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Abstract

One of the possible consequences of global warming in the northern
hemisphere is the invasion of Arctic Tundra by woody plants, which is in-
fluenced by the chemical defense of plants against mammal browsing. In
this paper, we explore the toxin-mediated plant-herbivore interaction with
size structure in plants using a simplified mathematical model. The size
structure of plants is important as it seems to play a significant role on the
woody plant invading. We formulate a three dimensional ordinary differ-
ential equations model of the simplified dynamics of adult-trees, seedlings
and herbivores in the presence of chemical defense of plants, building on
a general two dimensional toxin-determined functional response model of
plants and herbivores. Then we investigate the mathematical features
of the model, analyze the stability of equilbiria. When choosing plant
toxin measurement G and herbivore health measurement μ as bifurcation
parameters, we analytically show the existence of different bifurcations,
including a saddle-node bifurcation and a Hopf bifurcation. A Bogdanov-
Takens cusp with codimension 2 is also identified. A Bogdanov-Takens
bifurcation occurs when bifurcation parameters are perturbed at the cusp.
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1 Introduction

One possible consequence of global warming is that the invasion of Arctic tundra
area by the woody plants. But this woody plants invasion does not preceed
uniformly along the timberline of tundra and woody plants in Arctic area, which
might be explained by the chemical defense of invading woody plants against
herbivory [3]. The selective mammal browsing on the less toxic woody plants
retards the progression of invading while more toxic plants invade fast due to
less damage of browsing in the case study [3] on different types of birch, genus
Betula, with different intense of toxin defense. The purpose of this paper is to
formulate a mathematical model to study the process of the invasion problem
quantitatively. The plant toxin defense has been studied both in biologically
orientated paper [5, 4, 7, 1, 22, 2, 23, 25, 21, 8, 24] and quantitatively in [16,
17, 10, 11, 15, 14, 12, 18, 9, 19]. The general model of one plant species and
one herbivore population with toxin-determined functional response (referred
to TDFRM) has been studied in [10, 17, 6], in which the negative effect of
plant toxin was incorporated into Holling Type II functional response. The
study of the frame work of the two dimensional system of ordinary differential
equations presented rich dynamics [17], including saddle-node bifurcation, Hopf
bifurcation and codimension 2 Bogdanov-Takens bifurcation, more complicated
than the model with traditional Holling type II model. The regeneration of
boreal woody plants is characterized by the size structure from young seedlings
to adult trees after the seed production, dispersal and germination [13]. The size
structure of plants might be an important factor in the woody plants invasion
of tundra. However, to our best knowledge, the size structure of plants has
not been explicitly modeled jointly with the effect of plant toxicity in previous
studies.

In this paper, we shall build up a plant size-structured model of one plant
species and one herbivore population. To setup the model, we have a few as-
sumptions based on biological facts. We assume that mammal browsers do not
feed on the adult trees. First, herbivores are not able reach the adult trees. As
the adult trees grow larger, they have less leaves or twigs available to herbivores.
Second, the concentration of toxin chemicals of adult plants is higher than that
of seedlings. Liu et al.[18, 19] introduced a model with age structure of twigs,
twigs at different ages have different toxin levels. So adult trees are also less
preferred by herbivores.

The growth of adult trees consists of two parts. One part is self-growth,
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which means after seedlings become the adult trees, continue to grow larger and
saturate at a certain level due to crowding effect. The other part of growth is new
recruitment from the seedlings compartment. For seedlings, the new recruitment
is assumed to be proportional to the adult trees, but we emphasize that the
process of the reproduction is that the adult trees produce seeds proportional
to their density and then seeds can germinate and grow into seedlings with a
small probability. The seedlings grow up to adult trees at a constant rate per
capita. Therefore, the model we study here is listed below:

dA(t)

dt
= rA− γA2 + bS,

dS(t)

dt
= pA− bS − C(S)H,

dH(t)

dt
= βC(S)H − μH.

(1)

where
C(S) = f(S)

(
1− f(S)

4G

)
, (2)

and
f(S) =

eσS

1 + heσS
(3)

is the Holling Type 2 functional response for foraging on the plant species. The
parameter e in equation (3) is the encounter rate of the plant resource, which
depends on the movement velocity of the consumer and its radius of detection of
food items, and also depends on the abundance of food resources. The parameter
σ (0 < σ ≤ 1) is the fraction of food biomass encountered that the herbivore
ingests. The parameter h is the handling time per unit plant biomass, which
incorporates the time required for the digestive tract to handle the item. The
second part of the toxin-determined functional response C(S) in (2), that is,
1 − f(S)/4G, accounts for the negative effect of toxin, where G = M/T . The
parameter M is a measure of the maximum amount of the plant toxicant per
unit time that the herbivore can tolerate, and T is the amount of toxin per unit
plant biomass. G decreases when the concentration of toxin tolerated by the
herbivore decreases (high toxicity) or the concentration of toxin in the plant
biomass increases. Therefore, the smaller the value of G, the larger the effect
the toxin has on intake. The factor 4 is for mathematical purpose, which is a
multiplier which guarantees that C as a function of S is nonnegative and does
not exceed G. The parameters d denote the death rate of herbivore, including
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Figure 1: Toxin-Determined Functional Response, (a) C(S) is monotonically
increasing in S if 1

2h < G < 1
h , (b) C(S) is unimodal and reaches its maximum

at Sm = 2G
eσ(1−2Gh) if 1

4h < G < 1
2h .

the natural death, predation and human hunting induced death and its value
can vary representing management policies. The C(S) could be monotone as
shown in Figure 1(a), or could be unimodal as in Figure 1(b). In this paper we
study the nonmonotone case of C(S).

