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Abstract

Borrelia burgdorferi sensu stricto is a bacterial spirochete prevalent in the Northeastern

United States that causes Lyme disease. Lyme disease is the most common arthropod–borne

disease in the United States; affecting mice, deer, humans and other mammals. The disease

is spread by Ixodes Scapularis, a species of tick whose primary food source are deer and mice.

Reducing the population of ticks feeding on both large and small mammals below some criti-

cal threshold can decrease the prevalence of Lyme disease among humans. A simplified, six–

dimensional Susceptible–Infected, SI, model is used to capture the mice–deer–tick dynamics

while considering the impact of varying population–specific death rates on infected population

size. We analyzed the stability of the models two equilibria, the unstable disease free equi-

librium and the endemic equilibrium. Static forward sensitivity analysis is conducted on the

basic reproduction number and the endemic equilibrium. A dynamic approach was explored to

observe change in the sensitivity of the death rates over time. These analyses were conducted

to determine the efficacy of changing death rates in order to reduce prevalence of Lyme disease.
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1 Introduction

Lyme disease is an epidemic in the U.S. and is caused by the bacterium, Borrelia burgdorferi Sensu

Stricto. B. burgdorferi is transmitted in the Northeast and Midwest by a tick, Ixodes scapularis,

and was first discovered in the area of Lyme, Connecticut in 1977 [23]. The disease is heavily

concentrated in the Northeast and upper Midwest of the United States; causing victims to exhibit

symptoms including fever, headache, fatigue, and a characteristic skin rash called erythema migrans.

If left untreated, the infection can spread to joints, the heart, and the nervous system [5]. If

properly detected, Lyme disease is usually treated with antibiotics in its early stages and no further

complications ensue[1]; however, up to twenty percent of the people infected with Lyme disease

exhibit symptoms that can last many years after the treatment. The chronic symptoms, referred

to as Post–Treatment Lyme Disease Syndrome (PTLDS) [9], vary but can include muscle and joint

pains, cognitive defects, sleep disturbance, fatigue, seizures, and even death. The consequences of

Lyme disease and PTLDS are extremely debilitating and can last for years; forcing those affected

to depend on others for their most basic daily needs.

Lyme disease is the most commonly reported tick-borne illness in the United States. In 2009, the

C.D.C. reported 38,000 documented cases nationwide; three times more than in 1991 [23]. In states

such as Delaware, Illinois, Wisconsin, and other neighboring states, the number of cases has tripled

from 2002 to 2011. Most researchers agree that the true number of infections is five to ten times

higher due to undiagnosed cases. Lyme disease is classified as a zoonosis because transmission to

humans from an animal reservoir is carried out by ticks that feed on both parties [22].

Adult ticks lay their eggs in the spring after feeding on deer. During the late spring and summer, the

larvae feed on small mammals such as and mice who act as natural reservoirs of the B. burgdorferi

spirochete [7]. Nymphal ticks also feed on the mouse population with the infected nymphs passing

on their infection to their new potentially susceptible host [19]. In the final stage of its lifecycle, the

adult tick will feed on a large mammal, reproduce, and then die. The deer is the preferred host of

the adult I. Scapularis, as these large mammals can easily survive through the winter season.
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Lyme disease can spread through fluid transfer, such as a blood transfusion, but is not sexually

transmissible and is not passed on to offspring. [25] No consensus exists supporting or refuting the

idea that deer can transmit Lyme disease to ticks; even though the spirochete can be found on the

skin and in the muscles of deer [18]. Furthermore, the majority of studies conducted in this area

claim that it is not possible. In this model, we assume deer to tick transmission is negligible, i. e.

βDT = 0, where βDT represents the contact rate and rate of transmission from deer to tick. The

only proven method for control of the disease has been complete eradication of the deer population

[3]. This course of action was only possible due to the geographical isolation of the community.

However, a reduced deer population can lead to exacerbated diseased tick density because they

start to feed predominantly on mice. We do not recognize the eradication of deer to be a feasible

solution to the problem of Lyme disease. Other strategies have involved attempting to control the

interactions between mice and ticks in order to control the infection at its source, an approach

attempted using cotton balls laced with a pesticide called permethrin in the dens of the mice.

The balls made the mice unattractive as carriers for nymphal ticks [3]. This was not a workable

solution because the mouse population was so dense that the effect of the cotton balls on the total

population was insignificant. Another approach is the vaccination of reservoir hosts against B.

Burgdorferi [3]. This approach would be effective for a particular reservoir species, but would not

be effective given the diversity of the B. burgdorferi reservoir.

