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Abstract

This project is motivated by the costs related with the documented risks of the

introduction of non-native invasive species of plants, animals, or pathogens associated

with travel and international trade. Such invasive species often have no natural enemies

in their new regions. The spatiotemporal dynamics related to the invasion/spread of

Nylanderia fulva, commonly known as the Rasberry crazy ant, are explored via the use

of models that focus on the reproduction of ant colonies. A Cellular Automaton (CA)

simulates the spatially explicit spread of ants on a grid. The impact of local spatial

correlations on the dynamics of invasion is investigated numerically and analytically

with the aid of a Mean Field (MF) model and a Pair Approximation (PA) model, the
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latter of which accounts for adjacent cell level effects. The PA model approach considers

the limited mobility range of N. fulva, that is, the grid cell dynamics are not strongly

influenced by non-adjacent cells. The model determines the rate of growth of colonies

of N. fulva under distinct cell spatial architecture. Numerical results and qualitative

conclusions on the spread and control of this invasive ant species are discussed.

1 Introduction

Nylanderia fulva, commonly known as the Rasberry crazy ant, is a species originating

from Brazil and Argentina [5]. The first documented sighting of this species in the USA was

in Pasadena, Texas in 2002, by local pest exterminator Tom Rasberry, hence the nickname,

The Rasberry crazy ant [8, 14, 17]. The morphological and behavioral similarities between

ants of a certain genus can lead to the mislabeling of the species [10]. This lack of global

synthesis [10] is apparent in the identification of the N. fulva and N. pubens (Caribbean ant)

found in Florida. In [21], the authors demonstrated a molecular approach that determined

that Rasberry and Carribbean ants are the same. In [10], global synthesis is encouraged to

reduce the number of mislabeled ant species, so that this particular species can be accurately

accounted for. The lack of research on this species means that there is less information to

use in estimating parameters in the models.

Since 2002, the Rasberry ant has spread to over 20 counties in both Texas and Florida,

with recorded sightings in Louisiana and Mississippi [5]. Rasberry ants have caused up to

150 million dollars of damage to electrical equipment by chewing through insulation and

shorting circuits [13]. Electrocuted ants release a chemical that attracts other ants to the

electrocuted ants location [13, 15]. This sudden invasion inside of the electrical unit, leads

to overheating and mechanical failures [7]. Rasberry ants can seemingly nest wherever there

is a suitable food source. They have been known to inhabit homes, buildings and even
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bee hives [7]. The ants prefer warmer temperatures and colony numbers increase during the

spring, summer and fall months [4]. According to [15], Rasberry ants have not been observed

engaging in nuptial flights. In other ant species, a nuptial flight involves a winged ant male

and female, referred to as sexuals or reproductives, mating at or near the edge of the original

nest. Though winged males are born in Rasberry ant populations, their ability to spread is

attributed to their seasonal budding process [15].

The Rasberry ant tends to form a group of nests where ants do not exhibit mutual

aggression, known as a super colony [1, 2, 14]. Adjacent colonies can merge and some colonies

reach population densities up to one hundred times larger than other ant populations [11].

In addition, their colonies are polygynous, where one colony can have multiple queens laying

eggs [2]. In a personal interview, Tom Rasberry described an observed Rasberry ant nest

consisting of 96 queens in a volume of dirt less than ten gallons [18].

Due to the sheer size of the colony population, the Rasberry ant is a potent competitor

with the surrounding ant species, often displacing the original ants in the area [9]. In a

study on the distribution of ants in Deer Park, Texas the percentage of collected specimen

of Solenopsis invicta, or the Fire ant ( an invasive species in the area) dropped from 54.5%

of collected ant species in 2006 to 45.4% in 2007. In the same time span, the percentage

of Rasberry ants collected grew from 45.4% to 61.8% [14]. Laboratory studies have shown

that in one-on-one confrontations with Fire ants, Rasberry ants are at a disadvantage [8].

However, the sheer colony size of the Rasberry ant effectively allows them to control food

resources in a neighboring region, which results in the displacement of the Fire ant [8, 9].

The Rasberry ant displaces other ant species by chemical attacks, nest raiding, outnumbering

other ant species at food sources and diel foraging activity [12].

Rasberry ants diet is varied making them an omnivorous species [12]. They will feast on

arthropods and small vertebrates for their protein needs and the sweet nectar from mealybugs
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and aphids and other hemipterans, for their carbohydrate needs [19]. They are also attracted

to sweet parts of plants and fruit [12, 19]. In their native lands, Rasberry ants are controlled,

if not displaced by other ant species. However none of these species exist in the United States

[16]. Chemical control is also limited. Studies show that contact insecticides that contain

chlorpyrifos are effective for 43 days after application [12]. Certain fipronil based pesticides

such as Termidor SC and Taurus SC are used as perimeter sprays around structures and

homes [12]. The long lasting residual effects of fipronil-based products are ideal for providing

areas of defense against immediate recolonization. Studies show that after a 3.4kg fipronil

application, 18 weeks passed before healthy colonies began to re-infest [3]. Despite its success

in terminating the Rasberry ant, environmental ramifications of the chemical are discouraged

due to their effects on bees, mammals and other vertebrae and invertebrae [20].

In order to study the spreading dynamics of Rasberry ants, we present three different ap-

proximation techniques, including both spatially independent and dependent models. These

results will be used to characterize the spread of the Rasberry ant in the presence of pes-

ticide, over a homogeneous environment. First, we construct a Cellular Automaton (CA)

simulation. The CA is a stochastic computer simulation of the Rasberry ants spread in a

homogeneous environment. Although it is the most spatially explicit of the three models,

as a discrete space model it is computationally intensive because large numbers of trials

are needed to lessen stochastic anomalies. The main advantage is that it incorporates the

aggregate interactions of the cells representing the states of land in our grid, making it the

most accurate of the models. However, rigorous mathematical analysis of our CA model is

a daunting task, and the mathematical framework needed to do so is far beyond the scope

of this report. Next, we construct the Pair Approximation (PA) model. The PA utilizes

ordinary differential equations, and is a deterministic representation of the CA. In the PA

we incorporate some degree of spatial dependence, which yields insight into the spread of
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the Rasberry ant [6]. It requires less computing power, but mathematical analysis can be

difficult because of the size of the ODE system. Finally, we construct a Mean Field model

(MF). Although the MF is not as accurate as the PA, the simplicity of the MF model allows

for intricate analysis. The MF assumes spatial independence, and spatial correlations neither

exist nor develop.

2 Mathematical Models

We define three different states in a homogeneously mixed grid: [0], [1], [2]. The state con-

taining pesticide and no ants is [0], the state containing neither ants nor pesticide (empty

land) is [1], and the state containing ants and no pesticide is [2]. Let μ be the rate of appli-

cation of pesticide on ant colonies per week. New areas are colonized by the ants at a rate

of φ per week,and pesticide degrades at a rate of ε per week. The states and parameters are

summarized in 4. We assume only land containing ants is sprayed with pesticide and that

the pesticide is 100% effective against the Rasberry ant.

