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Abstract

The azaspiracid toxin contaminated the harvest of the mussel, Mytilus edulis, off the coast of
Ireland in 1995. Investigation showed that the genus Protoperidinium, previously thought to be
harmless, was to blame for a new condition brought about by the azaspiracid toxin. To address
this concern, we use nonlinear ordinary differential equations to study the dynamics of two
dinoflagellate species, as well as their common predator. An asymmetric intraguild predation
model with a mutual predator is introduced, in which the toxin producing Protoperidinium
preys on the non-toxic Heterocapsa, while both ingest the nutrients available in the system and
are preyed upon by a higher predator. The equilibria were found and global and local stability
was determined. We then found the mode of coexistence of the system in an equilibrium. After
the initial analysis, we considered interventions, such as modifying nutrient flow, to reduce the
levels of the azaspiracid toxin and observe their effect on the persistence of the system.

1 Introduction

Mytulis edulis, more commonly known as the blue mussel, is an economically relevant resource
harvested by countries around the world. One noteworthy population can be found in Killary Har-
bour (located on the West coast of Ireland) where seasonal harvesting of M. edulis began in the
1980s. After over a decade of production that did not result in any cases of shellfish poisoning,
there was an outbreak of reported illnesses relating to the consumption of the mussels exported
from Killary Harbour to other European nations. First reported in November of 1995 in the Nether-
lands [9], only 8 cases of the illness were recorded [21]. The accompanying symptoms were nausea,
vomiting, severe diarrhea, and stomach cramps [9]. Unfortunately it is thought that numerous
cases of this poisoning were left unreported or improperly categorized due to the fact that many
people deduced that the affliction they were suffering from was either diarrheal shellfish poisoning
(DSP) or paralytic shellfish poisoning (PSP), which is caused by organisms belonging to Alexan-
drium spp. as well as Dinophysis spp. [9]. Further investigation revealed that this poisoning was
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not due to the toxins that lead to DSP or PSP, but rather a new toxin, azaspiracid [21]. Several
more confirmed reports of azaspiracid poisoning (AZP) soon followed, affecting twelve additional
individuals [9]. In total, dozens of cases were recorded in the years following the initial discovery
of AZP. The origin of this toxin was soon found to be generated by members of the genus Pro-
toperidinium, a group of dinoflagellate phytoplankton common to numerous areas of the world [9].
Fortunately, no cases of AZP have been known to cause death. However, evidence shows that toxic
phytoplankton blooms are increasing worldwide, likely due to climate change and human interac-
tion with the environment [9]. To protect human health and shellfish harvesters, it has become
critical to monitor phytoplankton blooms and to seek understanding of the life cycles and relation-
ships that exist between these microorganisms. Due to the discovery of this toxin, regulations have
been set in place to protect the consumer population from ingesting this harmful chemical [21].
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Figure 1: Protoperidinium cras-
sipes, a known producer of the aza-
spiracid toxin.

Since the discovery of this toxic trait of Protoperidinium,
this particular phytoplankton has been of great interest to biol-
ogists, ecologists, chemists, and mathematicians worldwide. In
light of this fact, much has been studied and determined about
species of Protoperidinium. Phytoplankton thrive in nitrogen
rich environments and grow by cell division. Though life spans
of phytoplankton tend to be very short (ranging from hours to
days), they are microorganisms that contribute significantly to
the food web as well as the process of moving nutrients from
the environment to higher predators [15]. Protoperidinium are
dinoflagellates that are primarily heterotrophic, requiring sus-
tenance from their environment. [10]. Though they are known
to feed predominately on diatoms and bacteria, in some in-
stances such as red tide events, they have been known to prey
on other dinoflagellates [9, 10]. Members of Protoperidinium
consume their prey by means of a pallium [12]. This is a tem-
porary projection from the cell which allows it to digest other
phytoplankton that could be of a wide size range.
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Figure 2: An example of a member
of the genus Heterocapsa.