Our work reveals a partial solution to the problem by controlling the Lyme disease vector at the host

level. Our model looks to show the efficacy of modifying the death rate of one species at reducing

populations of the other species. These perturbations in the death rates can be accomplished

through harvesting or other prevention methods. Dual reservoirs and a single vector population

are incorporated into an SI model in six dimensions.
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2 Model & Methods

We construct a single–patch Susceptible–Infected (SI) model ignoring immigration, emigration and

seasonality. A removed or recovered class is not incorporated into the model as is typical in SIR

models, since infected animals do not recover. Furthermore, all animal and arthropod carriers

of Borellia Burgdorferi Sensu Stricto, are asymptomatic; implying no disease-related deaths. We

construct a three–tier, bi–compartmental model incorporating the vector and host species. The

model yields a six-dimensional system of differential equations describing the evolution of Lyme

disease in a population of deer, mice and ticks. We choose a timescale of twenty–four hours per

time step, due to the time it takes the bacteria to be transmitted from a tick to a human which is

thirty–six to forty–eight hours. [5]

We make several assumptions for the model: we see no vertical transmission of the spirochete in

ticks or any of the host species [13]; it is not spread like a venereal disease, nor is it contagious;

and there is no horizontal transmission of B. Burgdorferi at the level of the vectors or the host

species [25]. Further, since studies claim that deer are a dilutant host; i.e. they are incapable of

transmitting the B. Burgdorferi spirochete to a feeding vector, we assume no transfer of infection

from deer to tick [3]. This assertion has been lightly contested, so assuming a transfer rate would

be an interesting avenue for further study, but is beyond the scope of the current project. Since we

find B. Burdorferi present on the skin of deer, we consider an infected deer class , additionally, ticks

reproduce on the deer; therefore, we assume that the density of the deer population is positively

correlated with the tick reproduction rate. Finally, we assume that the frequency of tick bites per

unit time saturates at one. This means that out of all the contacts a given tick will have with

potential hosts in a day, it will feed on only one. This allows us to simplify the contact expressions

in each of our six equations, thereby simplifying the model.

The six populations described in the model are defined in Table 1:
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Table 1: Populations Involved in the Model

State Variable Meaning

SD Susceptible deer population.

ID Infected deer population.

SM Susceptible mouse population.

IM Infected mouse population.

ST Susceptible tick population.

IT Infected tick population.

In the following table, (Table 2), population densities are per square kilometer. The parameter

values that we use have been acquired from census data, the CDC, hunting reports, and also from

various studies conducted in the field.

Table 2: Definition of the variables in the modeling framework

Parameter Meaning Units Value Source

D Total population of deer Individuals 300 [20]

M Total population of mice Individuals 3500

T Total population of ticks Individuals 1530000 [14]

SD Susceptible deer Individuals 216

ID Infected deer Individuals 84

SM Susceptible mice Individuals 1050

IM Infected mice Individuals 2450

ST Susceptible tick Individuals 979200 [14]

IT Tick infected with a transferable
form of Lyme disease

Individuals 550800 [14]

ΛD Birth/recruitment rate of deer Individuals/time 0.147945205±?1 [12]

ΛM Birth/recruitment rate of mice Individuals/time 5.4 ∗ 10−2±?1 [8][11]

ΛT Birth/recruitment rate of tick Individuals/time 2.6 ∗ 10−2±?1 [24]

βTD Transmission rate from ticks to
susceptible deer

1/time 1.3699 ∗ 10−3±?1 [24]

βTM Transmission rate from ticks to
susceptible mice

1/time 2.739 ∗ 10−3±?1 [24]

βMT Transmission rate from mice to
susceptible ticks

1/time 1.863 ∗ 10−3±?1 [24]

μD Natural death rate for deer 1/time 4.9 ∗ 10−4±?1 [15]

μM Natural death rate for mice 1/time 2.7 ∗ 10−3±?1 [8][21]

μT Natural death rate for ticks 1/time 9.6 ∗ 10−3±?1 [24]
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Figure 1: Compartmental Model

The assumptions and definitions lead to the following model on the dynamics of deer–mice–

ticks:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṠD = ΛD − βTD
IT
T
SD − μDSD,

İD = βTD
IT
T
SD − μDID,

ṠM = ΛM − βTM
IT
T
SM − μMSM

İM = βTM
IT
T
SM − μMIM

ṠT = ΛTD − βMTST
IM
M

− μTST

İT = βMTST
IM
M

− μT IT

(1)

1These parameters have been taken from various sources in literature as well as CDC reports. No two sources have
had matching parameter values. Therefore, values have been averaged based on all reported values. See Appendix
for justification.
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Figure 2: Population Dynamics

Where: D = SD + ID, T = ST + IT and M = SM + IM

In the equations in (1), where i �= j = D,M, T , the susceptible population that gets infected moves

into the infected class with a per capita rate of βij
Ii
i
. βij is the contact rate and rate of transmission

of the spirochete from population i to population j. The
Ii
i

represents the proportion of infected

members of population i that a given individual in population j encounters. The susceptible and

infected individuals also leave their respective classes through death according to the terms μiSi

and μiIi respectively. The terms μi represent the per capita death rate of population i in each

time step. New individuals are recruited into the susceptible population via Λi, which represents

the number of units of population i that are born in each time step. Note that ΛD and ΛM are

constant while ΛT is dependent on the density of deer.