The MF approximation provides a simplified view of the spread of the Rasberry ants.

Spatial independence in the MF approximation suggests that local interactions of ant colonies

are neglegent in interpreting succesful growth and budding. This implication can be disad-

vantageous because many local environnmenal impediments to the spread of an ant colony

are eliminate with such a broad perspective. In the CA approximation, we assume a von

Neumann neighborhood where new colonies are being born in the four cardinal directions

adjacent to the mother colony. The stochastic and spatially explicit features of the CA make

it ideal for exploring the effect of the random behavior on the spread of the Rasberry ant.
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2.1 Cellular Automaton Model

The stochastic simulation of the spread of ants on a grid was done using a CA simulation.

The occurrence of an event is based on a Poisson process in which the time between any

two sequential events is exponentially distributed. We construct an n× n lattice of cells in

which each cell is at a certain state [i], for i = 0, 1, 2. The lattice has periodic boundary

conditions (i.e. torus). An example of such a lattice is shown in the 1. Before the random

Figure 1: An example of a lattice. Here P [0] = 4/25, P [1] = 11/25, P [2] = 10/25 and P [12] = 22/25

event process begins, a bookkeeping of the current state of all the cells is implemented and

the result is represented by the indices of a matrix in our simulation. The only event that

depends on both the cell acted on and its neighbors is colony birth. There is a count of all

the [12] pairs, which are necessary for the birth to occur. A selection of three events based

on the probability measure space created from the rate of each event and the total events

rate. The event rates are defined in 4.

In terms of the stochasticity involved in the simulation, the event probabilities are cal-

culated directly from the event rates and used to sample from the exponential distribution,

with the total rate as the parameter. 2 outlines the probability of each event occurring. We

denote the total rate by TR. The time between the last event is sampled from the exponential
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Table 1: Cellular Automaton State Variables and Event Rates

Variable/Event Definition

S0 Number of cells in state [0] (Pesticide)

S1 Number of cells in state [1] (Empty land )

S2 Number of cells in state [2] (ant colony)

S21 Number of possible birth site pairs of state [1] and [2]

εS0 Degradation of pesticide

μS2 Pesticide application
3
4
φS21 ant colony birth

εS0 + μS2 +
3
4
φS21 Any defined event occurs (total rate)

Table 2: Event Probabilities

Probability Event

εS0

TR
Pesticide degradation

μS2

TR
Pesticide application

3
4
φS21

TR
ant colony budding

distribution as follows:

t ∼ exp ((TR) t) .

After each event the rates and probabilities are recalculated and a new event is randomly

selected from the updated probability interval. The result is that the time between any two

events is different, as is to be expected from our Poisson waiting process assumption. An

event is selected using a uniform number sample between 0 and 1 which falls somewhere

on the probability interval constructed, as shown in Figure 2. A cell (matrix element) of

Pesticide Degradation  Pesticide spray Colony Birth 1 0 

Figure 2: A generalization of a constructed probability interval
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the appropriate state is selected based on the event to occur. For example, if a pesticide

application is selected as an event, a cell in the ant colony state [2] will be selected and it

will be sprayed (i.e. changed to pesticide state [0]). The only event that can be ”wasted”

is a colony birth, in which there are no neighboring cells of state [1] of a cell in state [2] for

the colony birth to occur. After each event, the change in a state is reflected in the matrix

representing the lattice and there is a new bookkeeping of cell states for the current time

step. The numerical results generated from the simulation are used for comparative analysis

with the MF and PA models and will be discussed in the numerical analysis .

The following rules are implemented:

• Events are chosen probabilistically from the rates and total rate

• Pesticide degradation only depends on the random selection of a cell in state [0]

• Pesticide application (spraying) only depends on the random selection of a cell in state [2]

which is changed to state [0]

• If a colony birth event is selected, then a cell in state [2] is randomly selected from its four

cardinal neighbors as possible new sites for a birth. The first neighbor meeting this criteria

will have its state changed to [2]. A colony birth event is wasted if there are no neighbors of

the selected state [2] cell in state [1] (i.e no empty land).

• Waiting time between any two events is different because the program samples from the

exponential distribution with a parameter which changes after each iteration.

In 2.1 there is an example of a birth process selected and completed successfully.
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Figure 3: (a): A birth process is chosen and a cell in state [2] is randomly selected. (b): Starting with the
northern neighbor of state [2], the program searches clockwise and selects the cell to the right in state [1].
(c): The cell in state [1] receives a new ant colony and changes to [2]

2.2 Mean Field Model

In the MF model, we assume spatial independence: the probability of finding any cell in

a particular state is independent from its immediate neighbors, and only depends on the

overall makeup of the lattice. These are the equations for the MF model, where the terms

are explained in table (3):

Table 3: State Variables in the MF Model

Variable/Parameter Definition

P [0] Proportion of land at state 0 (Pesticide)

P [1] Proportion of land at state 1 (Empty land)

P [2] Proportion of land at state 2 (ant colony)

ε Pesticide degradation rate

μ Pesticide application rate

φ Ant colony birth
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d

dt
P [0] = μP [2]− εP [0] (1)

d

dt
P [1] = εP [0]− φP [1]P [2] (2)

d

dt
P [2] = φP [1]P [2]− μP [2] (3)

The parameters μ, ε, and φ are positive constants, and P [0] + P [1] + P [2] = 1 by the law of

total probability. Substitution for P [0] = 1− P [1]− P [2] reduces our system of ODEs 1–3

to:

d

dt
P [1] = ε (1− P [1]− P [2])− φP [1]P [2] (4)

d

dt
P [2] = φP [1]P [2]− μP [2]. (5)

There are two equilibria points. The Ant Free Equilibrium (AFE) is at (P [1]∗, P [2]∗) = (1, 0),

and the Ant Endemic Equilibrium (AEE) is
(

μ
φ
, ε
μ+ε

(1− μ
φ
)
)
. Note that when I0 < 1, the

P [1] coordinate of the AEE is greater than 1. Because the lattice proportions of our states

must between 0 and 1 this is not a biologically relevant situation, and we do not consider

the AEE when I0 < 1.

2.2.1 MF Local Stability Analysis

Theorem 1. (Local stability of AFE) If I0 ≡ φ
μ
< 1, then the AFE is locally asymptotically

stable. If I0 > 1, then the AFE is a saddle point and unstable.
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Proof. The Jacobian of system 4–5 at the AFE is

J(AFE) =

⎡
⎢⎣−ε −ε− φ

0 φ− μ

⎤
⎥⎦ . (6)

This is an upper triangular matrix with eigenvalues −ε and φ−μ. From the second eigenvalue

we define the basic invasion number

I0 ≡ φ

μ
.

