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Abstract

Numerically studies have shown that the bi-stability and backward bifurcation

are not automatically connected in epidemic models. In fact, when a backward

bifurcation occurs, the disease-free equilibrium may be globally stable or it may

support to a stable limit cycle. In this paper, a continuous epidemic model that

incorporates density-dependent treatments is analyzed. It is shown that it sup-

ports new types of backward bifurcations. We proceed to find bifurcation curves

in a subset of entire parameter space. Finally, we analyze an analog discrete-time

epidemic model.
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1 Introduction

More and more mathematical models describing the dynamics of human infectious

diseases are proposed to understand the mechanism of disease transmission. This

is necessary and useful to give tutorial control measures in epidemiology. Usually,

classical epidemic models only have a stable disease-free equilibrium when R0 < 1

and which is unstable when R0 > 1; and the unique stable endemic equilibrium exist

when the basic reproduction number R0 > 1, hence the bifurcation at R0 = 1 is

forward[1, 2, 3]. Some epidemic models, however, exhibit more complicated behaviors.

Another equilibrium may bifurcate from the disease-free equilibrium when R0 < 1.

This is so called backwards bifurcation. In this case, the basic reproduction number

alone cannot be used to describe disease elimination effort. Then it is important and

necessary to investigate backward bifurcations and establish thresholds for the control

of diseases.

There are a lot of works that studied the backward bifurcations. For instance, the

works in [13, 14, 15, 16, 17, 18, 19, 22, 23] successfully used the continuous epidemic

models to investigate the dynamical behavior when backward bifurcation occurs. The

work in [13] provided a general framework for the mechanisms behind backwards bi-

furcations in simple disease models and discussed the biological interpretation of the

features of the model that produce these bifurcations. Paper [14] studied the global

behavior of an epidemic model with a saturated incidence rate kI2S
1+αI2

, and showed that,

although the reproduction number is zero, the disease can still persist under some con-

ditions. Paper [18] demonstrated the existence of backward bifurcations in SIR models
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with bilinear incidence βSI and piecewise treatment T (I), which is

T (I) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γI, if 0 ≥ I ≤ I0,

k, if I > I0.

(1.1)

Following [16] modified the incidence as standard incidence βSI
N and adopted the same

piecewise treatment function in [18]. This model can also lead to the backward bi-

furcation. [17] modified the model with the nonlinear incidence function λSI
1+αI and

showed the dynamic behavior when backward bifurcation occurs. The work in [19]

used nonlinear incidence function λSI
1+αI and the saturated treatment function γI

1+αI

and showed that the bifurcation can occur. These models all found that there exist

bistable equilibria when a backward bifurcation occurs.

We can see that the particular treatment function can lead to backward bifurcation

and it seems that a backward bifurcation can lead to bistable dynamics (called Type-I

backward bifurcation [23]).

Although a lot of works on backward bifurcation have been done, the general condi-

tions for the occurrence of a backward bifurcation have not been found. The dynamic

behaviors of the system when a backward bifurcation occurs are still not completely

clear. Paper [12] gave an criterion of the occurrence of a backward bifurcation. [15] pro-

posed an SIS model with bilinear incidence βSI and saturated treatment function cI
b+I

and showed the existence of backward bifurcation. It was shown that the oscillations

occur when the basic reproduction number R0 < 1. Furthermore, [23] introduced a

general form for the treatment function is T (I) = p(I)I, and gave some general results
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to SIS models with standard incidence βSI
N . For particular p(I) backward bifurcation

can occur. Specifically, the two density-dependent treatment functions p(I) = α1e
−γI

and p(I) = α2 + α1e
−γI were used. If p(I) = α1e

−γI , the disease-free equilibrium

coexists with an endemic equilibrium when R0 < 1 and an addition condition R1 < 1.

It is called Type-I backward bifurcation[23]. However, if p(I) = α2 + α1e
−γI , two new

types of dynamics were found through numerical simulations.

(1) When a backward bifurcation occurs, the disease-free equilibrium is globally

stable. One positive equilibrium is an unstable spiral and the other is a saddle; there

is a heteroclinic cycle orbit that connects the saddle with the disease-free equilibrium.

This is called Type-II backward bifurcation [23].

(2) When a backward bifurcation occurs, the disease may persist in a periodic

fashion. Neither positive equilibrium is stable, and there is a stable limit cycle. This

is called Type-III backward bifurcation [23].

These new dynamic behaviors show that backward bifurcations cannot always gen-

erate bi-stability. The existence of Type-II and Type-III backward bifurcations were

discovered numerically. In this paper, we study the same model and show these bifur-

cations theoretically.