One genus that Protoperidinium preys upon is Heterocapsa,
a medium sized dinoflagellate. The average size of Heterocapsa
is 1180 μm3, whereas its predator, Protoperidinium, averages
92,000 μm3 [17]. The Heterocapsa is mixotrophic, which means
it has the option of taking in nutrients from the environment
or using photosynthesis for energy or a combination of both.
Both of these species are distributed around the world and are
found mainly in coastal and estuarine waters [16]. In environ-
ments containing phytoplankton dinoflagellate species, many
types of zooplankton are often found [8]. Zooplankton are
generally larger than phytoplankton and prey on these smaller
organisms. Unlike their prey, zooplankton are unable to fix

their own nitrogen and require the presence of others to feed on. Though M. edulis also feeds on
the two phytoplankton previously mentioned, it is a filter feeder and is not selective when it chooses
its prey. For this reason we choose to focus on the relationship among our two dinoflagellate and
a more discerning predator to create an accurate representation of the population dynamics of a
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Figure 3: Chaetognath, more commonly known as the arrow worm.

selected area of the environment, namely Massachusetts’ Bay. For our model, we choose a specific
zooplankton, the Chaetognath, which reproduces sexually, has an average life span of three to six
months, and preys on both of our phytoplankton species [3].

Though the incident caused by this toxin began in Ireland, high volumes of Protoperidinium
have also been found in US coastal waters in recent years. Studies at Massachusetts Bay were
conducted from 1992 to 2007 in which concentrations of Protoperidinium were recorded. Due to
these findings, it is reasonable to expect that an event such as the one in Killary Harbour can also
occur in Massachusetts Bay [8]. The bay is located in an urbanized area of Massachusetts where
hundreds of millions of gallons of sewage are pumped daily. Since it is theorized that continuous
climate alteration as well as human activity, such as releasing sewage into the ocean, can increase
phytoplankton levels [9], it is evident that the analysis of these species within Massachusetts Bay
is meaningful.

Conclusive evidence that pollution is the cause of increasing toxic blooms is currently nonexis-
tent. In fact, there are many possible causes, including weather and ocean variability. Nonetheless,
there remains the possibility that human behavior may be increasing nutrient levels in coastal wa-
terways [8]. In the year 2000, the Massachusetts Water Resources Authority (MWRA) relocated
sewage treatment plant discharge from the Boston Harbor to a site approximately nine miles off-
shore in the Massachusetts Bay. An extensive study was conducted for several years leading up to
the relocation and for several years afterward in order to examine the impact of the relocation and
any resulting change upon the zooplankton and phytoplankton populations in the affected areas [8].
As a result of the 16 year MWRA study, we are fortunate to have extensive data concerning the
populations of planktons in the area. We incorporate this data in our model’s structure in order
to study the dynamics between toxin and non-toxin producing phytoplankton. From the analysis,
it would certainly be beneficial to find a control mechanism to decrease the ratio of toxin to non-
toxin producing phytoplankton. Although there has been no record of azaspiracid poisoning in the
Massachusetts Bay area, it has the necessary elements to allow this situation to occur. Therefore,
monitoring and investigation is critical.

While it may seem necessary to monitor the growth of only Protoperidinum, one must also
take into consideration the growth of its prey, Heterocapsa. Although Heterocapsa is non-toxic, the
conditions that have caused a dramatic increase in dense blooms worldwide are the same conditions
that have allowed a surge in toxic blooms. Research shows that altered nutrient levels are an
important factor lending to such algae proliferation [18]. Since nitrogen is a limiting nutrient
for algae [18], we consider that a possible control mechanism to decrease the toxin-producing
phytoplankton might be controlling oceanic nitrogen levels.
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2 Intraguild Predation

Predator prey, consumer resource, and competition models can be very useful for analyzing inter-
species dynamics. Although these models have proven helpful in numerous studies, most relation-
ships between species tend to contain vast complications. Trying to more articulately discuss the
interactions of an ecosystem brought about the idea of a new type of model known as intraguild
predation (IGP) [7]. Intraguild predation can be seen as one element of a very complex food web [7].
A guild is defined as a collection of species that takes advantage of the same class of environmental
resources in a similar way [1]. Since the analysis of food webs of entire ecosystems is impractical
(especially within the ocean), these smaller models that focus on one trophic level can reveal in-
formation not visible by others. The trophic level of any organism refers to the tier it occupies
in the food web. Intraguild predation models focus on competition and predator prey relations
within these trophic levels. Not only do they consider two species sharing the same resource, they
take into account that one of these species (IGpredator) can gain sustenance by eating the other
(intermediate species or IGprey) [7]. Another condition on the IGP model is that the IGpredator
be a less successful consumer on the basal resource than the IGprey. Similar to other population
models, intraguild predation can vary depending on species interactions. IGP models can highlight
changes in population that may not immediately be evident from other models, such as a sudden
decrease in an IGprey when a shared top predator outside the guild is eliminated. This is due to
the fact that the IGpredator is allowed to increase in abundance and is no longer held in check by
the top predator [7].