I0 measures the average number of colonies budded from a mother ant colony during its

lifespan in land of mostly empty cells. If I0 < 1, our two eigenvalues are negative and the

AFE is locally asymtotically stable. In this instance, ant colonies are being sprayed faster

than they are reproducing. Therefore, ants become extinct.

If I0 > 1, one eigenvalue is positive and the AFE is a saddle point. The initial colonies

are reproducing faster than they can be sprayed, and they will survive the initial colonization

phase.

Next, we prove the local stability of the AEE =
(

μ
φ
, ε
μ+ε

(1− μ
φ
)
)
.T

Theorem 2. (Local stability of AEE) If I0 > 1, then the AEE is locally asymptotically

stable.

Proof. The Jacobian of system 4–5 at the AEE is:

J

(
μ

φ
,

ε

μ+ ε
(1− μ

φ
)

)
=

⎡
⎢⎣−ε− ε(φ−μ)

μ+ε
ε− μ

ε(φ−μ)
μ+ε

0

⎤
⎥⎦ (7)
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with eigenvalues:

λ± =
−ε2 − φε±√

ε4 + 2ε2(2μ− φ) + 8ε2μ(μ− φ) + ε2φ2 + 4εμ2(μ− φ)

2(μ+ ε)
.

λ− always has a negative real part because it is the difference between a negative real number

and a radical term, which is either a non-negative real number or a pure imaginary number.

To show that λ+ has a negative real part, we look at two cases. First, we consider the case

where the radicand is negative. Under this condition, the radical term is purely imaginary

and λ+ is a complex number with a negative real part. If the radicand is non-negative, the

radical term is a non-negative real number. Remember that when the AEE is biologically

relevant, I0 > 1 and φ > μ. Therefore we have that:

√
ε4 + 2ε2(2μ− φ) + 8ε2μ(μ− φ) + ε2φ2 + 4εμ2(μ− φ) <

√
ε4 + 2ε2φ+ ε2φ2 = ε2 + φε.

Therefore,

λ+ <
−ε2 − φε+ (ε2 + φε)

2(μ+ ε)
= 0. (8)

since λ± both have negative real parts, the AFE is asymptotically stable.

2.2.2 MF Global Stability Analysis

In this section we prove some theorems regarding global stability of our equilibria points.

In R
2, P [1] is on our x axis and P [2] is on our y axis. Let D be the closed region bounded

by the triangle with vertices (0, 0), (0, 1), and (1, 0), as shown in figure 4. Anything outside

of D is irrelevant because our state variables need to be positive and P [1] + P [2] ≤ 1. Let

∂D denote the boundary of D, and D0 denote the interior of D. We first prove the global

stability of the AEE.
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Figure 4: The phase plane for our MF model is the triangle D, with the AFE (green) and the AEE (red).

Theorem 3. (Global stability of the AEE) If I0 > 1, then the AEE is globally asymptotically

stable on D0.

Proof. In our two dimensional dynamical system, trajectories can only flow in one of three

ways. They can either diverge (the trajectory is unbounded), they can converge to a stable

limit cycle, or they can flow to a stable equilibrium point. To show that no trajectories

diverge, we show that D is positive invariant under equations (4 − 5). Consider the vector

flow of our equations on ∂D. On the bottom triangle side B1 = {∂D : P [2] = 0}, we have

d

dt
P [1] = ε (1− P [1]) ≥ 0

d

dt
P [2] = 0.

P [2] has a constant time derivative, so it remains zero for all time. It follows that the

trajectory with initial conditions (0,0) flows to the AFE at (1,0) along B1, and B1 is a

trajectory in D. Therefore, no other trajectories in D can intersect B1. On the left side of
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the triangle B2 = {∂D : P [1] = 0},

d

dt
P [1] = εP [0] ≥ 0,

so the vector field onB2 points to the right and intoD. Along the sideB3 = {∂D : P [1] + P [2] = 1}
our time derivatives are:

d

dt
P [1] = −φP [2] (1− P [2])

d

dt
P [2] = φP [2]

(
1− P [2]− μ

φ

)
.

If our vector field is to point into D, we must have that d
dt
P [1] + d

dt
P [2] ≤ 0. It can readily

be seen that

d

dt
P [1] +

d

dt
P [2] = −μP [2] ≤ 0.

Since our vector flow on ∂D points towards D, it is a positively invariant set, and no trajec-

tories in D can diverge.

Next, we use the Bendixson-Dulac theorem to show there are no limit cycles in D0

when I0 > 1. The function G (P [2]) = 1
P [2]

is a continuously differentiable function in D0

Reorganizing the equations in system (4)–(5)

d

dt
P [1] = ε (1− P [2])− P [1] (ε+ φP [2])

d

dt
P [2] = P [2]φ

(
P [1]− μ

φ

)
.
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Now, applying Dulac’s criterion with the function G (P [2]),

∂

∂P [1]

(
G (P [2])

d

dt
P [1]

)
+

∂

∂P [2]

(
G (P [2])

d

dt
P [2]

)
(9)

= −(ε+ φP [2])

P [2]
< 0.

Equation (9) is strictly negative, so by Dulac’s Criterion, D0 has no periodic orbits. We have

eliminated the possibility of divergence and convergence to a limit cycle, so any trajectory in

D0 must flow to a steady equilibrium point. The AEE is the only stable equilibrium point,

so it is globally stable.

We next use La Salle’s invariance principle to show that when I0 < 1, the AFE is globally

stable.

Lemma 1. (La Salle’s invariance principle) Let Ω ⊂ D be a compact and positive invariant

set with respect to the system ẋ = f(x), where f : Rn → R
n is the function of time deriva-

tives. Let V : D → R be continuously differentiable with V̇ (x) ≤ 0 over Ω. Let E be the set

of states for which V̇ (x) = 0. Let M be the maximal positive invariant set in E. Then every

solution with initial state in Ω asymptotically approaches the set M .

Theorem 4. (Global stability of the AFE) If I� < 1, then the AFE is globally stable on D.

Proof. We have already proved that D is positive invariant, and by the Hine-Borel theorem,

it is compact because it is closed and bounded. Let V (P [1], P [2]) = P [2]. We have that for

V ,

V ≥ 0 when (P [1], P [2]) ∈ D

V = 0 when P [2] = 0.

d

dt
V = P [2]φ

(
P [1]− μ

φ

)
< 0
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where the last inequality holds because μ
φ
> 1 when I0 < 1. The bottom boundary edge B1

where V = 0 is positively invariant, and the maximally positive invariant subset of B1 is the

AFE. From La Salle’s invariance principle, every trajectory starting in D flows to the AFE,

and it is globally stable.