The simulation (2) was run over a period of 3000 days to observe the long–term and transient
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behavior of the model incorporating the initial conditions listed in Table 2.

3 Disease-Free and Endemic Equilibria and Their Stability

3.1 Disease-Free Equilibria and Stability

The Disease–Free equilibrium (DFE) occurs when the pathogen has suffered extinction and every

individual of the population is susceptible. Therefore, in the system (1) we compute the disease–free

equilibrium by setting ID = 0, IM = 0 and IT = 0.

The system (1) has a disease free equilibrium denoted by E0, where

E0 = [SD → ΛD

μD
, ID → 0, SM → ΛM

μM
, IM → 0, ST → ΛDΛT

μDμT
, IT → 0]

The basic Reproduction number, R0, represents the number of new infections one case generates

on average over the course of its infectious period.

In order to compute R0, we use the next generation matrix [16] and obtain the following:

X =

⎛
⎜⎜⎜⎜⎝
ID

IM

IT

⎞
⎟⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎜⎜⎝
SD

SM

ST

⎞
⎟⎟⎟⎟⎠

Where X is the vector of infected classes and Y the vector of uninfected classes

The original system of equations can be rewritten in the following generalized form:

∂X

∂t
= F(X,Y )− V(X,Y )
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F =

⎛
⎜⎜⎜⎜⎝

SDIT βTM
IT+ST

ITSMβTM
IT+ST

IMβMTST
IM+SM

⎞
⎟⎟⎟⎟⎠ , V =

⎛
⎜⎜⎜⎜⎝
μDSD

μMIM

μT IT

⎞
⎟⎟⎟⎟⎠

Let F = J(F) and V = J(V), where J denotes the Jacobian. Next, compute the eigenvalues of the

associated matrix FV −1. The reproduction number will be the largest eigenvalue of the Jacobian,

thus:

R0 =

√
βTMβMT

μMμT
(2)

Theorem 1. If R0 < 1, then the disease free equilibrium, E0, is locally asymptotically stable for

the system (1). If R0 > 1, then E0 is unstable. [6]

If μMμT ≤ βTMβMT , then R0 > 1, thus the DFE will be unstable.

3.2 Endemic Equilibria and Stability

The Endemic Equilibrium of the model is obtained by considering the infectious classes to be

greater than zero. The following Endemic Equilibrium is obtained:

E∗ = (S∗
D, I

∗
D, S

∗
M , I∗M , S∗

T , I
∗
T ),

Where,

S∗
D =

ΛDβTM (βMT + μT )

μT (μDβTM − μMβTD) + βMTβTM (μD + βTD)
,

I∗D =
ΛDβTD (βMTβTM − μMμT )

μD (μT (μDβTM − μMβTD) + βMTβTM (μD + βTD))
,

S∗
M =

ΛM (βMT + μT )

βMT (μM + βTM)
, I*M =

ΛM (βMTβTM − μMμT )

μMβMT (μM + βTM)
,
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S∗
T =

ΛDΛT (μM + βTM)

μDβTM (βMT + μT )
, I*T =

ΛDΛT (βMTβTM − μMμT )

μDμTβTM (βMT + μT )
.

It is important to note that the reproductive number is present in the numerator of the infected

terms of the endemic equilibrium, thus the infected populations are higher if the reproductive num-

ber is larger. The reproductive number, as well as the endemic equilibria depend on transmission

rates between mice and ticks as well as the death rates of both populations.

Theorem 2. The system (1) has a unique endemic equilibrium, E∗ = (S∗
D, I

∗
D, S

∗
M , I∗M , S∗

T , I
∗
T ),

iff R0 > 1 and R0 > R1, where R1 = μMβTD−μDβTM

(μD+βTDμM ) . The endemic equilibrium E∗ is locally

asymptotically stable whenever it exists.

In order to verify stability we compute the Jacobian evaluated at the endemic equilibrium:

J |E∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− IT βTD
IT+ST

− μD 0 0 0 ITSDβTD

(IT+ST )2
−SDST βTD

(IT+ST )2

IT βTD
IT+ST

−μD 0 0 − ITSDβTD

(IT+ST )2
SDST βTD

(IT+ST )2

0 0 − IT βTM
IT+ST

− μM 0 ITSMβTM

(IT+ST )2
−SMST βTM

(IT+ST )2

0 0 IT βTM
IT+ST

−μM − ITSMβTM

(IT+ST )2
SMST βTM

(IT+ST )2

ΛT ΛT
IMST βMT

(IM+SM )2
−SMST βMT

(IM+SM )2
− IMβMT

IM+SM
− μT 0

0 0 − IMST βMT

(IM+SM )2
SMST βMT

(IM+SM )2
IMβMT
IM+SM

−μT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

Which yields the following eigenvalues:

λ1 = −μD

λ2 = −μT

λ3 = −μM

λ4 =
μT (μMβTD−μDβTM)−βMTβTM(μD+βTD)

βTM(βMT+μT )

(4)

The first three eigenvalues are negative and λ4 < 0 when R0 > R1. λ5,6 are the solutions the

quadratic equation of the form Aλ2
5,6 +Bλ5,6 + C = 0, where:

A = (μM + βTM) (βMT + μT ),
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B = βMT

(
(μM + βTM) 2 + 2μTβTM

)
+ β2

MTβTM + μ2
TβTM)

C = (μM + βTM) (βMT + μT ) (βMTβTM − μMμT )

It is clear that A and B are always greater than zero. When R0 > 1, the following condition

holds μMμT ≤ βTMβMT . It follows that C will always be greater than or equal to zero while

R0 > 1. Therefore, the square root of the discriminant will be between zero and B. Thus, the two

eigenvalues of the form
−B ±√

B2 − 4AC

2A
are less than zero when R0 > 1 and the equilibrium is

locally stable.

4 Sensitivity Analysis

The basic tenet of sensitivity analysis is that perturbations to the input parameters of a model

produce perturbations in the output. Sensitivity analysis quantifies these uncertainties. The quan-

tification is defined as the ratio of a 1 percent change change in the parameter produces what

percent change in the output. In our case, the quantities of interest are both static and dynamic.

Specifically, the reproduction number and the equilibrium points are static in nature, whereas the

dynamic model consisting of the ODEs given in equations (1) is temporal. Sensitivity of the repro-

duction number describes, via each relevant parameter, how many secondary infections are incurred

given a single infection in a completely susceptible population. Sensitivity of the equilibrium points

describes how the long–term solutions are affected by changes in the defining parameters. Lastly,

sensitivity of the ODE model describes the transient sensitivity. With time dependent models, it is

possible for certain parameters to exchange relative importance. For example, parameter p1 may

be more important then parameter p2 up to some crossover time tc. After tc, parameter p2 is more

important than p1.

Consider a generic model, as shown here, called the forward problem. It takes nominal input

parameters, such as μD, etc.., which we will refer to as p, and generates a solution u.

Forward sensitivity analysis introduces perturbations to the input parameters, via δp and quantifies

the subsequent perturbations to the output solution via δu.
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Forward ProblemInput Parameter p
Output Solution u

or Function(al) J(u)

Figure 3: Forward problem consists of generic input(s) p and corresponding output(s) u.

Forward Sensitivity Analysis
Perturbation of Parameter

p+ δp

Perturbation of Output

u+ δu

Figure 4: Forward sensitivity quantifies how perturbations δp to the input parameter p produces
perturbations of the output δu.

In order to quantify the concept of sensitivity, we define the normalized indices. The normalized

sensitivity index1 is defined to be the limit of the ratio [2]

SI(u; p) := lim
δp→0

(
δu

u

)
(
δp

p

) =
p

u

∂u

∂p
u �= 0.

These indices essentially gives the percent change in output for a given percent change to the input

parameter.

4.1 Sensitivity of the Reproductive Number

The basic reproductive number measures the number of secondary infections created by a single

infected tick/mouse in a completely susceptible population. For our model, this metric depends on

1Some authors refer to what we call SI as elasticity. This terminology originated from the field of economics.
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the following variables: μM , βTM , βMT and μT . The parameters that can feasibly be modified are

the death rates of the mice, and possibly the tick population; though the latter would be consider-

ably more difficult. The sensitivity analysis on the reproductive number is done to understand the

impact on the individual populations of perturbing the death rate of the mice and the death rate

of the tick population on the spread of the disease. Calculating the normalized sensitivity index of

R0 with respect to μM and μT indicate that:

SI(R0, μM ) := SI(R0, μT )

=
μM

R0

∂R0

∂μM

=
μT

R0

∂R0

∂μT

= −1

2

Thus, if we increase the death rate of the mice (or Ticks) by one percent, the reproductive number

will decrease by 0.5%. Similar calculations show:

SI(R0, βTM ) := SI(R0, βMT )

=
βTM

R0

∂R0

∂βTM

=
βMT

R0

∂R0

∂βMT

=
1

2

Thus decreasing the transmission rates between Ticks and Mice (and vice-versa), by one percent,

will decrease the reproductive number by 0.5%.

4.2 Sensitivity of the Endemic Equilibrium

We explored the sensitivities of endemic equilibrium infectious hosts/vector densities to perturba-

tions in death rates of each class. This was done in order to simulate and observe the effects of
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introducing preventative measures to one of the host populations.

