)N/k < Ot (25)

Now, we wish to show that when

Z =
k(1− α)Ut

N(1− λG2,t)
< 1 (26)

then

Ot+1 < Ot.

Note that Equation (26) implies that

(1− α)Ut <
N

k
(1− λG2,t).

Substituting this into Equation (23) yields

Ot+1 <
N

k
(1−G1,t)(1− λG2,t) + λG2,tOt (27)

From Equation (25) we know that N
k (1−G1,t) < Ot, thus

Ot+1 < Ot(1− λG2,t) + λG2,tOt (28)

The LHS is equal to Ot. Thus

Ot+1 < Ot. (29)

Theorem 3. When Z = k(1−α)
(1−λ) < 1 then Ot+1 < Ot in the Quarantine model.

Proof. In Theorem 2 we showed that when Z = k(1−α)Ut

N(1−λG2,t)
< 1 then Ot+1 < Ot in the Quarantine

model. Thus it suffices here to show that

k(1− α)

(1− λ)
≥ k(1− α)Ut/N

(1− λe−kSt/N )
(30)

for all Ut and St.

Note that the numerator of the LHS is always less than or equal to k(1−α) because 0 ≤ Ut/N ≤ 1,
and the denominator of the LHS is always greater than or equal to (1− λ), because 0 ≤ St/N ≤ 1
and k > 0 thus e−kSt/N < 1. Thus we have shown that the LHS is at most the RHS. And thus
when Z = k(1−α)

(1−λ) < 1, then Ot+1 < Ot in the Quarantine model.

Theorem 4. When k(1− α) < 1 and λ ≤ 1− k(1− α), then Z = k(1−α)
(1−λ < 1 and Ot+1 < Ot.

Proof. We have λ ≤ 1 − k(1 − α), and we also have that k(1 − α) < 1, which ensures that λ > 0.

We thus have that Z = k(1−α)
(1−λ < k(1−α)

(1−[1−k(1−α)]) . The RHS is equal to 1, thus we have shown that

when k(1− α) < 1 and λ ≤ 1− k(1− α), then Z = k(1−α)
(1−λ < 1.
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