2.3 Pair Approximation Model

In this section we explicitly derive the PA equations from a priori assumptions about ant

colonization. We start with an infinite lattice L with cells in states [0] (pesticide), [1] (empty),

and [2] (ants), with no boundary and make the following assumptions:

• Pesticide application and degredation of a cell is density independent and does not

depend on any neighboring cell.

• Only one cell can change its state at a time.

• New ant colonies come from a single neighboring colony, and every new ant colony

needs an empty cell (state [1]) to occupy.

Let [ij] be an adjacent pair of cells ordered left to right (or north to south) in states i and j.

Given any random pair of adjacent cells on our grid, let P [ij] be the probability that cells

[ij] are next to each other. By the symmetry of L, P [ij] = P [ji]. The term P [ij] is referred

to as a state variable. All possible states are listed below:

[00] [01] [02]

[10] [11] [12]

[20] [21] [22].

A von Neumann neighborhood will be used for the PA model; each cell is only in contact

with cells in the 4 cardinal directions north, south, east, and west, as shown in figure 5
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Figure 5: A site of a [21] pair and Von Neumann neighborhood around [1].

2.3.1 Development of the PA Model

The rate of change of P [ij] is the the rate of all states changing to [ij] minus the rate of [ij]

changing. Written as a differential equation,

d

dt
P [ij] =

∑
inflow −

∑
outflow

As an example, we derive the differential equation for the variable P [01]. From our assump-

tion that only one cell can change at a time, the only states that can change to state [01]

are states [00] and [21]. The full set of transition rates are shown in figure (6) Cells in states

[00] change to state [01] at a constant rate of ε, and state [21] change to [01] at a rate of μ.

The [01] state can change to state [11] at a rate ε, and can change to state [02] at a rate

3
4
φQ2|1, where

Q2|1 =
P [21]

P [01] + P [11] + P [12]

is the conditional probablity of finding a [21] state pair given that we have a cell in state [1].

Putting these rates together,

d

dt
P [01] = εP [00] + μP [12]− P [01]

(
ε+

3

4
φQ2|1

)
, (10)
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Figure 6: The inflows and outflows of state [01].

Table 4 lists all the state variables for the approximation model and the state change pa-

rameters.

By the law of total probability,

Table 4: PA Model State Variable Definitions

Variable/Parameter Meaning

P [00] Proportion of pairs of adjacent cells at state 0 (pesticide)

P [01] &P [10] Proportion of pairs at state 1 and state 0 (empty land & pesticide)

P [11] Proportion of pairs at state 1 (empty land)

P [02] &P [20] Proportion of pairs at state 0 and state 2 (pesticide & ant colony)

P [12] &P [21] Proportion of pairs at state 1 and state 2 (empty land & ant colony)

P [22] Proportion of pairs at state 2 (ant colony)

ε Pesticide degradation rate

μ Pesticide application

φ Ant colony birth rate

2∑
j=0

2∑
i=0

P [ij] = 1.

This relationship can be used to eliminate one of the state variables P [ij]. We elmininated

the variable P [00]. Following a similar process for remaining variables, the PA model is given
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by

d

dt
P [01] = ε

(
1− 2P [01]− 2P [02]− 2P [12]− P [11]− P [22]

)
+ μP [12]− P [01]

(
ε+

3

4
φQ2|1

)
d

dt
P [02] = P [01]

3

4
φQ2|1 + μP [22]− μP [02]− εP [02]

d

dft
P [11] = 2εP [01]− 2P [11]

(
3

4
φQ2|1

)
d

dt
P [12] = εP [02] + P [11]

(
3

4
φQ2|1

)
− P [12]

(
3

4
φQ2|1 +

φ

4
+ μ

)
d

dt
P [22] = 2P [12]

(
3

4
φQ2|1 +

φ

4

)
− 2μP [22]

with

P [00] = 1− 2P [01]− 2P [02]− 2P [12]− P [11]− P [22] (11)

At the AFE for the PA model, no cells are in states [i0] or [i2], thus we have:

AFE = (P [01]∗, P [02]∗, P [11]∗, P [12]∗, P [22]∗) = (0, 0, 1, 0, 0) (12)

2.3.2 PA Local Stability Analysis

We use a next generation operator to calculate the basic invasion number Ī0 for the PA

model, and to analyze the local stability of the AFE. The vector X of infected classes is

X =

⎡
⎢⎢⎢⎢⎣
P [02]

P [12]

P [22]

⎤
⎥⎥⎥⎥⎦ (13)
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Using X, we have the next generation matrix FV −1:

FV −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

3φε
μ(φ+4μ+4ε)

3φ (μ+ε)
μ(φ+4μ+4ε)

3
2

φε
μ(φ+4μ+4ε)

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

The basic invasion number Ī0 is the spectral radius of FV −1, given by

Ī0 = 3φ
(μ+ ε)

μ(φ+ 4μ+ 4ε)
. (15)

Furthermore, note

Ī0 = 3
φ

μ

(μ+ ε)

(φ+ 4μ+ 4ε)
=

(
3

φ
4(ε+μ)

+ 4

)
I0 < I0. (16)

Ī0 is the average number of secondary colonies that a single initial colony will bud into before

an application of pesticide kills it. Therefore, it is an indicator of the survival of ant colonies.

Because Ī0 < I0, our models predict that the initial ant population will fare worse in the

PA model than it will in the MF model. This is to be expected because the PA model

incorporates spatial dependence. There are two processes that are hindering ant growth.

Not only does the pesticide kill the ant at a rate μ, but the ants cannot recolonize a cell

that has been sprayed by pesticide until the pesticide degrades, which happens at a rate ε.

On the other hand, the MF model assumes spatial independence: every cell’s behavior is

independent of the state of its neighbors. This can be observed in the lack of dependence of

ε and I0. Although an ant cell can be directly sprayed by a pesticide, spatial independence

assumes that colonizing colonies are not aware of whether or not an adjacent cell has been
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sprayed with pesticide.

A deeper biological understanding of the invasion number Ī0 can be obtained by writing

Ī0 as following:

Ī0 =
3

4
I0

(
μ+ ε

φ
4
+ μ+ ε

)
(17)

The first term 3
4
I0 represents the ant’s limited colonizing abilities in a von Neumann neigh-

borhood. An ant colony that was created from a previous ant colony only has 3 out of the

4 surrounding cells to colonize, because the previous ant colony is still in a neighboring cell.