We performed forward sensitivity analysis on the forward problem at the endemic equilibrium in

order to acquire normalized sensitivity conditions with respect to each population parameter. We

calculated the normalized sensitivity conditions of the species–specific death rates with respect to

the populations according to the process previously described:

4.2.1 Normalized Sensitivity Conditions with respect to μD

SI(ID;μD) = −βMT βTD βTM + 2βTM μD βMT − βTD μM μT + 2βTM μD μT

βMT βTD βTM + βTM μD βMT − βTD μM μT + βTM μD μT

= −R0(βTD + 2μD)μM − (βTDμM + 2βTMμD)

R0(βTD + μD)μM − (βTDμM + βTMμD)

= −βTDμM (R0 − 1) + 2R0(μM − βTM )μD

βTDμM (R0 − 1) +R0(μM − βTM )μD

SI(IM ;μD) = 0

SI(IT ;μD) = −1

From the equations, we can see that increasing Deer death rates always has a negative impact on

IT densities. Interestingly, the this parameter does appear not dampen infected mice population

(i.e. sensitivity index is zero). We note in passing that this is likely a consequence of our first order

approximation of ∂IM
∂μD

. Finally, we observe that the sensitivity index of the infected Deer class may

be positive or negative depending on the relative magnitude of R0. Thus we conlcude that μ)D has

its greatest effect on ID but it always has a negative effect on IT
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4.2.2 Normalized Sensitivity Conditions with respect to μM

SI(ID;μM ) = − μT (βMT + μT )βTM μM μD

(βMT βTD βTM + βMT βTM μD − βTD μM μT + βTM μD μT ) (βTM βMT − μM μT )

= − (βMT + μT )βTMμDμM

(R0(βTD + μM )μM − (βTDμM − βTMμD)) (R0 − 1)

SI(IM ;μM ) = −βMT βTM
2 + 2βMT βTM μM − μT μM

2

(βTM + μM ) (R0 − 1)μMμT

= −R0(βTM + 2μM )− μM

(βTM + μM )(R0 − 1)

SI(IT ;μM ) = − μM μT

βTM βMT − μM μT

= − 1

R0 − 1

From the equations, we observe that the sensitivity of the infected Deer class can also vary depend-

ing on the disease dynamics near equilibrium. If R0 >> 1 (and the endemic equilibrium exits),

then increasing mice death rates has a negative impact on the infected Deer class. Moreover, the

impact on the infected mice and Tick populations is also negative provided R0 > 1. However, when

R0 < 1, we see an increase in the infected tick population; note that an increase in the population

does not imply an increasing population with respect to time.

4.3 Time Sensitivity of the ODEs

The results of our local sensitivity analysis at the endemic state revealed that potential changes

in ecological parameters governing the reproduction number may change the sensitivity of pertur-

bations in host death rates on infectious classes. This also hints at possible changes in sensitivity

based on intrinsic host-vector dynamics as the disease evolves over time. Sensitivity conditions

are not always time dependent, but temporal sensitivity was observed in the response measures of

the SARS epidemic in China [10]. This was significant because it showed how the two response
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measures switched effectiveness at a certain point in the epidemic. We explored numerically the

temporal sensitivities of these death rates by integrating the associated forward sensitivity equa-

tions for our model. These were computed by considering the partial derivatives of our model with

respect to the focal parameters: Differentiating the forward equations given in (1) wrt.

∂SD

∂μD
= −βTD

T 2

(
(IT

∂SD

∂μD
+ SD

∂IT
∂μD

)T − ITSD(
∂ST

∂μD
+

∂IT
∂μD

)

)
− μD

∂SD

∂μD
− SD

∂ID
∂μD

=
βTD

T 2

(
(IT

∂SD

∂μD
+ SD

∂IT
∂μD

)T − ITSD(
∂ST

∂μD
+

∂IT
∂μD

)

)
− μD

∂ID
∂μD

− ID

∂SM

∂μD
= −βTM

T 2

(
(IT

∂SM

∂μD
+ SM

∂IT
∂μD

)T − ITSM (
∂ST

∂μD
+

∂IT
∂μD

)

)
− μM

∂SM

∂μD

∂IM
∂μD

=
βTM

T 2

(
(IT

∂SM

∂μD
+ SM

∂IT
∂μD

)T − ITSM (
∂ST

∂μD
+

∂IT
∂μD

)

)
− μM

∂IM
∂μD

∂ST

∂μD
= ΛT

(
∂SD

∂μD
+

∂ID
∂μD

)
− βMT

M2

(
(ST

∂IM
∂μD

+ IM
∂ST

∂μD
)M − ST IM (

∂SM

∂μD
+

∂IM
∂μD

)

)
− μT

∂ST

∂μD

∂IT
∂μD

=
βMT

M2

(
(ST

∂IM
∂μD

+ IM
∂ST

∂μD
)M − ST IM (

∂SM

∂μD
+

∂IM
∂μD

)

)
− μT

∂IT
∂μD

We examined how changes in local stability of the endemic equilibria affected the sensitivity in-

dex and observed crossover periods (i.e. where Deer death rates become more/less important on

infectious classes relative to mice death rates.)