This paper is organized as follows. In section 2, we study the properties of
the model (1). Section 3 presents the stability analysis of both boundary and
interior equilibria, and investigates saddle-node bifurcation and Hopf bifurcation
and shows the degenerated case at the intersection of two bifurcation curves,
which is a codimension 2 Bogodanov-Takens cusp. In section 4, we summarize
the results and the future works.

2 Analysis of the model

2.1 Properties of the Adult Trees-Seedlings system

Without the herbivores, the 2D system of adult trees-seedlings becomes as fol-
lows

dA(t)

dt
= rA− γA2 + bS,

dS(t)

dt
= pA− bS,

(4)

Proposition 2.1. The set {(A,S) | 0 ≤ A ≤ AM , 0 ≤ S ≤ SM} is positively
invariant under 2D system (4). The system has two equilibrium points, E0 =

(0, 0) and EM = (AM , SM ). Moreover, E0 is always a saddle, unstable, and
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Figure 2: Phase portrait of the 2D system of adult trees and seedlings. The
dashed curve are nullclines. (0, 0) and (AM , SM ) are the equilbiria of the 2D
system (4). From the phase portrait, the equilibrium (0, 0) is unstable, and the
equilibrium (AM , SM ) is stable and global attractive in the first quadrant. The
rectangular region [0, AM ]× [0, SM ] is a globally attractor.

EM is always stable nodes.

It is easy to verify. We can check the phase portrait given in Figure 2.

Proposition 2.2. The 2D system (4) has no closed orbit around EM in the
first quadrant, and the equilibrium EM = (A∗

M , S∗
M ) is globally stable. Further,

the set {(A,S) | 0 ≤ A ≤ AM , 0 ≤ S ≤ SM} is a global attractor of the 2D
system (4).

Proof. Based on the phase portrait, given after the Proposition 1, there is no
closed orbit around EM . Then by Poincare-Bendixion Theorem and Proposition
1, the equilibrium EM = (A∗

M , S∗
M ) is globally stable. Thus, the set {(A,S) | 0 ≤

A ≤ AM , 0 ≤ S ≤ SM} is a global attractor of the 2D system.

2.2 Properties of Adult trees, seedlings and herbivore sys-
tem

Theorem 2.1. The set Φ = {(A,S,H) | 0 ≤ A ≤ AM , 0 ≤ S ≤ SM , 0 ≤ H ≤
M} is a global attractor and therefore, it is positively invariant under the 3D
system (1), where AM = r

γ (1 +
p
r ), SM = p

b
r
γ (1 +

p
r ) and M = βpAM

min{b,μ} .



2 ANALYSIS OF THE MODEL 6

To show Theorem 2.1, it is easy to check the positive cone is positively
invariant firstly, then we only need to show the upper bound for each dimension.
Two lemmas are given on the upper bounds of the system (1).

Lemma 2.1. For all nonnegative initial condition (A0, S0, H0), the first two
dimensions (A(t), S(t)) of the three dimensional system (1) eventually go to
inside of the square [0, AM ]× [0, SM ].

This can be easily shown by checking the phase portrait of the two dimen-
sional system without herbivores, and we can see the direction of flow along the
edges of the square region [0, AM ] × [0, SM ] is inward (refer to the Figure 2).
Then the solution of the 2D system (4) without Herbivores A(t), S(t) are the
upper solutions of the first two dimensions of 3D system (1), then (A(t), S(t))

of the three dimensional system eventually enters [0, AM ]× [0, SM ].

Lemma 2.2. If the initial condition (A0, S0, H0) is in the cube [0, AM ] ×
[0, SM ]× [0,+∞], then H(t) is essentially bounded by M = βpAM

min{b,μ} .

Proof. By Lemma 1, we know that A(t) ≤ AM , S(t) ≤ SM for large t. Next,
show H(t) is bounded by M eventually.

Consider V = βS(t) +H(t). Then

dV (t)

dt
= β

dS(t)

dt
+

dH(t)

dt
,

= β(pA− bS − C(S)H) + (βC(S)H − μH),

= βpA− βbS − μH,

≤ βpAK −min{b, μ}V,

and this implies V (t) ≤ M = βpAM

min{b,μ} for all large t. Thus, H(t) ≤ V (t) <= M

for all large t.

Lemma 1 and Lemma 2 implies Theorem 1. For any nonnegative initial value
(A0, S0, H0), the solution (A(t), S(t), H(t)) of the 3D system eventually goes to
the the set Φ. It is easy to check that all biological feasible equilibria have to
be in Φ. Therefore, we can focus on the set Φ = {(A,S,H) | 0 ≤ A ≤ AM , 0 ≤
S ≤ SM , 0 ≤ H ≤ M}.
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3 Stability analysis of equilibria and bifurcations

To investigate the more complicated dynamical behaviors as mentioned in sec-
tion 1, we confine G ∈ [1/4h, 1/2h], where the toxin-determined functional
response C(S) is unimodal.