The rest of this paper is organized as follows: In section 2 we give a continuous SIS

epidemic model with density-dependent treatments; Section 3 focuses on the analysis

of the continuous model, including the stability of equilibria, the different type of

backward bifurcations, saddle-node bifurcation and hopf bifurcation; Section 4 studies

a corresponding discrete-time epidemic model; Finally, in Section 5, we collect some
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observations and conclusions.

2 Continuous-time model with density-dependent treat-

ments

As a review to [23], the epidemic models and some results are relisted below since these

will be used in the later analysis.

The model based on the SIS model with the standard incidence and treatment

function p(I) = α2 + α1e
−γI takes the following form

dS

dt
= Λ− βS

I

N
− μS + (α2 + α1e

−γI)I, (2.1)

dI

dt
= βS

I

N
− (μ+ d)I − (α2 + α1e

−γI)I, (2.2)

N = S + I, (2.3)

where all the parameters are positive, and Λ is the recruitment of susceptible popula-

tion; μ the natural death rate; d the additional death rate caused by the disease. The

infected individuals are treated with a rate (α2 + α1e
−γI)I. The standard incidence

rate βS I
N is used, where β is transmission rate.

Model (2.1)-(2.3) always has a disease-free equilibrium E0 = (Λμ , 0). We use the

next generation method [21, 20] to obtain the basic reproduction number

R0 =
β

μ+ d+ α1 + α2
. (2.4)
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The Jacobian matrix of the system (2.1)-(2.3) is

J =

⎛
⎜⎜⎝

−β I2

(S+I)2
− μ −β S2

(S+I)2
+ α2 + α1e

−γI − γα1Ie
−γI

β I2

(S+I)2
β S2

(S+I)2
− μ− d− α2 − α1e

−γI + γα1Ie
−γI

⎞
⎟⎟⎠ .

so the matrix of linearization of (2.1)-(2.3) at the disease-free equilibrium is

J(E0) =

⎛
⎜⎜⎝

−μ −β + α1 + α2

0 β − μ− d− α1 − α2

⎞
⎟⎟⎠ .

The characteristic equation at E0 is

(λ+ μ)(λ+ (μ+ d+ α1 + α2)(1−R0)) = 0, (2.5)

all the eigenvalues have negative real parts, implying the asymptotic stability of the

disease-free equilibrium, if and only if R0 < 1. Hence we have the following result

Theorem 2.1. For model (2.1)-(2.3), the disease-free equilibrium E0 is locally asymp-

totically stable if R0 < 1, and is unstable when R0 > 1.

For model (2.1)-(2.3), we can classify the type of the bifurcation atR0 = 1 according

to the theorem from [12].

Theorem 2.2. For model (2.1)-(2.3), if R1 = β
Λ
μ
α1γ

< 1, the bifurcation at R0 = 1 is

backward, while R1 > 1 the bifurcation at R0 = 1 is forward.
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3 Endemic equilibria

The endemic equilibria of model (2.1)-(2.3) are solutions to

Λ− βS
I

S + I
− μS + (α2 + α1e

−γI)I = 0, (3.1)

β
S

S + I
− (μ+ d)− (α2 + α1e

−γI) = 0. (3.2)

In order to obtain positive solution of (3.1)-(3.2), we eliminate S using the sum of

equation (3.1) and (3.2) Λ− μ(S + I)− dI = 0, and then substitute it into (3.2). The

(S, I) coordinates of an equilibrium must satisfy

S =
Λ− (μ+ d)I

μ
, h(I)

�
= a0 + a1I + a2e

−γI + a3Ie
−γI = 0, (3.3)

where

a0 =Λ(β − μ− d− α2) = Λ(μ+ d+ α2)(
β

μ+ d+ α2
− 1)

=Λ(μ+ d+ α1 + α2)(R0 − 1) + Λα1,

a1 =d(μ+ d+ α2)− β(μ+ d) = −d(μ+ d+ α2)(
β

μ+ d+ α2

μ+ d

d
− 1)

=− d(μ+ d+ α2)(R0
μ+ d+ α1 + α2

μ+ d+ α2

μ+ d

d
− 1),

a2 =− Λα1 < 0,

a3 =dα1 > 0.

We introduce functions f(I) and g(I), and h(I) can be rewritten as h(I) = g(I)−
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f(I):

f(I)
�
= −(a2 + a3I)e

−γI , g(I)
�
= a0 + a1I. (3.4)

The endemic equilibrium E∗ = (S∗, I∗) can be found by solving S and I from the

following equations

S =
Λ− (μ+ d)I

μ
, f(I) = g(I). (3.5)

In order to have E∗ > 0, we need 0 < I∗ ≤ Λ
μ+d .