Since every ant colony comes from a previous one, the ants can only colonize at at rate 3/4

of the MF model. The term (μ + ε)/(φ
4
+ μ + ε) which we denote as the discount factor is

a term that’s always less than 1, and it represents the tendency for a given cell to change

out of states 0 and 2. It is the rate of pesticide application and degradation divided by the

total rates of all events. The ants need surrounding cells in the empty land state in order to

create new colonies, so when the turnover rates of cells in states 0 and 1 are high (such as

when ε is very large, and 0 states become 1 at a high rate), the discount factor approaches

1 and the ants have an easier time invading new lands. By solving for φ, we can prove that

Ī0 > 1 if and only if

φ >
4μ(μ+ ε)

2μ+ 3ε
. (18)

Taking the partial derivative of the right hand side of (18) with respect to ε, we have

∂

∂ε

4μ(μ+ ε)

2μ+ 3ε
= − 4μ2

(2μ+ 3ε)2
. (19)

The right hand side of inequality (18) will decrease as the degradation rate of the pesticide

ε increases. Biologically speaking, the ant colonies will better thrive as ε increases because

cells with pesticide will degrade faster into habitable cells, which allows the ants to recolonize
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those areas. The right hand side of (18) reaches a maximum as ε approaches 0, in which case

lim
ε→0

4μ(μ+ ε)

2μ+ 3ε
= 2μ. (20)

In other words, if φ ≥ 2μ, then

4μ(μ+ ε)

2μ+ 3ε
< 2μ ≤ φ (21)

and Ī0 > 1. If the ants are colonizing at a rate twice as fast as the rate of pesticide

application then the initial colony invasion will persist if ε is strictly greater than 0. Thus,

the ant colonies will still find it easy to infiltrate an environment in which pesticide is being

applied but eventually degrades. The right hand side of (18) reaches an asymptotic minimum

as ε approaches infinity, in which case

lim
ε→∞

4μ(μ+ ε)

2μ+ 3ε
=

4μ

3
. (22)

Therefore, if

φ <
4μ

3
, (23)

then

φ <
4μ(μ+ ε)

2μ+ 3ε
(24)

and Ī0 < 1.

Ī0 =

(
μ+ ε

φ
4
+ μ+ ε

)( 3
4
φ

μ

)

Table 5 shows Ī0 rewritten in a form that makes it easier to analyze the qualitative

results of varying parameters. As ε approaches zero the basic invasion number reaches a
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Table 5: Nonlinear Model Results

Limits Biological Interpretation Good or Bad for ant?

ε → 0 ⇒ Ī0 →
(

1

1+ 1
4
(φ
μ
)

)(
3
4
φ

μ

)
Pesticide never degrades Bad

ε → ∞ ⇒ Ī0 →
3
4
φ

μ
Pesticide is ineffective Good

μ → 0 ⇒ Ī0 → ∞ No pesticide application Very Good

μ → ∞ ⇒Ī0 → 0 Pesticide applied continuously Very Bad

minimum which will make it difficult for the ants to spread because the number of cells with

pesticide will continue to increase and saturate the remaining cells. Biologically, this means

that pesticide which is applied remains effective indefinitely. As ε → ∞ , Ī0 now reaches a

point where the spread of the ants is dependent on the von Neumann neighborhood and the

likelihood that one of its neighbors will transmit a colony. The pesticide is now decomposing

so quickly that it has no temporal significance in slowing down the ants. If we let μ → 0

the basic invasion number increases without bound and the ants will now effectively colonize

unperturbed, meaning that there is no pesticide application at all. On the contrary, if we

let μ → ∞ the ants will be sprayed so rapidly that their budding rate will play no part in

their invasion success. The feasibility of any pesticide application regiment depends on the

environmental tolerance for pesticide toxicity and the resources available.

3 Numerical Results

In this section we numerically approximate our system of differential equations for the MF

model and the PAmodel. We used the sub-function ode 45 in MATLAB 2013a . Then we plot

the proportion of land with pesticide, the proportion of habitable land, and the proportion of

land occupied by ants with respect to time. We compare the results from these two models
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with the CA model. For our first set of graphs, we generate initial conditions by randomly

distributing initial states on a grid using a weighted probability. The odds of a cell being

initialized as a 1 is 99%, and the odds of a cell being initialized as a 2 is 1%.
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Figure 7: (a) MF model solutions. (b) PA model solutions. (c) CA model solutions.
φ = 1, μ = 1/8, ε = 1/8

From the graphs in Figure 7, the ants fare best in the MF model, followed by the PA
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model, followed by the CA model. The MF model assumes spatial independence of the cells;

all cells are homogeneously mixed, and the ant colony survival depends on the relationship

between μ and φ. The PA model is also homogeneously mixed, but does not assume spatial

independence. The ants fare the worst in the CA model. In the CA model, explicit spatial

dependence is taken into account. There are also possibilities of wasted birth, which cause

the ants to fare the worst in the CA model. Figure 8 shows a visualization of the simulation at

the endemic equilibrium with the same initial conditions as the CA in Figure 7. For certain

(a) (b)

(c) (d)

Figure 8: CA Simulation/AEE Red - Free Land Blue - Ant Green - Pesticide (a) Initial Ant Invasion, t =
0 wks (b) Intermediate ant invasion, t = 3.2 wks (c) Peak ant invasion, t = 8.19 wks (d) Final ant invasion,
t = 88 wks

sets of parameters, our three models predict different long term behavior. The invasion

threshold I0 from our MF model predicts that the ant population will successfully colonize if

φ > μ. However, the Ī0 we received from our PA model predicts that when φ < 4μ(μ+ε)
2μ+3ε

, our

ants will not survive. There are some sets of parameters where both of these conditions can

be satisfied: For 2μ > φ > 4μ
3
, and ε < 2φμ−4μ2

4μ−3ε
, both of the above conditions are satisfied

and the MF model disagrees with the PA model. In Figure 7, we plotted a set of graphs
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from the three models with parameters that satisfy these conditions to determine the long

term behavior of our ant colonies.
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Figure 9: (a) MF model. I0 = 1.11(b) PA model. Ī0 = .66(c) CA model.

Although the MF model predicts the survival of the ants, the predicted ant colony density

is so low that it effectively agrees with the PA and CA models. However, because the ants do

not perish in the MF model, the density of cells affected by pesticide do not approach zero in
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the MF model. This difference between the MF model and the other two, suggests that for

certain sets of parameters the MF model does not accurately predict the density of pesticide

application. If φ > 4μ
3
then φ > μ and the ants survive in the MF Model. If φ < 4μ(μ+ε)

2μ+3ε
then

3φ (μ+ε)
μ(φ+4μ+4ε)

< 1 and the ants die out in the pair approximation model. So if 4μ(μ+ε)
2μ+3ε

> φ > 4μ
3

the ants survive in the MF field model, die out in the PA model, and are more likely to die

out in the CA. This is indicative of the large-scale, spatial independence of the MF model,

in which ants may colonize indiscriminately on any empty lands. This model produces an

“overall picture” of how effectively the ants are spreading but may overstate their success in

overcoming specific obstacles. The locality of impediments impediments to colony budding,

which are the saturation of surrounding land with colonies or pesticide of a colony ready

to bud, in the PA model makes it more difficult for the ants to overcome relatively high

rates of pesticide application. The complete incorporation of all local interactions in the

CA simulation means that spread of the ants is the least likely in situations where pesticide

application is close to the budding rate. This aggregate account of interactions in CA model

seems to be more realistic for parameters as described above.