3.1 Equilibria

To find the equilibria of the 3D system E∗ = (A∗, S∗, H∗), we need to solve the
following equations,

rA∗ − γA∗2 + bS∗ = 0, (5)

pA∗ − bS∗ − C(S∗)H∗ = 0, (6)

βC(S∗)H∗ − μH∗ = 0. (7)

The last equation can be written as H∗(βC(S∗)− μ) = 0, which implies either
H∗ = 0 or C(S∗) = μ/β. When H∗ = 0, we can find two boundary equilibiria
E1 = (0, 0, 0) and EM = (AM , SM , 0) , which always exist.

As for interior equilibrium points, we have C(S∗) = μ/β, we can rewrite the
equation as in [17]

c2S
2 + c1S + c0 = 0, (8)

where

c0 = −μG, c1 = eσ(β − 2μh)G, c2 = (βhG− β/4− μh2G)(eσ)2

The discriminant of (8) is ΔS = (eσ)2βG(βG − μ), the equation (8) has real
roots if only if μ ≤ βG, which determines a threshold line

μ̄(G) = βG (9)

The number of real solutions to (8) is determined by (9), i.e. given c2 �= 0, (8)
has two (one, or zero) real roots if only if μ < μ̄(G) ( μ = μ̄(G), or μ > μ̄(G) ).
We consider the same region as in [17]

Ω = {(G, d) | 1

4h
< G <

1

2h
, 0 ≤ μ ≤ μ̄(G)}.
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Denote the two real solutions to (8)

S∗
1 =

eσ(2μh− β)G−√
ΔS

(βhG− β/4− μh2G)(eσ)2
, S∗

2 =
eσ(2μh− β)G+

√
ΔS

(βhG− β/4− μh2G)(eσ)2
.

Then

A∗
i =

r +
√
r2 + 4γbS∗

i

2γ
( ≥ r

γ
), i = 1, 2, (10)

and
H∗

i =
β

μ
((p+ r)A∗

i − γA∗2
i ),

=
r − 2γbS∗

i +
√

r2 + 4γbS∗
i

2γC(S∗
i )

i = 1, 2.

(11)

The relation of SM and Sm also will affect the number of interior equilibria
in Φ, where Sm = 2G

eσ(1−2Gh) and the functional response C(S) reaches the
maximum G at Sm. It is easy to see that

Sm < (= or>)SM if only if G < (= or>)Gc,

where
Gc =

eσSM

2(1 + heσSM )
=

eσAM

2( bp + heσAM )

It is clear that Gc <
1
2h , and we can verify that

Gc >
1

4h
if only if AM >

b

pheσ
(SM >

1

heσ
).

This condition is true if AM is sufficiently large, which is easy to satisfy. Re-
member that (AM , SM ) is the global attractive node of the 2D system (4), which
are the biomass of adult trees and the biomass of seedlings without herbivores.

In case of G < Gc, then Sm < SM . It is easy to see that E∗
1 always exists in

Φ, E∗
2 exists if S∗

2 < SM , which implies S∗
2 = SM is a threshold. It is equivalent

to C(SM ) = μ/β, or

μM (G) =
βeσSM (4G(1 + heσSM )− eσSM )

4G(1 + heσSM )2
.

So we see S∗
2 < SM if only if μ > μM (G). Thus, both interior equilibria E∗

1 and
E∗

2 exist for μ > μM (G), or else only E∗
1 exists for μ < μM (G).

In the other case, G > Gc, then Sm > SM . Notice C(S) is monotone on
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Figure 3: This graph shows the relation between μ = μ̄(G) and μ = μM (G).
They intersect at G = Gc and μ = βGc. The two curves divide the region Ω
into 3 subregions. In region I, there are two interior equilibria E∗

1 and E∗
2 . In

region II, no interior equilibrium exists. In region III, there exist only E∗
1 and

region III can be divided into two piece by G = Gc. There are four possible
cases on the existence of interior equilibria shown in Figure 4. The graph is
modified from Figure 4 in [17].

[0, SM ]. There exists only one interior equilibrium E∗
1 if μ < μM (G). There is

no interior equilbrium if μ > μM (G).
The curve μ = μ̄(G) and the curve μ = μM (G) have the relation as shown

in Figure 3, which is adapted from Figure 4 of [17]. They are monotonically
increasing, μM (G) < μ̄(G) for 1

4h < G < 1
2h , and intersect at G = Gc. Figure

4 discribes the four possible cases of the existence of interior equilibria. The
remark of [17] on the threshold generated by c2 = 0 also applies here. The
c2 = 0 curve (the dashed curve int Figure 3) does not affect the number or
stability of interior equilibria.