Our simulations ran over a time period of three thousand days, showed dynamical changes in
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sensitivity. The graphs below display our results. The axes display the magnitude of the normalized

sensitivity indicies over time in days. Each line represents a population denoted by a specific color.

Both groups display the population dynamics and the sensitivities of the populations with respect

to the death rates of deer and mice respectively. For the first set, we chose parameters such that

the endemic equilibrium was stable. In the second set of graphs, we chose parameters such that

R0 < 1 using the values listed in 2.

The graph shows that the population of infected mice gets more sensitive to perturbations in

the deer death rate as time goes by. Conversely, the susceptible mouse population gets more

negatively sensitive to the death rate of deer with the passage of time. An expected result, given

the dependence of I. Scapularis on the deer population as reproductive hosts, the susceptible tick

population gets increasingly negatively sensitive to the deer death rate.

An interesting result of the dynamic forward sensitivity analysis with respect to the death rate of

the mouse population is the complete lack of affect it has on the deer population over the entire span

of three thousand days. Unsurprisingly, the death rate of the mice has an immediate, increasingly

negative effect on the infected tick population. Halfway through the simulation, however, the

magnitudes of both the susceptible and infected tick sensitivity change direction in a parabolic

fashion, and approach an equilibrium at zero.
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Figure 5: Population Dynamics (top) and Sensitivity indices w.r.t μD for model (1). Parameters
were chosen such that R0 > 1. Initial values are same as in table 1.
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Figure 6: Sensitivity indices w.r.t μM (top), βTM (middle), and βMT (bottom) for model (5).
Parameters were chosen such that R0 > 1. Initial values are same as in table 1.

5 Logistic Growth Modification

We now explore the effects of modeling the Deer population dynamics as logistic model. We consider

this modification since large mammal density may be 1-2 orders of magnitudes lower than small

mammal host [12]. Deer-specific resource limitations may play an important role in the disease

dynamics via the introduction of new susceptible Ticks.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṠD = ΛDD
(
1− D

K

)− βTD
IT
T
SD − μDSD,

˙ID = βTD
IT
T
SD − μDID,

˙SM = ΛM − βTM
IT
T
SM − μMSM

˙IM = βTM
IT
T
SM − μMIM

ṠT = ΛTD − βMTST
IM
M

− μTST

˙IT = βMTST
IM
M

− μT IT

(5)

The modified model keeps all previously held assumptions, except ΛD now describes an intrinsic

growth rate for the Deer population and K which denotes carrying capacity.

5.1 Disease-free and endemic equilibria and their stability

Theorem 3. If R0 < 1, then the disease free equilibrium, E0, is locally asymptotically stable for

the system (5). If R0 > 1, then E0 is unstable. [6]

The system (5) has a disease free equilibrium denoted by E0, where

E0 =

{
SD → K(ΛD − μD)

ΛD
, ID → 0, SM → ΛM

μM
, IM → 0, ST → K(ΛD − μD)ΛT

ΛDμT
, IT → 0

}

Thus, we require ΛD > μD for existence. For stability, evaluating the Jacobian at the equilibria

yields the following eigenvalues:
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λ1,2,3,4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−μD

−μT

−μM

−ΛD + μD

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

λ5,6 = −1

2

(
μM + μT ±

√
μ2
M − 2μTμM + μ2

T + 4βMTβTM

)

Notice that:

A = (μM + μT )
2 − (

μ2
M − 2μTμM + μ2

T + 4βMTβTM

)
= 4(−βMTβTM + μTμM )

Thus for stability, we additionally require:

R0 =

√
βMTβTM

μTμM
< 1

Theorem 4. The system (5) has a unique endemic equilibrium, E∗ = (S∗
D, I

∗
D, S

∗
M , I∗M , S∗

T , I
∗
T ), iff

R0 > 1. The endemic equilibrium E∗ is locally asymptotically stable whenever it exists.

The endemic equilibria of the model is the following:

S∗
D =

(ΛD − μD)(μT + βMT )KβTMμD

((βMTβTM − μTμM )βTD + βTMμD(μT + βMT ))ΛD

I∗D =
(ΛD − μD)(βMTβTM − μTμM )KβTD

((βMTβTM − μTμM )βTD + βTMμD(μT + βMT ))ΛD

S∗
M =

ΛM (μT + βMT )

βMT (μM + βTM )
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I∗M =
ΛM (βMTβTM − μTμM )

βMTμM (μM + βTM )

S∗
T =

ΛT (μM + βTM )(ΛD − μD)K

βTMΛD(μT + βMT )

I∗T =
ΛT (βMTβTM − μTμM )(ΛD − μD)K

βTMΛDμT (μT + βMT )