3.1 Parameter Sweeps
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We conducted a parameter sweep with respect to μ, where φ and ε are constant. We
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Figure 10: (a) MF μ Parameter Sweep (b) PA μ Parameter Sweep (c) CA μ Parameter Sweep

chose ε = 1/18 and φ = 1. The results are presented in Figure 10. As we increase μ,

the proportion of the ant colonies decreases. Biologically, as the pesticide application rate

increases, ant colonies die faster. Once μ reaches the value where the maximum pesticide

density is attained, the ants cannot colonize fast enough, and they will die out. Consequently,

the proportion of free land should increase as μ increases.

The steady-state behavior of the proportion of pesticide treated land is not strictly de-

creasing or increasing with respect to μ. As μ increases, so does the steady-state proportion

of pesticide treated land. However, there is an approximate maximum value of 0.6 for the

steady-state proportion of pesticide treated land. As μ continues to increase, the steady-

state proportion of pesticide treated land decreases. At low μ, pesticide distribution logically
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creates more land with pesticide. However, there is a critical value of μ where the pesticide

application kills off ants so efficiently that less and less regions need to be sprayed with

pesticide. When μ = 0.3, the ants completely die out, and no more pesticide needs to be

applied. Biologically, this means that slow pesticide application curtails the population of

ant colonies, but leaves them at a high proportion. Such an approach takes into account

safety concerns but does not eliminate the biological invasion. Increasing pesticide applica-

tion controls the ant colonies at lower proportions but requires higher levels of pesticide. At

a certain point, aggressive application pays off because the ant colonies are left at a very

low steady state and pesticide levels can be lowered to safer levels. In summary, aggressive

application quickly eliminates the ant infestation and leaves them at a low steady state, but

at the cost of increased health and environmental concerns.

In the second parameter sweep, we varied the colony budding rate φ on the interval [0,2]

for the MF, PA, and CA. We held μ = 0.5 and ε = 1
18
. At low colony budding rates the ants

are quickly exterminated, and empty and pesticide lands do not experience changes. In the

MF model at φ = 0.5, there is a qualitative change in P [2] which is to be expected since

I0 = 1, the basic invasion number, becomes greater than one. The ant colonies survive at

low levels and the proportion of pesticide sites grows quickly for small increases in φ, while

the proportion of empty sites drops sharply. Such steady state transitions are expected since

the AEE begins to grow while φ > μ. The PA model displays similar qualitative behavior,

although the ant colonies become endemic at a higher value of φ ≈ .9 since incorporation of

spatial distribution prevents high contact rates between empty land sites and ant colony sites.

For both the MF and PA models the increase in φ produces a greater steady-state endemic

point for the ants, but there is an asymptotic limit as φ � 1. This limit for the endemic
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equilibrium seems to be close to 0.1. Indeed, if we refer back to the AEE=
(

μ
φ
, ε
μ+ε

(1− μ
φ
)
)
,

lim
φ→∞

AEE =

(
0,

ε

μ+ ε

)
. (25)

It can be seen from both the MF and PA models that ε
μ+ε

qualitatively seems to be

an upper bound for the proportion of ant colony sites P [2]. However, empty sites P [1],

experience sharp decreases until there is a saturation of ant colonies and pesticide sites. We

can also see that for high rates of pesticide degradation, the ant endemic upper bound can

be increased. Biologically, this means that if an application of pesticide is short-lived, ant

colonies will quickly reoccupy the land after the initial colony is eliminated. Such a pesticide

would be highly ineffective and provide less benefits in relation to its possible harmful effects.

On the contrary, low rates of ε prevent quick recolonization and are in fact a sort of limiting

factor to ant colony budding. If we rewrite the results from 25 as

1
μ
ε
+ 1

we can see the relationship between ε and μ. In fact, even at very high colony budding rates,

the ant invasion can be terminated if the pesticide remains effective for a long time. The

CA simulation shows similar behavior to the PA model, with the proportion of ant colony

sites P [2] remaining at low levels despite increasing φ. These numerical and analytic results

suggest that using pesticide that decomposes slowly may be more effective than aggressive

spraying in controlling initial ant invasions.
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Figure 11: (a) MF φ Parameter Sweep (b) PA φ Parameter Sweep (c) CA φ Parameter Sweep

4 Discussion

Our first research goal was to develop an understanding of the current Rasberry ant bio-

logical invasion in the U.S. Gulf states. Our second goal was to construct a probabilistic

spatiotemporal simulation that models the spread and control of an invasive ant species,
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considering both pesticide application and degradation. We utilized a CA framework to

develop a 2-D lattice with three states and three events defined according to the biological

assumptions of the ant colony budding process and pesticide application and degradation.

The third goal was to build two deterministic models that approximate our spatially explicit

CA simulation with the same biological assumptions.

The MF omits spatial relationships and assumes homogeneous mixing of states. Ant

colony budding success is solely dependent on the presence of empty land in the lattice,

by passing the requirement that such a process can only occur if there is adjacent empty

land. According to our analytic results of this model, the invasion success of the ant colonies

only depends on the ratio φ
μ
. While this reflects the essential relationship between the rate

at which ant colonies grow and the rate at which they are suppressed with pesticide, it

overstates the possibility of local empty land being readily available. For example, an ant

colony which is surrounded by pesticide sites is free to colonize in any empty sites regardless

of its location. The result is that this model overstates the likelihood that the ants will

survive pesticide application and remain endemic. Relative to the other models, the MF

predicts a higher and earlier ant invasion peak, which emphasizes the need for pesticide

application very early on.

The PA model includes the implicit spatiotemporal local interactions between states and

more realistically describes the spread of ants in a 2D lattice. The different combinations

of adjacent state pairs in the PA ODEs effectively take into account the probability of ant

colonies having local availability of empty land. The numerical results show that the ants

reach extinction faster than in the the MF model, and survive at lower proportions for

parameter conditions that produce endemic equilibria. This result was predicted from the

derivation of I0 and Ī0:

Ī0 = I0
3(μ+ ε)

φ+ 4μ+ 4ε
< I0,
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where the MF invasion threshold number I0 is independent of the rate of degradation and Ī0

depends on ε. In the PA model, pesticide application not only eliminates an ant colony, but

a cell sprayed with pesticide cannot be colonized until the pesticide degrades. This suggests

there may be more time to respond to the ant invasion than the MF predicts, and apply

pesticide at lower rates. In terms of public health and environmental concerns, the PA model

shows that there are less detrimental strategies to control the ant invasion.