Based on the discussion, there is a saddle-node bifurcation curve, μ = βG

on 1/4h < G < Gc. As parameters μ and G cross the curve, the number of
interior equilibrium points varies from zero (μ > βG) to one (μ = βG) to two
(μ < βG).
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Figure 4: The existence of interior equilibrium points based on C(S) = μ/β.
Fig (a) shows two roots as (G,μ) in Region I of Figure 3. Fig (b) shows no root
as (G,μ) in Region II of Figure 3. Fig (c) shows one biological feasible root as
(G,μ) in Region III of Figure 3 when G < Gc. Fig (d) shows one root as (G,μ)
in Region III of Figure 3 when G > Gc.
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3.2 Local stability of equilbria and Hopf bifurcation

The Jacobian matrix at equilibria E∗ = (A∗, S∗, H∗) is

JE∗ =

⎛
⎜⎝

r − 2γA∗ b 0

p −b− C ′(S∗)H∗ −C(S∗)
0 βC ′(S∗)H∗ βC(S∗)− μ

⎞
⎟⎠ . (12)

3.2.1 Boundary equilibria

At E0 = (0, 0, 0), the Jacobian matrix is

JE0 =

⎛
⎜⎝

r b 0

p −b 0

0 0 −μ

⎞
⎟⎠ . (13)

Clearly, JE0
has a negative eigenvalue, λ3 = −μ, and the submatrix

Ĵ =

(
r b

p −b

)
. (14)

has det(Ĵ) = λ1λ2 = −rb − bp < 0, which implies Ĵ has a positive eigenvalue
and a negative eigenvalue. So JE0 has a positive eigenvalue and two negative
eigenvalues. Hence E0 is always unstable.

At EM = (AM , SM , 0) = ((r/γ)(1 + p/r), (pr/bγ)(1 + p/r), 0), the Jacobian
matrix is

JEM
=

⎛
⎜⎝

r − 2γAM b 0

p −b −C(SM )

0 0 βC(SM )− μ

⎞
⎟⎠ . (15)

It has an eigenvalue λ3 = βC(SM ) − μ, and the other two eigenvalues λ1, λ2

are also the eigenvalues of the submatrix

J̃ =

(
r − 2γAM b

p −b

)
. (16)

The trace of J̃ is

tr(J̃) = λ1 + λ2 = (r − 2γAM )− b = −r − 2p < 0,
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and the determinant of J̃ is

det(J̃) = λ1λ2 = (r − 2γAM )(−b)− bp = b(r + p) > 0.

and the discriminant is

Δ = tr2(J̃)− 4det(J̃) = (−r − 2p− b)2 − 4b(r + p) = (r − b)2 + 4p(p+ r) > 0.

Thus, λ1, λ2 < 0, and if λ3 = βC(SM ) − μ < 0 then EM is stable, or if
λ3 = βC(SM ) − μ > 0 then EM is unstable. Referring to Figure 3 and Figure
4, we have the following result.

Proposition 3.1. The boundary equilibrium E0 is always unstable. The other
boundary equilibrium EM is stable if G < Gc and μ > μM (G), i.e. (G,μ) in
Region I, or G > Gc and μ > μM (G), i.e. (G,μ) in Region II, and EM is
unstable if μ < μM (G), i.e. (G,μ) in Region III.

3.2.2 Interior equilibria and Hopf bifurcation

At E∗
i = (A∗

i , S
∗
i , H

∗
i ), i = 1, 2, the Jacobian matrix is

JE∗
i
=

⎛
⎜⎝

r − 2γA∗
i b 0

p −b− C ′(S∗
i )H

∗
i −μ/β

0 βC ′(S∗
i )H

∗
i 0

⎞
⎟⎠ . (17)

The determinant of JE∗
i

is

det(JE∗
i
) = λ1λ2λ3 = −(r−2γA∗

i )(−
μ

β
)βC ′(S∗

i )H
∗
i = −

√
r2 + 4γbS∗

i μC
′(S∗

i )H
∗
i .

Recalling C(S) is unimodal, C ′(S∗
1 ) > 0 and C ′(S∗

2 ) < 0 imply that det(JE∗
1
) < 0

and det(JE∗
2
) > 0. Thus, JE∗

2
has at least a positive eigenvalue. Thus, it is

unstable.

Proposition 3.2. If the equilibrium of E∗
2 exists, i.e. (G,μ) in Region I, then

it has to be unstable.

However, JE∗
1

could have all negative real eigenvalues, a negative real eigen-
value with two positive real eigenvalues, or a negative real eigenvalue with a
pair of complex eigenvalues. It means E∗

1 could be a stable node, or unstable
node, or stable/unstable focus. The stability of E∗

1 needs further investigation.
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At E∗
1 , the characteristic matrix is

λI − JE∗
1
=

⎛
⎜⎝

λ− (r − 2γA∗
1) −b 0

−p λ+ (b+ C ′(S∗
1 )H

∗
1 ) μ/β

0 −βC ′(S∗
1 )H

∗
1 λ

⎞
⎟⎠ ,

we can calculate the determinant of the characteristic matrix, which gives us
characteristic equation

λ3 + a1λ
2 + a2λ+ a3 = 0, (18)

where

a1 = (2γA∗
1 − r) + (b+ C ′(S∗

1 )H
∗
1 ),

a2 = (2γA∗
1 − r)(b+ C ′(S∗

1 )H
∗
1 ) + μC ′(S∗

1 )H
∗
1 − pb,

a3 = (2γA∗
1 − r)μC ′(S∗

1 )H
∗
1 .