To verify stability we examine the eigenvalues of the Jacobian matrix at the endemic equilib-

ria:

λ1,2,3 =

⎛
⎜⎜⎜⎜⎝

−μT

−μM

−ΛD + μM

⎞
⎟⎟⎟⎟⎠

λ4 = −(βMTβTM − μTμM )βTD + βTMμDμT + μDβTMβMT

βTM (μT + βMT )

λ5,6 = −
(
A1 ±

√
A2

)

Where:

A1 = β2
MTβTM − βTMμ2

T + βMT (−(βTM + μM )2 − 2βTMμT )

A2 = −4(βTM+μM )2(βMT+μM )2(βMTβTM−μTμM )+β2
MTβTM+βTMμ2

T+βMT ((βTM+μM )2+2βTMμT )
2
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λ4 is clearly negative whenever R0 > 1. Furthermore, simple calculations show that λ5,6 are also negative

since:

A2
1 −A2 = 4(μM + βTM )2(μT + βMT )

2(βMTβTM − μTμM ) > 0

when

R0 =

√
βMTβTM

μTμM
> 1

5.2 Forward Sensitivity Analysis

The Forward sensitivity equations for model (5) are identical to those for model (1). For instance, the

equations w.r.t. βTM are:

∂SD

∂βTM
= ΛD

(
∂SD

∂βTM
+

∂ID
∂βTM

)(
1− 2D

K

)
−βTD

T 2

(
(IT

∂SD

∂βTM

∂IT
∂βTM

)T−ITSD(
∂ST

∂βTM
+

∂IT
∂βTM

)

)
−βTM

∂SD

∂βTM
−SD

∂ID
∂βTM

=
βTD

T 2

(
(IT

∂SD

∂βTM
+ SD

∂IT
∂βTM

)T − ITSD(
∂ST

∂βTM
+

∂IT
∂βTM

)

)
− βTM

∂ID
∂βTM

∂SM

∂βTM
= −βTM

T 2

(
(IT

∂SM

∂βTM
+ SM

∂IT
∂βTM

)T − ITSM (
∂ST

∂βTM
+

∂IT
∂βTM

)

)
− μM

∂SM

∂βTM
− SM

IT
T

∂IM
∂βTM

=
βTM

T 2

(
(IT

∂SM

∂βTM
+ SM

∂IT
∂βTM

)T − ITSM (
∂ST

∂βTM
+

∂IT
∂βTM

)

)
− μM

∂IM
∂βTM

+ SM
IT
T

∂ST

∂βTM
= ΛT

(
∂SD

∂βTM
+

∂ID
∂βTM

)
− βMT

M2

(
(ST

∂IM
∂βTM

+ IM
∂ST

∂βTM
)M − ST IM (

∂SM

∂βTM
+

∂IM
∂βTM

)

)
− μT

∂ST

∂βTM

∂IT
∂βTM

=
βMT

M2

(
(ST

∂IM
∂βTM

+ IM
∂ST

∂βTM
)M − ST IM (

∂SM

∂βTM
+

∂IM
∂βTM

)

)
− μT

∂IT
∂βTM
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The results show some interesting contrasts with model (1). The sensitivity of the susceptible Deer population

to μD rebounds once the population reaches carrying capacity, while the infected Deer class remains relatively

more sensitive. The sensitivity of the infected mice class to μD is never positive (compared to model (1))

indicating that deer harvesting always decreases overall infection.
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Figure 7: Population Dynamics (top) and Sensitivity indices w.r.t μD for model (5). Parameters
were chosen such that R0 > 1. K = 5000, and initial values are same as in table 1.
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Figure 8: Sensitivity indices w.r.t μM (top), βTM (middle), and βMT (bottom) for model (5).
Parameters were chosen such that R0 > 1. K = 5000, and initial values are same as in table 1.
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6 Discussion

The rapid increase in Lyme disease cases in humans highlights the need to control the spread of infected

black-legged ticks. We present a compartmental, SI model of the spread of Lyme disease for deer, tick and

mice compartments in which the populations are grouped in susceptible and infected classes. The host,

reservoir and vector dynamics in this particular model is crucial due to the life cycle of the tick. They

reproduce mostly on deer, but get infected with the bacteria when feeding on mice during the nymphal

stage. This implies that the birthrate of the ticks is dependent on the density of the deer. The parame-

ters chosen to perform sensitivity analysis are the death rates of the reservoir host and the vector, as well

as transmission rates between the two. The possibility of altering these parameters by introducing con-

trol methods in a real population of deer, mice and ticks prompted us to focus on said death rates and

transmission rates. Analyzing the death rates of ticks, for example, would be the most effective but not

realistic in terms of implementing policies. The dynamic sensitivity analysis of this model was performed

to observe how the sensitivity changes over time when parameters relevant for control methods are perturbed.