Denote Im = Λ
μ+d . The first and second order derivations of f(I) are,

f ′(I) = (γa3I + γa2 − a3)e
−γI = α1(γdI − γΛ− d)e−γI ,

f ′′(I) = −γ(γa3I + γa2 − 2a3)e
−γI = −γα1(γdI − γΛ− 2d)e−γI ,

we obtain the following properties of f(I): (i) f(I) decreases in interval (0, Ic), and

increases in interval (Ic,+∞), where Ic =
a3−γa2
γa3

= d+γΛ
γd > 0; (ii) f(I) is concave down

in interval (0, Ih), and is concave upward in interval (Ih,+∞), where Ih = 2a3−γa2
γa3

=

2d+γΛ
γd > Ic; (iii) Since lim

I→+∞
f(I) = 0, so the maximum of f(I) is f(0) = −a2 =

Λα1 > 0, and the minimum is f(Ic) = −a3
γ e−γIc = −dα1

γ e−1− γΛ
d < 0. A graph of f(I)

is sketched in Fig. 1.

To compute the biologically feasible equilibrium, we need to consider the intersec-

tions between f(I) and g(I) on the interval (0, Im]. Because 0 < Im < Ic < Ih, f
′(I) <

0 and f ′′(I) > 0 hold when I ∈ (0, Im]. It is easy to conclude that f(I) is monotone

decreasing and concave down in interval (0, Im] (see Fig.1). And f(Im) ≥ f(I) < f(0),

where f(0) = Λα1, f(Im) = f( Λ
μ+d) =

μΛα1

μ+d e
− γΛ

μ+d .
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I

Ic Ih

Im

Λα1

O
Λ/d

f(Im)

f(I)

Figure 1: Plot of function f(I). On interval [0, Im], f(I) is a monotone decreasing
function. It reaches its maximum and minimum values at point I = 0 and I = Im,
respectively, and f(0) > f(Im) > 0.

Let

R∗ =
β

μ+ d+ α2
, R∗∗ = ( β

μ+ d+ α2
)(μ+ d

d
),

which corresponds to a0 = 0 and a1 = 0, respectively. Now we discuss the number of

intersections between f(I) and g(I), the straight line g(I) is determined by the signs

of a0 and a1, so we should study the intersections between f(I) and g(I) for following

distinct cases:

Case 1: 1 < R0 < R∗ < R∗∗;

In this case a0 > Λα1 = f(0) and a1 < 0 always hold, hence g(I) is decreasing on

interval (0, Im], and we have g(0) = a0 > f(0), g(Im) = − μΛ
μ+d(μ+d+α2) < 0 < f(Im).

There is one and only one intersection between f(I) and g(I), as is shown in Fig.2.

That is, when R0 > 1, the system (2.1)-(2.3) has an unique endemic equilibrium.

Furthermore due to p′′(I) = γ2α1e
−γI > 0, and using Theorem 4.2 in [23], we can
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conclude the following theorem:

Theorem 3.1. For model (2.1)-(2.3), when R0 > 1, there is an unique equilibrium

and which is locally asymptotically stable.

I

Ic Ih
Im

Λα1

O
Λ/d

f(Im)

f(I)

g(I)

g(Im)

a0>Λα1

Figure 2: Case 1, when R0 > 1, plot of the intersection between f(I) and g(I). On
interval [0, Im], both f(I) and g(I) are monotone decreasing, and g(0) > f(0) > 0,
f(Im) > 0 > g(Im) hold. The intersection between f(I) and g(I) on interval [0, Im] is
unique.

Case 2: R0 < 1 < R∗ < R∗∗;

In this case 0 < a0 < Λα1 = f(0), a1 < 0. There may be zero, one or two intersections

between f(I) and g(I), as is shown in Fig.3.

Case 3: R0 < R∗ < 1 < R∗∗;

In this case a0 < 0, a1 < 0. We have max
I∈[0,Im]

g(I) = g(0) = a0 < 0 and min
I∈[0,Im]

f(I) =

f(Im) = μΛα1

μ+d e
− γΛ

μ+d > 0, then max
I∈[0,Im]

g(I) < min
I∈[0,Im]

f(I), thereforce it is clearly that

there is no intersection between f(I) and g(I) on interval [0, Im], as is shown in Fig.4.
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I

f(I)

g(I)

a0<Λα1

a0

a0

O

Im
g(Im)

f(Im)

Λα1

g(I)g(I)

Figure 3: Case 2, when R0 < 1 < R∗ < R∗∗, plot of the intersections between f(I)
and g(I). On interval [0, Im], the black line of g(I) has two intersections with the
function f(I). The red line of g(I) is tangent with function f(I), so there is only one
intersection. And the green line of g(I) has no intersection with the function f(I).