Denote

a11 = (2γA∗
1 − r) =

√
r2 + 4γbS∗

1 ,

a12 = b+ C ′(S∗
1 )H

∗
1 = b+

C ′(S∗
1 )

2γC(S∗
1 )

(r − 2γbS∗
1 +

√
r2 + 4γbS∗

1 ),

a22 = μC ′(S∗
1 )H

∗
1 =

β

2γ
C ′(S∗

1 )(r − 2γbS∗
1 +

√
r2 + 4γbS∗

1 ),

a23 = pb,

then it is easy to check a11, a12, a22, a23 > 0, and

a1 = a11 + a12, a2 = a11a12 + a22 − a23, a3 = a11a22.

It is easy to see a1 > 0, a3 > 0, and by Routh-Hurwitz Criterion (a1 > 0,
a3 > 0, a1a2 > a3 if only if the real parts of the eigenvalues are negative), if
a1a2 − a3 > 0, and then E∗

1 is stable. If a1a2 − a3 < 0, E∗
1 is unstable. Thus,

we can summarize the linear stability result in the Table 1.
Further, we investigate more on the condition for the stability of equilibrium

E∗
1 . Based on

a1a2 − a3 = (a11 + a12)(a11a12 + a22 − a23)− a11a22,

= a11(a11a12 − a23) + a12(a11a12 + a22 − a23),
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Equilibrium Region I Region II Region III
E0 unstable unstable unstable
EM stable stable unstable
E∗

1 stable if a1a2 − a3 > 0 does not exist stable if a1a2 − a3 > 0
unstable if a1a2 − a3 < 0 unstable if a1a2 − a3 < 0

E∗
2 unstable does not exist does not exist

Table 1: Linear stability of equilibria of the system (1). Refer to Figure 3 for
the parameter regions.

one simple sufficient condition is a11a12 − a23 > 0, which is

a11a12 − a23 = (2γA∗
1 − r)(b+ C ′(S∗

1 )H
∗
1 )− pb,

≥ (
√
r2 + 4γbS∗

1 − p)b > 0,

if S∗
1 > 1

4γb (p
2 − r2) � Sb, equivalently, μ > βC(Sb) when p > r, or when p < r,

define Sb = 0 and it is true for any S∗
1 > 0, 0 < μ < μ̄(G).

Notice when p > r, there is no S∗
1 > Sb if Sb > Sm. Thus, we need Sb < Sm,

and notice
Sb =

1

4γb
(p2 − r2) <

2G

eσ(1− 2Gh)
= Sm

which is equivalent to G > Gb, where

Gb =
1

2

eσ (p2−r2)
4γb

1 + heσ (p2−r2)
4γb

=
1

2
f(

p2 − r2

4γb
) =

1

2
f(Sb)

by recalling f(S) = eσS
1+heσS , and notice 0 < f(S) < 1

h , then Gb < 1
2h . If γ is

small enough, biologically equivalently, AM and SM are large, then f(Sb) >
1
2h ,

and 1
4h < Gb <

1
2h . So we have shown the following proposition.

Proposition 3.3. The interior equilibrium E∗
1 is locally asymptotically stable,

if G > Gb and μ > βC(Sb) , where Sb = 1
4γb (p

2 − r2) when p > r , or Sb = 0

when p < r, and Gb =
1
2f(Sb).

Next, consider the case of G < Gb. We can view that a1, a2, a3 as functions
of S∗

1 by replacing μ = βC(S∗
1 ), then varying μ is equivalent to varying S∗

1 . It is
easy to see that this is a 1-1 mapping, when μ = 0, S∗

1 = 0, and when μ = μ̄(G),
S∗
1 = Sm.
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At S∗
1 = Sm, it is easy to check that (a11a12 − a23)(Sm) < 0, since

a11a12 + a22 − a23 = a11a12 − a23,

= b(
√

r2 + 4γbSm − p) < 0.

This means when S∗
1 is near Sm (or μ is near μ̄(G)), by Routh-Hurwitz Criterion,

E∗
1 is unstable.

On the other hand, as S∗
1 → 0, we see that (a11a12 − a23)(S

∗
1 ) → +∞, since

a11a12 − a23 =
√

r2 + 4γbS∗
1 (b+

C ′(S∗
1 )

2γC(S∗
1 )

(r − 2γbS∗
1 +

√
r2 + 4γbS∗

1 ))− pb,

→ r(b+ (+∞))− pb > 0,

where √
r2 + 4γbS

is increasing and is bounded on [0, Sm), and

C ′(S)
C(S)

=
1

S

1

1 + heσS
(2− 1

1− 1
4Gf(S)

)

is a decreasing function of S, it approaches +∞ at S → 0 and it is zero at
S = Sm, and

r − 2γbS +
√

r2 + 4γbS

is increasing on [0, (1 − r2)/4γb), decreasing on ((1 − r2)/4γb, Sm) and it is
bounded on (0, Sm). This means when S∗

1 is small (or μ is near 0), by Routh-
Hurwitz Criterion, E∗

1 is stable.
The switch of stability of E∗

1 implies the possibility of Hopf bifurcation. From
the above argument, by Intermediate Theorem, there exists a Sh ∈ (0, Sm), such
that (a11a12−a23)(Sh) = 0. Combined with a1(Sh) > 0, JE∗