The evolution of the susceptible and infected classes over a period of 3000 days indicates a pronounced

increase in the numbers of susceptible mice which decreases after day 2000. This is mainly due to the values

of the per capita death rate of the mice as well as the slow increase of the infected mice. The population of

the deer remains relatively constant in number over the time interval of the simulation. Dynamic and static

sensitivity analyses were performed on the model at the reproductive number and at the endemic equilibrium

respectively. The static sensitivity of the reproductive number with respect to the death rates of the deer

and mice yielded negative sensitivity values, which implies a reduction of the basic reproduction number. As

R0 depends on transmission rates and death rates of mice and ticks, increasing the death rate of the deer

or mice will cause this number to reduce, as μM is in the denominator of the expression. In the case of the

deer, as we are reducing the reproductive host of the ticks, the population of ticks declines and this change

is reflected in the decrease of the reproductive number [14]. Decreasing the transmission rates between mice
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and ticks produces a negative sensitivity for the R0. This can be intuitively seen as the transmission rates

are located in the denominator of R0; it follows that any increase in the transmission rates would result in a

decrease in R0. At the endemic equilibrium, the death rate of the deer had a larger impact on the infected

tick population compared to the effect it had on the infected mice population. The sensitivity index at the

endemic equilibrium of the infected mice population with respect to the death rate of the deer was zero;

in spite of this, we cannot conclude that there is no effect but rather that it is a secondary effect that is

not reflected in this first order approximation. Decreasing the population of mice has a large impact on the

infected tick population, as the reservoir host of the bacteria is reduced thus infecting less ticks. It had a

small negative impact on the infected deer population, which was an indirect consequence of reducing the

infected tick population.

The dynamical sensitivity analysis with respect to deer death rate reflected a direct negative impact on the

infected deer population. The population of susceptible ticks decreases as the host on which they reproduce

is culled. As a consequence there is a small increase in the susceptible mice population and a decline in

infected mice. Lowering the number of deer reduces the population of ticks quite efficiently. However, the

increase of infected mice is a problem because the number of infected ticks will start increasing over time

as the susceptible mice decrease. Decreasing the numbers of both susceptible and infected mice constantly

in an interval of time impacts the tick population directly. The effect is most pronounced in the infected

class which experiences a dramatic reduction. Infected mice decline, causing an important reduction in the

infected tick population, which is a direct consequence of the transmission rate of the disease from mice to

ticks [7]. Additionally, as mice act as the reservoir host for Lyme disease [4], when the number of infected

mice decreases, so does the infected tick population. Although the tick population does not drastically

decrease, the importance of increasing the mouse death rate is that we are reducing the pool of infectious

hosts that spread the disease. Increasing the death rate of the mice has some benefits over increasing the

death rate of the deer, in spite of the small impact on the infected tick population. Ticks have preferred
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hosts, however their survival is a direct result of their adaptability [17]. Thus, if there is a reduction of the

deer, the reduced tick population could potentially switch hosts, increasing the number of infected mice [3].

Altering the transmission rates is also a possibility when it comes to trying to control Lyme disease. The

transmission rates between mice and ticks depend on the probability of contact and biting rate. The strategy

used by the CDC in a study currently underway in Connecticut was to place bait boxes with food for mice.

These boxes also include a wick with the pesticide, fipronil, which kills tick on the mice without harming

the mammal [5]. In the dynamic sensitivity analysis performed with respect to the transmission rates we

obtained different sensitivities indices depending on whether the transmission rate was from tick to deer or

vice versa. When decreasing βMT , the transmission rate from mice to tick, there is a considerable decrease

in the infected tick population, but a very small impact on the infected mice population which is a secondary

effect. Decreasing the transmission rate from tick to mice impacts the infected mice population negatively,

but has a small effect in the decrease of infected tick populations.

6.1 Future Work

This model has the limitation of not including the life cycle of I. scapularis and the different hosts that it

inhabits in each stage of its life. This would be relevant to introduce control measures in a specific host at a

particular life stage of the tick to prevent the tick from acquiring the bacteria (rodent control) or reducing

the total population of ticks (large mammal control). Another possible issue with the model is that our

control measures consist of modifying death rates constantly over time; this is not realistic in the sense that

controlling deer would be done once a year, during the hunting season, which is a yearly occurrence in a

very short amount of time. For future work, we can consider introducing a harvesting term on the deer

that reflects the hunting season more accurately and/or introducing the different life stages of the tick. We

would also like to introduce a two-patch model that would incorporate migration, geographical restrictions,

and variable harvesting restrictions per population. Including seasonality into the model would also be an
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interesting avenue for future study to increase accuracy. Additionally, we would like to calculate the total

sensitivity of our populations as opposed to the instantaneous dynamic sensitivity. For example, from the

functional J(ID) =
∫ T

t=0
dID
dt dt, we would use the adjoint method to determine the sensitivity of the total

ID population.
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