I

Im

Λα1

O
Λ/d

f(Im)

f(I)

g(I)a0<0

g(Im)

Figure 4: Case 3, when R0 < R∗ < 1 < R∗∗, plot of the intersection of the function f(I)
the g(I). Since g(I) < f(I) always holds in interval [0, Im], so there is no intersection
for the function f(I) and g(I) in interval [0, Im].
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Case 4: R0 < R∗ < R∗∗ < 1;

In this case a0 < 0, a1 > 0. We have max
I∈[0,Im]

g(I) = g(Im) = − μΛ
μ+d(μ + d + α2) < 0

and min
I∈[0,Im]

f(I) = f(Im) = μΛα1

μ+d e
− γΛ

μ+d > 0, then max
I∈[0,Im]

g(I) < min
I∈[0,Im]

f(I), hence it

is clearly that there is no intersection between f(I) and g(I) on interval [0, Im], as is

shown in Fig.5.

I

Im

Λα1

O
Λ/d

f(Im)

f(I)

g(I)a0<0

g(Im)

Figure 5: Case 4, when R0 < R∗ < R∗∗ < 1, plot of the intersection between f(I)
and g(I). Since g(I) < f(I) always holds on interval [0, Im], so there is no intersection
between f(I) and g(I) on interval [0, Im].

3.1 Saddle-node bifurcation

The existence of bifurcation depends on several parameters. To investigate the impact

of transmission rate and treatment, we choose β and α2 as our bifurcation parameters

and consider bifurcations in the (β, α2) plane.

In this case, the Implicit Function Theorem provides the (local) existence of two
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smooth functions:

f(I) = g(I),

f ′(I) = g′(I),

i.e.

a0 + a1I = −a2e
−γI − a3Ie

−γI , (3.6)

a1 = (γa2 + γa3I − a3)e
−γI , (3.7)

solving a0 and a1 from (3.6)-(3.7):

a0 = −(a2 + γa2I + γa3I
2)e−γI ,

a1 = (γa2 + γa3I − a3)e
−γI ,

so the parameter function of β and α2 is obtained:

(μ+ d)β − dα2 = d(μ+ d) + α1(γΛ + d− γdI)e−γI ,

β − α2 = α1(1 + γI +
γdI2

Λ
)e−γI ,

then if f(I) is tangent to g(I) at point I, the parameter β and α2 satisfies

β(I) = γ(Λ− 2dI +
d2

Λ
I2)

α1

μ
e−γI =

γα1

Λμ
e−γI(Λ− dI)2, (3.8)
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α2(I) = −(μ+ d) + (γΛ− μ− γ(μ+ 2d)I +
γd(μ+ d)

Λ
I2)

α1

μ
e−γI , (3.9)

following we need to I ∈ [0, Im]. Since

∂β

∂I
= −γα1

Λμ
e−γI(Λ− dI)(γ(Λ− dI) + 2d) < 0, (3.10)

∂α2

∂I
= −γα1

Λμ
e−γI(Λ− (μ+ d)I)(γ(Λ− dI) + 2d) < 0, (3.11)

when I ∈ [0, Im]. So both β(I) and α2(I) are decreasing on interval [0, Im]. β(I) > 0

is always holds on interval [0, Im]. α2(I) ∈ [α2(Im), α2(0)], to make α2(I) > 0 holds

for some I ∈ [0, Im], α2(0) > 0 is sufficient and necessary. Hence for model (2.1)-(2.3),

we obtain the necessary and sufficient condition for the saddle-node bifurcation occurs

γΛα1 − μ(μ+ d+ α1) > 0. (3.12)

Denote p(I)
�
= (1+γI(1− d

ΛI))e
−γI . From (3.8) and (3.9) we can obtain that when

a saddle-node bifurcation occurs

α2(I)− β(I) = −(μ+ d)− p(I)α1. (3.13)

The derivation of p(I) is

p′(I) = γe−γII(
γd

Λ
I − (γ +

2d

Λ
)). (3.14)

It is easily to verify that p′(I) < 0 on interval [0, Im], so p(Im) ≤ p(I) < p(0) holds
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when I ∈ (0, Im], then we can derive to that 0 < p(I) < 1 on interval (0, Im]. From

(3.13), we obtain the threshold condition of saddle-node bifurcation occurs satisfies

that

− (μ+ d+ α1) < α2 − β < −(μ+ d) (3.15)

when I ∈ (0, Im].