1
has one eigenvalue

with negative real part and two eigenvalues with zero real part by the Theorem
1 of Yang [26]. By a3(Sh) > 0 and a3(Sh) = −det(JE∗

1
), there is no zero

eigenvalues. Thus, we can conclude that JE∗
1
has one negative eigenvalue and a

pair of pure complex eigenvalue.
Furthermore, if ∂

∂S∗
1
(a11a12 − a23)(Sh) �= 0, then there is a simple Hopf

bifurcation by the Theorem of Liu [20], or by the Theorem 2 of Yang [26], if
∂i

∂(S∗
1 )

i (a11a12−a23)(Sh) = 0 for i = 1, . . . j−1, and ∂j

∂(S∗
1 )

j (a11a12−a23)(Sh) �= 0,
then there is a j-order Hopf bifurcation. Due to the complication of computa-
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Figure 5: Hopf Bifurcation. As μ increases, the stability of E∗
1 switches from

stable to unstable, and at some particular value, there bifucates a periodic
solution.

tion of Sh and ∂
∂S∗

1
(a11a12−a23)(S

∗
1 ), we can not be sure that it is a simple Hopf

bifurcation or a j-order Hopf bifurcation for some positive integer j. However,
(a11a12 − a23)(S

∗
1 ) crosses zero as S∗

1 varies on (0, Sm), and also by the com-
position of (a11a12 − a23)(S

∗
1 ), it is impossible that its partial derivatives of all

orders at Sh are zero. Thus, it has to be one of the two cases. Thus, we showed
the following theorem.

Theorem 3.1. In case of G > Gb, the equilibrium of E∗
1 is unstable when

μ is near μ̄(G) and it is stable when μ is small. Furthermore, there exists a
μh = βC(Sh), where Sh satisfies (a1a2 − a3)(Sh) = 0, Sh ∈ (0, Sm), such that a
Hopf bifurcation occurs at μ = μh.

Numerical simulation is conducted to show the periodic solution in Figure 5
when r = 0.5, γ = 0.001, b = 0.1, p = 3.89, h = 0.1, eσ = 0.001, G = 3, β = 0.1

and μ = 0.27, μ = 0.28 and μ = 0.285, respectively.

3.3 The degenerated case of the interior equilibrium

At G = Gb and μ = βGb � μb, there is only one interior equilibrium Em, where
Em = (Am, Sm, Hm). At Em the Jacobian matrix is

JEm
=

⎛
⎜⎝

−p b 0

p −b −G

0 0 0

⎞
⎟⎠ , (19)
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which has a negative eigenvalue λ = −p − b and two zero eigenvalues. The
Jacobian matrix has the Jordan Canonical Form

J = Q−1JEmQ =

⎛
⎜⎝

−p− b 0 0

0 0 1

0 0 0

⎞
⎟⎠ , (20)

where

Q =

⎛
⎜⎝

Gp
(p+b)2 − bG

p+b
Gb(2p+b)
p(p+b)2

− Gp
(p+b)2 − Gp

p+b
Gp

(p+b)2

0 0 1

⎞
⎟⎠ , (21)

and

Q−1 =

⎛
⎜⎝

p+b
G − b(p+b)

Gp − b
p

− 1
G − 1

G
1
p

0 0 1

⎞
⎟⎠ . (22)

This implies that the equilibrium Em is a degenerated equilibrium, which may
be a Bogdanov-Takens cusp of codimension 2, because (i) when μ = βGb the two
possible interior equilibria E∗

1 and E∗
2 merge to one interior equilibrium Em, (ii)

the condition of G = Gb implies that Sm = Sb and further (a1a2−a3)(Sm) = 0,
which is the condition of Hopf bifurcation. This can be proved in the theorem.

Theorem 3.2. For (G,μ) = (Gb, μb), where μb = βGb, the 3D system (1) has
a Bogdanov-Takens cusp point of codimension 2 at Em = (Am, Sm, Hm).

Proof. To confirm the equilibrium Em could be a Bogdanov-Takens cusp of
codimension 2, we do the following transformations to convert the system to its
normal form.

First, translate the equilibrium Em to the origin by letting x1 = A − Am,
x2 = S − Sm, x3 = H −Hm. Then the system can be written as

Ẋ = JEm
X + F (X) +O(‖X‖3),

=

⎛
⎜⎝

−p b 0

p −b −G

0 0 0

⎞
⎟⎠X +

⎛
⎜⎝

− r
Kx2

1

− 1
2HmC ′′(Sm)x2

2
1
2βHmC ′′(Sm)x2

2

⎞
⎟⎠+O(‖X‖3),

where F (X) is second order terms.
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Next, let X = QY , i.e.

X = QY =

⎛
⎜⎝

Gp
(p+b)2 − bG

p+b
Gb(2p+b)
p(p+b)2

− Gp
(p+b)2 − Gp

p+b
Gp

(p+b)2

0 0 1

⎞
⎟⎠
⎛
⎜⎝

y1

y2

y3

⎞
⎟⎠ ,

=

⎛
⎜⎝

Gp
(p+b)2 y1 − bG

p+by2 +
Gb(2p+b)
p(p+b)2 y3

− Gp
(p+b)2 y1 − Gp

p+by2 +
Gp

(p+b)2 y3

y3

⎞
⎟⎠ ,

�

⎛
⎜⎝

q11y1 + q12y2 + q13y3

q21y1 + q22y2 + q23y3

y3

⎞
⎟⎠ .