The CA simulation used a 2D lattice and Poisson event process to model the probabilistic

spread of ants. The bookkeeping of state changes throughout space and time in our CA

simulation can be interpreted as generating data about the spread of Rasberry ants in silico.

The simulations showed that for colony budding rates less than the pesticide application

rate, the invasion died out fairly quickly. This suggests that if the ants do not have good

environmental conditions, their spread may be stopped with minimal pesticide application.

For colony budding rates less than twice the pesticide application rate, the simulations

showed that the invasions did not always become extinct and the pesticide degradation rate

played a bigger role in determining the steady state. Consequently, even at low colony

budding rates and high pesticide application rates, the ants may linger and the success of

intervention depends on the pesticide remaining effective for longer periods of time. This

presents a conflict of interest between eradicating the ant invasion and prolonged pesticide

contamination in the environment. For budding rates twice the pesticide application rate

the simulations showed that the ant invasion became endemic. Rapid ant colony growth

may require increased pesticide dispersal at the cost of health and environmental concerns.

A shortcoming of our CA simulation was the inaccessibility to faster processors to average

more trials and lessen the stochastic anomalies. In the future, we would like to improve our

code in order to strengthen the conclusions of the CA simulations.
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5 Future Work

The models and simulation presented in this paper are limited. The colonization process

is not colony size dependent and it is assumed that a small colony colonizes as often as a

larger colony. Another assumption made in the presented models was that the ants could

only colonize in the cardinal directions and all land has equal amount of resources. The

pesticide is also assumed to be 100% effective though most pesticides are not 100% effective

and experimenting with different kill rates could prove fruitful. Further work would include

a colony dependent birth rate. This would increase the validity of our models because in

nature, the budding process is dependent on the colony size and resources. Also we would

assume the ant colonies can move within a Moore neighborhood ( four cardinal directions

including Northeast, Northwest, Southeast, and Southwest). This will increase the dynamics

in potential colonization. If we assumed amount of resources is cells, we could get insight

on real life probabilistic colonization rates and implement strategies to drive invasive ant

species to extinction.
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6 Appendix

6.1 Next Generation Operator

X is the vector function which contains all pair sites with ant colonies, and we will call them

infested sites. Ẋ = is the rate of change of infested sites, which can be rewritten as

Ẋ = F − V

The vector F is the birth of new colony sites coming from other colony sites, and V is changes

in ant colony sites from the progression of the invasion(i.e. pesticide application).

Ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P [02]

P [12]

P [22]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4
P [01]φQ2|1

P [11]
(
3
4
φQ2|1

)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μP [22] + P [02] (μ+ ε)

−εP [02] + P [12]
(
3
4
φQ2|1 +

φ
4
+ μ

)

−2P [12]
(
3
4
φQ2|1 +

φ
4

)
+ 2P [22]μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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We take the Jacobian of F and V. Let F = Jacobian(F) and V = Jacobian(V)

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3
4
φP [13] (P [01]+P [11])

(P [01]+P [11]+P [12])2
0

0 3
4
φP [11] (P [01]+P [11])

(P [01]+P [11]+P [12])2
0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(μ+ ε) 0 −μ

−ε 3
4
φ
(

P [12]
P [01]+P [11]+P [12]

+ P [12](P [01]+P [11])

(P [01]+P [11]+P [12])2

)
+ φ

4
+ μ 0

0 −23
4
φ
(

P [12]
P [01]+P [11]+P [12]

+ P [12](P [01]+P [11])

(P [01]+P [11]+P [12])2

)
− 2φ

4
2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.2 Pair Approximation AFE

Figure 12: Symmetric Proof

(P [00], P [01], P [02], P [11], P [12], P [22])

AFE = (0, 0, 0, 1, 0, 0)
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Figure 13: dP[01] Description

F (AFE) =

⎡
⎢⎢⎢⎢⎣
0 0 0

0 3φ
4

0

0 0 0

⎤
⎥⎥⎥⎥⎦

V (AFE) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μ+ ε 0 −μ

−ε φ
4
+ μ 0

0 −φ
2

2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

FV −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

3φε
μ(φ+4μ+4ε)

3φ (μ+ε)
μ(φ+4μ+4ε)

3
2

φε
μ(φ+4μ+4ε)

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The Eigenvalues of FV −1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

3φ (μ+ε)
μ(φ+4μ+4ε)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Basic Invasion Number I0 = 3φ (μ+ε)
μ(φ+4μ+4ε)

6.3 Original Flow Chart

The following chart describes the changes in states in order according to the events possible

at each site.

Figure 14: Flow Chart
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6.4 Stochastic Simulation

Our Cellular Automaton model is a stochastic process which depends on a Poisson process

for the occurrence of events. The realization of the events is dependent on the presence of

sites needed for a particular event to occur. However, the ant colony birth event is also

dependent on the density and spatial location of ant colony sites [1] and empty lands [2],

since they must occur adjacently. An ant colony must be next to an empty site to be a

potential birth location. This means that a birth event can be wasted if a cell in state [2]

does not have any neighbors in state [1]. In figure 12 there is an example of a birth event

that has been selected and a random cell in state [2] has been chosen. It has no neighbors

in state [1] , which means the event will be a wasted event.

Figure 15: Wasted Birth Diagram

6.5 Stochastic Simulation Code

Below is the code we used to create our stochastic simulation.

#############################################################################

#############################################################################
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#############################################################################

## Authors: Valerie Cheathon, Agustin Flores, Victor Suriel, Octavius Talbot,

## Adrian Smith

##

## Stochastic Simulation of Ant Colony Spread with Pesticide application

##

########################################################################

##

##This code will set up a cell lattice which represents the spatial location

##of ants, habitable spots without ants, and pesticide application.

##

##In the matrix, a 0 entry corresponds to pesticide, 1 corresponds to land without

##ants, and 2 to land with ant colony present

##

########################################################################

#---------------------------------------------------------------------------------

#---------------------------------------------------------------------------------

#---------------------------------------------------------------------------------

# Parameters and Initial Condition

#----------------------------------------------------------------------------------

#----------------------------------------------------------------------------------

#----------------------------------------------------------------------------------

set.seed(100)

n<-50 # The size of the n x n matrix to represent the cells.