Furthermore, from (3.8) and (3.9) we can calculate the first and second order

derivations of α2 with respect to β

∂α2

∂β
=

Λ− (μ+ d)I

Λ− dI
, (3.16)

∂2α2

∂β2
=

μ2Λ2eγI

γα1(Λ− dI)3(γ(Λ− dI) + 2d)
. (3.17)

Then we can also obtain that 0 ≤ ∂α2
∂β < 1 and ∂2α2

∂β2 > 0 hold when I ∈ (0, Im], hence

the function α2 is monotonous increasing with slope is less than 1, and is concave down

with respect to β when I ∈ (0, Im].

Denote

R̂0 =
β(I)

μ+ d+ α1 + α2(I)
=

β(I)

β(I) + (1− p(I))α1
, (3.18)

0 < R̂0 < 1 holds since 0 < p(I) < 1. From the above analysis we get the result

regarding the number of endemic equilibrium.

Theorem 3.2. For model (2.1)-(2.3), we have

(1) When R0 ≥ 1, there is a unique endemic equilibrium.

(2) when R̂0 < R0 < 1, there are two endemic equilibria.
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(3) when R0 = R̂0, the two endemic equilibria coalesce at a unique endemic equilibrium

of multiplicity 2.

(4) when R0 < R̂0, there is no endemic equilibrium.

Figure 6: The distribution of endemic equilibria on the plane of (β, α2).

3.2 Hopf bifurcation

We investigate the Hopf bifurcation in region R̂0 < R0 < 1, in which there are two

endemic equilibria. In this region, (3.12) and p(I)α1 < β − (μ + d + α2) < α1 hold.

The variational matrix about any equilibrium E∗ = (S∗, I∗) of system (2.1)-(2.3) is

J(E∗) =

⎛
⎜⎜⎝

−β I∗2
(S∗+I∗)2 − μ −β S∗2

(S∗+I∗)2 + α2 + α1e
−γI∗ − γα1I

∗e−γI∗

β I∗2
(S∗+I∗)2 β S∗2

(S∗+I∗)2 − μ− d− α2 − α1e
−γI∗ + γα1I

∗e−γI∗

⎞
⎟⎟⎠ ,
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so the trace of J(E∗) is

tr(J(E∗)) = β
S∗ − I∗

S∗ + I∗
− α1e

−γI∗ + γα1I
∗e−γI∗ − 2μ− d− α2, (3.19)

from (3.3) we also have

S∗ =
Λ− (μ+ d)I∗

μ
, e−γI∗ = −a0 + a1I

∗

a2 + a3I∗
, (3.20)

substitute the (3.20) to (3.19), we can determine a threshold condition for Hopf bifur-

cation:

tr(J(E∗)) =
1

Λ− dI∗
(b0I

∗2 + b1I
∗ + b2), (3.21)

where

b0 =γa1 = γd(μ+ d+ α2)− γβ(μ+ d),

b1 =γa0 − μ(β − d) = γΛ(β − μ− d− α2)− μ(β − d),

b2 =− μΛ < 0.

From the analysis before we know that I∗ ∈ [0, Im] implies that a0 > 0, i.e β > μ+d+α2

holds, which can also derive to that a1 < 0, so we can obtain that for equation (3.21),

b0 < 0, since b2 < 0, in order to let the roots of (3.21) are positive, it is clearly that
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the conditions Δ = b1
2 − 4b0b2 ≥ 0 and b1 > 0 must hold:

Δ = b1
2 − 4b0b2

= ((γΛ− μ)β − γΛ(μ+ d+ α2)− μd)2 − 4μ2β(γΛ + d)

= (b1 − 2μd)2 − 4μ2β(γΛ + d)

≥ 0,

(3.22)

from (3.22), we can derive to

b1 ≥ 2μd+ 2μ
√

γΛ + d
√

β, (3.23)

or

b1 ≤ 2μd− 2μ
√

γΛ + d
√

β < 0, (3.24)

(3.24) is a contradiction with b1 > 0, hence we just consider the condition (3.23). so

when (3.23) holds, the (3.21) will have two positive roots:

I1 =
−b1 +

√
Δ

2b0
, I2 =

−b1 −
√
Δ

2b0
. (3.25)

In the same way, we can get the determinant of J(E∗) is

det(J(E∗)) = μ(μ+d+α2)−βμ
S∗ − I∗

S∗ + I∗
+dβ

I∗2

(S∗ + I∗)2
+μα1e

−γI∗(1− γI∗), (3.26)
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furthermore

det(J(E∗)) =
1

(Λ− dI∗)2
μI∗(c0I∗2 + c1I

∗ + c2), (3.27)

where

c0 =γda1 = γd(d(μ+ d+ α2)− β(μ+ d)),

c1 =γ(2da0 + βΛμ) = γΛ(2d(β − μ− d− α2) + βμ),

c2 =− Λ(γa0 − βμ) = −Λ(γΛ(β − μ− d− α2)− βμ).