Then substitute X = QY and Y = Q−1X, and we get

Ẏ = (Q−1JEmQ)Y +M(Y ) +O(‖Y ‖3),

=

⎛
⎜⎝

−p− b 0 0

0 0 1

0 0 0

⎞
⎟⎠Y +

⎛
⎜⎝

m11y
2
1 +m12y

2
2 +m13y

2
3 +m14y1y2 +m15y1y3 +m16y2y3

m21y
2
1 +m22y

2
2 +m23y

2
3 +m24y1y2 +m25y1y3 +m26y2y3

m31y
2
1 +m32y

2
2 +m33y

2
3 +m34y1y2 +m35y1y3 +m36y2y3

⎞
⎟⎠

+O(‖Y ‖3),

where M(Y ) = Q−1F (X) = Q−1F (QY ), and

Q−1F (X) =

⎛
⎜⎝

p+b
G − b(p+b)

Gp − b
p

− 1
G − 1

G
1
p

0 0 1

⎞
⎟⎠
⎛
⎜⎝

− r
Kx2

1

− 1
2HmC ′′(Sm)x2

2
1
2βHmC ′′(Sm)x2

2

⎞
⎟⎠ ,

=

⎛
⎜⎝

− (p+b)r
GK x2

1 +
1
2 (

b(p+b)HmC′′(Sm)
Gp − bβHmC′′(Sm)

p )x2
2

r
GKx2

1 +
1
2 (

HmC′′(Sm)
G + βHmC′′(Sm)

p )x2
2

1
2βHmC ′′(Sm)x2

2

⎞
⎟⎠ ,

�

⎛
⎜⎝

l11x
2
1 + l12x

2
2

l21x
2
1 + l22x

2
2

l31x
2
2

⎞
⎟⎠ ,
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M(Y ) = Q−1F (X) = Q−1F (QY ),

=

⎛
⎜⎝

l11(q11y1 + q12y2 + q13y3)
2 + l12(q21y1 + q22y2 + q23y3)

2

l21(q11y1 + q12y2 + q13y3)
2 + l22(q21y1 + q22y2 + q23y3)

2

l31(q21y1 + q22y2 + q23y3)
2

⎞
⎟⎠ ,

�

⎛
⎜⎝

m11y
2
1 +m12y

2
2 +m13y

2
3 +m14y1y2 +m15y1y3 +m16y2y3

m21y
2
1 +m22y

2
2 +m23y

2
3 +m24y1y2 +m25y1y3 +m26y2y3

m31y
2
1 +m32y

2
2 +m33y

2
3 +m34y1y2 +m35y1y3 +m36y2y3

⎞
⎟⎠ .

Further, use Center Manifold Theorem to reduce the system to its 2D center
manifold, WC(0) = {(y1, (y2, y3)) ∈ Rs×Rc | y1 = h(y2, y3)}, when (y1, y2, y3) is
in a small neighborhood of the equilibrium, where h(0, 0) = 0 and Dh(0, 0) = 0,
since h passes through the origin and is tangent to invariant subspace. Thus,
h(y2, y3) consists of second or higher order terms of (y2, y3). The system can be
written as ẏ1 = λy1 +G(y1, z), and ż = Cz + F (y1, z) , where z = (y2, y3).

Let h(z) = h(y2, y3) = ay22+by2y3+cy23+· · · , then Dh(y2, y3) = [2ay2+by3+

· · · , by2 +2cy3 + · · · ]. Then we differentiate both sides of y1 = h(z) = h(y2, y3)

and substitute the derivatives from the system in and we get λh(z)+G(h(z), z) =

Dh(z)(Cz+F (h(z), z)). By comparing the coefficients of the same order terms,
we can determine the coefficients in h(y2, y3). Compute

Dh(y2, y3)[

(
0 1

0 0

)(
y2

y3

)

+

(
m21(ay

2
2 + by2y3 + cy23)

2 +m22y
2
2 +m23y

2
3 +m24(ay

2
2 + by2y3 + cy23)y2

m31(ay
2
2 + by2y3 + cy23)

2 +m32y
2
2 +m33y

2
3 +m34(ay

2
2 + by2y3 + cy23)y2

+m25(ay
2
2 + by2y3 + cy23 + · · · )y3 +m26y2y3

+m35(ay
2
2 + by2y3 + cy23 + · · · )y3 +m36y2y3

)
+ · · ·

= 2ay2y3 + by23 + · · · ,

and

λh(y2, y3) + (m11(ay
2
2 + by2y3 + cy23)

2 +m12y
2
2 +m13y

2
3

+m14(ay
2
2 + by2y3 + cy23)y2 +m15(ay

2
2 + by2y3 + cy23 + · · · )y3 +m16y2y3)

= (λa+m12)y
2
2 + (λb+m16)y2y3 + (λc+m13) + · · · .