A<-matrix(ncol=n,nrow=n) # Generating the null matrix
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S0_0<-0 # initial percentage of land with pesticide

S1_0<-0.99 # initial percentage of habitable land without ant colony

S2_0<-.01 # initial percentage of land with ant colony

S21<-0 # initial number of ant/empty cell pairs

S0<-NULL # land sprayed with pesticide at ith time

S1<-NULL # habitable land without ants at ith time

s2<-NULL # land with ant colony at ith time

S0t<-0 # land sprayed with pesticide throughout time

S1t<-2479 # empty land throughout time

S2t<-21

# land with ant colony throughout time

#-------------------------------------------------------

# event rates: 3 possible events

#-------------------------------------------------------

mu<-1/8 # pesticide spray rate

epsilon<-1/18 # pesticide decomposition rate

phi<-1 # colony budding rate

P0<-NULL

P1<-NULL

P2<-NULL

#---------------------------------------
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# initialize cumlative probabilities

#---------------------------------------

cump0<-NULL

cump1<-NULL

cump2<-NULL

tr<-NULL # initialize total rate of all events

v<-NULL

time<-0 # initial time step

#------------------------------------------------------

#------------------------------------------------------

# This generates the n X n matrix with entries 0,1,2

#------------------------------------------------------

#------------------------------------------------------

for (i in 1:n){

for (j in 1:n){

x<-runif(1,0,1)

if (x < S0_0){

A[i,j]<-0

} else if (x >= (S0_0) && x<=(S0_0+S1_0)){

A[i,j]<-1

} else if ( x >= (S0_0+S1_0)){

A[i,j]<-2

}
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} # end inside forloop

} # end outside forloop

#-------------------------------------------------------------------------------------

#-------------------------------------------------------------------------------------

#-------------------------------------------------------------------------------------

# this function counts the P[21] pairs

#

# It will loop through each matrix element and count its neighboring elements that

# are 1

#--------------------------------------------------------------------------------------

#--------------------------------------------------------------------------------------

A1<-A

pair_function<-function(){

for ( i in 1:n){

for (j in 1:n){

if (A[i,j]==2){

if (i==n-1){

if(A[n,j]==1){

S21<-S21+1

}

} else if (A[(i+1)%%n,j]==1){

S21<-S21+1

}
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if ((i-1)==0){

if (A[n,j]==1){

S21<-S21+1

}

} else if (A[i-1,j]==1){

S21<-S21+1

}

if (j==n-1){

if(A[i,n]==1){

S21<-S21+1

}

} else if (A[i,(j+1)%%n]==1){

S21<-S21+1

}

if ((j-1)==0){

if (A[i,n]==1){

S21<-S21+1

}

} else if (A[i,j-1]==1){

S21<-S21+1

}

}

}

}
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return(S21)

} # end outside forloop

#--------------------------------------------------------------

#--------------------------------------------------------------

#--------------------------------------------------------------

# this is the main loop which runs the simulation

#--------------------------------------------------------------

#--------------------------------------------------------------

#--------------------------------------------------------------

timeseries = 0

for (k in 1:300){

S21<-0 # this is the number of pairs of states of 2 and 1

S21<-pair_function() # this is the function which counts pairs of 2 and 1

S0<-sum(A[,]==0) #sums the number of cells of state 0 at ith step

S1<-sum(A[,]==1) #sums the number of cells of state 1 " "

S2<-sum(A[,]==2) #sums the number of cells of state 2 " "

tr<-(epsilon*S0)+(3/4)*(S21*phi)+(S2*mu) #total rate

timeseries = append(timeseries, timeseries[k] + rexp(1,tr))
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P0<-(epsilon*S0)/(tr) # probability 1

P1<-((3/4)*S21*phi)/(tr) # probability 2

P2<-(S2*mu)/(tr) # probability 3

#----------------------------------------------------------------------------------

# the following cumulative probabilities generate the measure space for the events

#-----------------------------------------------------------------------------------

cump1<-P0 # the cumulative probability 1

cump2<-P0+P1 # the cumulative probability 2

#------------------------------------------------------------------------------------

## the following lines carry out the events -> pesticide decomposition, birth,

## and the application of pesticide/colony death

## IMPORTANT COMMANDS

##

## 1.) The "v" vector records the indices of the matrix elements(cells) at

## the state needed for the randomly selected event to occur

##

##

## 2.) The "pointer" randomly samples from the indices of "v" to select only one

## element

##

##------------------------------------------------------------------------------------

coin<-runif(1,0,1) # sampling a number between 0 and 1 for the measure space
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if (coin < cump1){ # This is pesticide decomposition

for (i in 1:n){

for (j in 1:n){

if (A[i,j]==0){

v<-rbind(v,c(i,j))

}

}

} # end pesticide decomp event

pointer<-sample(seq(1,length(v[,1]),1),1)

A[v[pointer,1],v[pointer,2]]<-1

v<-NULL

} else if (coin >=cump1 && coin<=cump2){ ## This will give colony birth event

for (i in 1:n){

for (j in 1:n){

if (A[i,j]==2){

v<-rbind(v,c(i,j))

}

}

} # end outside forloop statement
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pointer<-sample(seq(1,length(v[,1]),1),1)

if ((v[pointer,1])==n-1){

if (A[n,v[pointer,2]]==1){

A[n,v[pointer,2]]<-2

v<-NULL

}

} else if ((v[pointer,1]-1)==0){

if (A[n,v[pointer,2]]==1){

A[n,v[pointer,2]]<-2

v<-NULL

}

} else if (v[pointer,2]==n-1){

if (A[v[pointer,1],n]==1){

A[v[pointer,1],n]<-2

v<-NULL

}

} else if (v[pointer,2]==1){

if (A[v[pointer,1],n]==1){

A[v[pointer,1],n]<-2

v<-NULL

}

} else if (A[(v[pointer,1]+1)%%n,v[pointer,2]]==1){

A[(v[pointer,1]+1)%%n,v[pointer,2]]<-2

v<-NULL
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} else if (A[(v[pointer,1]-1)%%n,v[pointer,2]]==1){

A[(v[pointer,1]-1)%%n,v[pointer,2]]<-2

v<-NULL

} else if (A[v[pointer,1],(v[pointer,2]+1)%%n]==1){

A[v[pointer,1],(v[pointer,2]+1)%%n]<-2

v<-NULL

} else if (A[v[pointer,1],(v[pointer,2]-1)%%n]==1){

A[v[pointer,1],(v[pointer,2]-1)%%n]<-2

v<-NULL

}

} else if ( coin > cump2){ ## pesticide is spray event

for (i in 1:n){

for (j in 1:n){

if (A[i,j]==2){

v<-rbind(v,c(i,j))

}

}

}

pointer<-sample(seq(1,length(v[,1]),1),1)

A[v[pointer,1],v[pointer,2]]<-0

v<-NULL
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} ## end the "else if" statement for pesticide spray event

S0t<-c(S0t,S0) # record the number of pesticide states after one event

S1t<-c(S1t,S1) # "" empty land states ""

S2t<-c(S2t,S2) # "" ant colony states ""

} # end main for loop

plot(timeseries,S0t/2500,ylim=c(0,1),col=’green’,type="l",lwd=.2,

xlab="time (weeks)",ylab="state density")

title("Cellular Automaton Simulation")

lines(timeseries,S2t/2500,col=’blue’,xlab="time")

lines(timeseries,S1t/2500,col=’red’)

# total_rate<-function(){ #sums each the number of cells by "state"
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