(3.26) can been rewritten as

det(J(E∗)) = d(b0I
∗2+b1I

∗+b2)+(dγa0+dμ(β−d)+dγβΛ)I∗−Λ(b1−2dμ), (3.28)

we can verify that

det(J(E(S1, I1))) < 0, det(J(E(S2, I2))) > 0, (3.29)

so endemic equilibrium E(S1, I1) is an saddle, we continue to consider endemic equi-

librium E(S2, I2). Since

∂

∂β
tr(J(E2)) �= 0,

∂

∂α2
tr(J(E2)) �= 0,

we need

h(I2) = 0,
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which conclude the critical condition of hopf bifurcation occurs

a0 + a1I2 + a2e
−γI2 + a3I2e

−γI2 = 0. (3.30)

4 Discrete-time model with density-dependent treatments

Continuous epidemic models have played a important role on investigating the trans-

mitting law of epidemic diseases and predicting the development trend of their spread.

Meanwhile, discrete epidemic models have gained more popularity[6, 7, 8, 4, 5, 9, 10,

11], since epidemiological data are usually collected at discrete times and it becomes

easier to compare data with models. The backward bifurcations are also found in

discrete epidemic models[6, 7, 4, 5, 9, 10, 11]. [6, 7] developed models for the study

of disease dynamics in populations with discrete generations and potentially complex

(chaotic) disease-free dynamics. The work in [8] introduced a discrete-epidemic frame-

work, and the similarities between single-outbreak comparable classical continuous-

time epidemic models and the discrete-time models are introduced through analysis.

[10] formulated an extended Ricker model by incorporating Allee effects based on the

classical discrete Ricker population model, and showed that the model exhibits period-

doubling bifurcations and stability cycles. [11] proposed a set of discrete SEIS models

with exogenous reinfections and a variety of treatment strategies, and period doubling,

backward, forward-backward, and multiple backward bifurcations are identified from

the models.

In this section, we divide the population into two subpopulations: susceptible sub-
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population (S) and infectious subpopulation (I), and construct a discrete SIS epidemic

models with density-dependent treatments, and the parameters in the model are in-

troduced by corresponding probability. We let he time step be 1, which is also the unit

time step. Sn represents the number of the susceptible individuals at time n, and In

is the number of infected individuals at time n. To formulate the model, we give some

assumptions in the following:

(i) Let Λ be the constant recruitment rate and all the which are susceptible against

the infection.

(ii) The probability of an susceptible still alive via a time step is a constant, denoted

by π; and the probability of an infected individual still alive is π1, it is rational to let

0 < π1 ≤ π < 1. Then the number of susceptible and infected individuals still alive in

the period [n, n+ 1) are πSn and π1In, respectively.

(iii) In period [n, n+1), the probability of a susceptible individual not being infected

is e−βIn . Hence, in this period, the number of susceptible individuals alive and remain-

ing in S is πSne
−βIn , and the number of new infected individuals is πSn(1− e−βIn).

(iv) In period [n, n+1), the probability of an infectious individual removing from I

is a density-dependent treatments function: α2+α1e
−γIn , then the probability that an

infectious individual survived and infectious in period [n, n+1) is π1(1−(α2+α1e
−γIn)).

Therefore, via the period [n, n+1), the number of individuals being alive and infectious

is π1(1 − (α2 + α1e
−γIn))In, and the number of individuals being alive and removed

from I is π1In(α2 + α1e
−γIn). Then the discrete SIS model is as follows:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Sn+1 = Λ+ πSne
−βIn + π1In(α2 + α1e

−γIn),

In+1 = πSn(1− e−βIn) + π1In(1− (α2 + α1e
−γIn)),

(4.1)

We impose the following conditions on the parameters so that solutions of (4.1) remain

nonnegative: 0 < α1 + α2 < 1.

4.1 Analysis

Assume π �= π1, for the model (4.1), the disease-free equilibrium q0 = ( Λ
1−π , 0) is always

existent.