Comparing the above two equations, the coefficient of y22 implies 0 = λa+m12,
the coefficient of y2y3 implies 2a = λb +m16, and the coefficient of y23 implies
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b = λc +m13, where λ = −p − b is the negative eigenvalue. Solving for a, b, c,
we get

a = − 1

λ
m12,

b = − 2

λ2
m12 − 1

λ
m16,

c = − 2

λ3
m12 − 1

λ2
m16 − 1

λ
m13,

and

y1 = h(y2, y3) = − 1

λ
m12y

2
2−(

2

λ2
m12+

1

λ
m16)y2y3−(

2

λ3
m12+

1

λ2
m16+

1

λ
m13)y

2
3 .

(23)
On the center manifold WC(0), noticing that all terms containing y1 become
higher order terms after plugging y1 = h(y1, y2), we have reduced the 3D system
to 2D system as

(
ẏ2

ẏ3

)
=

(
0 1

0 0

)(
y2

y3

)
+

(
m22y

2
2 +m23y

2
3 +m26y2y3

m32y
2
2 +m33y

2
3 +m36y2y3

)
+O(‖Y ‖3).

By Remark 1 on Page 166 and Problem 1 on Page 167 of Perko’s Book, under
a near-identity transformation,

u = y2 +
1

2
(m26 +m33)y

2
2 , v = y3 −m22y

2
2 +m33y2y3 −m23y

2
3 ,

the 2D system can be reduced to the normal form

u̇ = v

v̇ = m32u
2 + (m36 + 2m22)uv +O(‖(u, v)‖3)

We can verify the coefficients m32 �= 0 and (m36 + 2m22) �= 0, thus the equilib-
rium is a cusp. Noticing that C ′′(Sm) < 0, then

m32 = l32q
2
22 =

1

2
βHmC ′′(Sm)(− Gp

p+ b
)2 < 0, (24)
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and

m36 = l31(2q22q23) =
1

2
βHmC ′′(Sm)(− Gp

p+ b
)(

Gp

(p+ b)2
),

= −βHmC ′′(Sm)
(Gp)2

(p+ b)3
> 0,

m22 = l21q
2
12 + l22q

2
22,

= (
γ

G
)(− bG

p+ b
)2 +

1

2
(
HmC ′′(Sm)

G
+

βHmC ′′(Sm)

p
)(− Gp

p+ b
)2,

= (
γ

G
)(

bG

p+ b
)2 +

1

2
(
HmC ′′(Sm)

G
+

βHmC ′′(Sm)

p
)(

Gp

p+ b
)2,

= (positive) + (negative),

so

m36 + 2m22 = −βHmC
′′
(Sm)

(Gp)2

(p + b)3
+

2γ

G
(

bG

p + b
)
2
+ (

HmC′′(Sm)

G
+

βHmC′′(Sm)

p
)(

Gp

p + b
)
2
,

=
2γ

G
(

bG

p + b
)
2
+ βHmC

′′
(Sm)(

Gp

p + b
)
2
(− 1

p + b
+

1

p
) +

HmC′′(Sm)

G
(

Gp

p + b
)
2
,

= (positive) + (negative) + (negative) �= 0,

if
1

γ
�= 2b2(p+ b)

p(βGb+ p2 + bp)Hm(−C ′′(Sm))
,

so if γ is small, then the equilibrium is a cusp of codimension 2. Thus, we have
proved the theorem.

4 Conclusion and future work

In this paper, we formulated a three dimensional ordinary differential equa-
tions model to describe the interaction of plant-herbivores with size structure
in plants. Our model includes two plant compartments, for adult plants and
seedlings respectively, and one herbivore population. The plant structure is
modeled explicitly with the effect of plant toxin jointly to study the interaction
of plants and herbivores, which has not been studied before in this way.

We validated the model and gave an global attractor of the model. Then we
investigated the rich dynamics of this model, including the stability of equilibria
and bifurcation analysis. The plant toxin measurement G and herbivore health
measurement μ were used as bifurcation parameters and varied in biological
ranges. A saddle-node bifurcation and a Hopf bifurcation were shown analyti-
cally. Furthermore, there is a Bogdanov-Takens cusp of codimension 2 identified
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at (Gb, μb). Thus, besides the Hopf bifurcation and the saddle-node bifurcation,
there is a homoclinic bifurcation as G and μ vary in the neighborhood of (Gb, μb).
The dynamics of this model exhibits the complex dynamics similar to the two
dimensional model studied in [17]. But the mathematical approach of this paper
is different from [17] because of the difficulty of the analysis of high dimensional
system. Hopf bifurcation theorems based on Routh-Hurwitz criterion were used
to show the bifurcating limit cycle. The center manifold theorem was used to
reduce the system to center manifold to study the degenerated equilibrium with
one negative eigenvalue and two zero eigenvalues. Then normal form theory was
employed to show the codimension 2 Bogdanov-Takens cusp.

To achieve full understanding the model, we would like to further to inves-
tigate the universal unfolding of the Bogdanov-Takens cusp to determine the
bifurcation curves for the homoclinic bifurcation. Moreover, this model and
the analysis done in this paper also serves as a preliminary step for the further
research on the spatial dispersal process of the seedlings and herbivores when
more space is available in the northern Alaska in the global warming process.
The setup and analysis of a reaction-diffusion model is of mathematical and
biological interests and will be our future study.
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