The Jacobian matrix of the system (4.1) is

J =

⎛
⎜⎜⎝

πe−βIn −βπSne
−βIn + π1(α2 + α1e

−γIn)− γπ1α1Ine
−γIn

π(1− e−βIn) βπSne
−βIn + π1(1− (α2 + α1e

−γIn)) + γπ1α1Ine
−γIn

⎞
⎟⎟⎠ ,

The local stability of q0 can be determined by the Jacobian matrix of system (4.1)

evaluated at q0 which has the following form:

J(q0) =

⎛
⎜⎜⎝

π −βπ Λ
1−π + π1(α2 + α1)

0 βπ Λ
1−π + π1(1− (α2 + α1))

⎞
⎟⎟⎠ ,

so the eigenvalues 0 < λ1 = π < 1, and 0 < λ2 = βπ Λ
1−π + π1(1− (α2 + α1) < 1 if and

only if

βπ Λ
1−π

1− π1(1− (α2 + α1)
< 1.
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We now can obtain the basic reproduction number is

Rd =
βπΛ

(1− π)(1− π1 + π1(α1 + α2))
, (4.2)

and we have the following theorem:

Theorem 4.1. For model (4.1), the disease-free equilibrium q0 is locally asymptotically

stable if R2
d < 1, and is unstable when R2

d > 1.

Furthermore, the global stability of e0 can obtain:

Theorem 4.2. For model (4.1), if Rd < 1, the disease-free equilibrium q0 is globally

stable when α1γ − β ≤ 0.

Proof. Since 0 < π1 ≤ π < 1, so take the sum of the two equations of (4.1), we obtain:

Sn+1 + In+1 = Λ+ πSn + π1In

= Λ+ π(Sn + In)− (π − π1)In

(4.3)

So N = Λ−(π−π1)I
1−π ≤ Λ

1−π , so Sn ≤ Λ
1−π − In, substituting into the last equations of

models (4.1). And according to that α1γ − β ≤ 0 and 1− e−βIn ≤ βIn, we can obtain
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that:

In+1 ≤ π(
Λ

1− π
− In)(1− e−βIn) + π1In(1− (α2 + α1e

−γIn))

≤ π(
Λ

1− π
− In)βIn + π1In[1− (α1 + α2) + α1(1− e−γIn)]

≤ βπΛ

1− π
In − πβIn

2 + π1In[1− (α1 + α2)] + π1α1γIn
2

=
βπΛ

1− π
In + πIn[1− (α1 + α2)] + π(α1γ − β)In

2

=
βπΛ

1− π
In + π1In[1− (α1 + α2)]

= [Rd + π1(1−Rd)(1− (α1 + α2))]In.

(4.4)

Since Rd < 1, 0 < π1, α1 + α2 < 1, so

0 < π1(1−Rd)(1− (α1 + α2)) < 1−Rd,

then

Rd + π(1−Rd)(1− (α1 + α2)) < Rd + (1−Rd) = 1, (4.5)

which can clearly conclude that lim
n→∞ In = q0, i.e the disease-free equilibrium e0 is

globally stable.

4.2 Analysis: π = π1

Assume π = π1, the probability of an susceptible and infected individual alive via

a time step is the same. Then we have Nn+1 = Λ + πNn, using limiting equations

lim
t→+∞N = Λ

1−π . Substituting Sn = N − In into the last equations of models (4.1),
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gives the following equations:

In+1 = π(
Λ

1− π
− In)(1− e−βIn) + πIn(1− (α2 + α1e

−γIn)), (4.6)

Let xn = In
N , then (4.6) becomes to:

xn+1 = π(1− e−bxn + xne
−bxn − xn(α2 + α1e

−rxn))
�
= d(x), (4.7)

where b = βN , r = γN and xn ∈ [0, 1].

Firstly, we consider the stability of the equilibrium e0 = 0, which is always existent.

We have

d′(x) = π(be−bx − e−bx − bxe−bx − α2 − α1e
−rx − rα1xe

−rx), (4.8)

since d′(0) = π(b+ 1− α2 − α1), the equilibrium e0 = 0 is asymptotically stable if

|d′(0)| < 1, we can obtain the basic reproduction number is

R1
d =

βπΛ

(1− π)2 + π(1− π)(α1 + α2)
=

βπΛ

(1− π)(1− π + π(α1 + α2))
, (4.9)

and we have the following theorem:

Theorem 4.3. For model (4.7), the disease-free equilibrium e0 is locally asymptotically

stable if R1
d < 1, and is unstable when R1

d > 1.

Furthermore, the global stability of e0 can obtain:
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Theorem 4.4. For model (4.7), if R1
d < 1, the disease-free equilibrium e0 is globally

stable when α1γ − β ≤ 0.

Proof. According to that α1γ − β ≤ 0 and 1− e−βIn ≤ βIn, we can obtain that:

In+1 = π(
Λ

1− π
− In)(1− e−βIn) + πIn(1− (α2 + α1e

−γIn))

≤ π(
Λ

1− π
− In)βIn + πIn[1− (α1 + α2) + α1(1− e−γIn)]

≤ βπΛ

1− π
In − πβIn

2 + πIn[1− (α1 + α2)] + πα1γIn
2

=
βπΛ

1− π
In + πIn[1− (α1 + α2)] + π(α1γ − β)In

2

≤ βπΛ

1− π
In + πIn[1− (α1 + α2)]

= [R1
d + π(1−R1

d)(1− (α1 + α2))]In.

(4.10)

Since R1
d < 1, 0 < π, α1 + α2 < 1, so

0 < π(1−R1
d)(1− (α1 + α2)) < 1−R1

d,

then

R1
d + π(1−R1

d)(1− (α1 + α2)) < R1
d + (1−R1

d) = 1, (4.11)

which can clearly conclude that lim
n→∞ In = e0, i.e the disease-free equilibrium e0 is

globally stable.
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5 Conclusion and discussion

Using density-dependent treatment function p(I) = α2+α1e
−γI , this paper show that

that the bi-stability and backward bifurcation are not automatically connected theo-

retically. Firstly, a continuous model with density-dependent treatments are studied

to show that when a backward bifurcation occurs, the disease-free equilibrium can be

globally stable, and a stable limit cycle exist. We find bifurcation curves in a subset

of entire parameter space. When R̂0 < R0 < 1, there are two endemic equilibria for

the system, one of which is an saddle, and the other can have rich dynamics. The

endemic equilibria is an stable focus when parameter β is large enough, but as param-

eter β decreases, it lose stability and becomes an center. The limit cycle can become

bigger and bigger as parameter β decreases, when the limit cycle intersect with the

orbit of saddle, a homoclinic orbit occur. If β continue to decrease, the limit cycle

will break, and the disease-free equilibrium is globally stable. Finally, a corresponding

discrete-time model with density-dependent treatment are used to find these type of

bifurcations.

27



Acknowledgments

We would like to thank Dr. Carlos Castillo-Chavez, Executive Director of the Math-

ematical and Theoretical Biology Institute (MTBI), for giving us the opportunity to

participate in this research program. We would also like to thank Co-Executive Sum-

mer Directors Dr. Erika T. Camacho and Dr. Stephen Wirkus for their efforts in

planning and executing the day to day activities of MTBI. We also want to give spe-

cial thanks to Yiqiang Zheng, for his kindness help during this project. This research

was conducted in MTBI at the Mathematical, Computational and Modeling Sciences

Center (MCMSC) at Arizona State University (ASU). This project has been partially

supported by grants from the National Science Foundation (NSF - Grant DMPS-

1263374), the National Security Agency (NSA - Grant H98230-13-1-0261), the Office

of the President of ASU, and the Office of the Provost of ASU. Finally, we would like to

thank Professor Zhen Jin for supporting Xiaoguang Zhang’s international travelling.

References

[1] J. Zhang, Z. Ma, Global analysis of the SEI epidemic model with constant inflows

of different compartments, Journal of Xian Jiaotong University, 6(37): 653-656,

2003.

[2] S. Yuan, L. Han, Z. Ma, A kind of epidemic model h aving infectious f orce in both

latent period and infected period, Journal of B iomathematics, 4(16): 392-398,

2001.

28



[3] G. Li and Z. Jin, Global stability of an SEI epidemic model, Chaos, Solitons and

Fractals, 4(21): 925-931, 2004.

[4] C. Castillo-Chavez, A. Yakubu. Intraspecific competition, dispersal and disease

dynamic in discrete-time patchy environments.

[5] C. Castillo-Chavez, A. Yakubu. Discrete-time SIS models with simple and complex

population dynamics.

[6] C. Castillo-Chavez, A. Yakubu. Dispersal, disease and life-history evolution. Math-

ematical Biosciences 173(2001),35-53.

[7] C. Castillo-Chavez, A. Yakubu. Discrete-time SIS models with complex dynamics.

Nonlinear analysis 47(2001), 4753-4762.

[8] F. Brauer, Z. Feng, C. Castillo-Chavez. Discrete epidemic models. Mathematical

Biosciences and Engineering: 1(7),2010.
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