Studies that employ IGP models are increasing, and many of these combine the standard IGP
with other, more well known types of population dynamic models [2, 6, 7, 13]. When applied to a
competition Lotka-Volterra predator-prey model [7], complexity is significantly increased as com-
pared to the standard Lotka-Volterra predator-prey model. This increased complexity is common
in applications of IGP to models. The reason is easy to see as it adds another layer of interaction
between the competing species. It is generally very difficult to isolate coexistance between the IG-
predator and IGprey. There are hypotheses that integrating adaptive grazing techniques, such as
switching between food resources, could create stable states that are easier to isolate. Specifically,
they may create more opportunities for the IGprey to remain present in the model.

2.1 Symmetric Intraguild Predation

In some cases IGP occurs symmetrically, where two competing species both prey on each other as
well as their shared resource. This type of model is used frequently to determine the relationship
between native and invasive species [13]. When an invasive species is first introduced into an
environment, populations of organisms within the food web can be severely disrupted. Regarding
the non-native species, predation by a higher predator is usually lower than it is on the native
species occupying the same niche. This is due to the unfamiliarity of predators with this new type
of prey. When this occurs, the new species gains an advantage and can easily drive the native
predator to extinction. Studies and data show that coexistence depends greatly on the amount
of basal resource available [2]. Information such as this can aid our understanding of a more
complicated system, and lead us to notice in our model that the input of nutrients into the system
may have the greatest effect on the entire set of interactions.
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2.2 Asymmetric Intraguild Predation

An alternative to symmetric intraguild predation is asymmetric intraguild predation which deviates
from symmetric only slightly, but integrates much different dynamics. In this case, only one of the
predators can feed on the species that shares its trophic level and basal resource [19]. It is clear
that these dynamics may make it difficult to achieve a stable state in which all entities within the
system remain present. While more difficult to interpret, this model is a very accurate way to think
about the interactions that take place in food webs. Again, in this case it is possible to include a
higher predator that is of a different trophic level than the IGpredator and IGprey.

3 Mathematical Models of Asymmetric IGP

3.1 Use of IGP in Our Model

Protoperidinium and Heterocapsa compete for the same resources while also engaging in predator-
prey interactions; thus they participate in intraguild predation [7]. We also choose to include a
higher predator in our model, Chaetognatha a genus of zooplankton, to more accurately represent
the environment in which these phytoplankton exist. Because of this, we consider our model to
be an intraguild predation model (IGP), with the addition of a mutual predator. The motivation
to include a higher predator is the ability to keep the IGpredator in check since our model is
asymmetric. Furthermore, the fact that only one species preys on the other makes this asymmetric
intraguild predation [7]. According to Holt et al. [7], there are important requirements necessary
in order to maintain successful coexistence of the two IGP competing species. First, the prey
should have an advantage in competing for the shared resources. This is true in our system, since
in the presence of normal nitrogen levels, Heterocapsa is more efficient at nitrogen intake than
Protoperidinium [18]. Second, the predator should dramatically increase in population due to its
consumption of Heterocapsa [11]. Finally, it’s common in an IGP system to have selective predation
on the superior competitor by the top tier predator [11]. The final condition regarding selective
predation on Heterocapsa is not necessarily true in our case as Chaetognatha feeds by sensing
vibrations in the water, therefore it is more likely to eat larger prey, such as Protoperidinium. This
is discussed further in section 8.

3.2 Model Description

Our general model is a system of four ODEs. This model describes the dynamics of the populations
of two intermediate predator species, toxic phytoplankton (T ) and non-toxic phytoplankton (N),
as well as a shared resource, environmental nutrients (E). The model also includes zooplankton
as a top predator (Z), which preys on both N and T . As discussed above, we use an asymmetric
intraguild predation model (with the addition of a mutual predator) with T preying on N . This
model represents the intricate relationship of the three organisms and their basal resource. We also
include a constant inflow of nutrients and zooplankton, as well as an outflow.

5



We now present the general form of our model.

E′ = GE(E)−DE(E)− CN (E,N)− CT (E, T ) (1)

N ′ = c2CN (E,N)− PTN (T,N)− PZN (Z,N)−DN (N) (2)

T ′ = c1CT (E, T ) +m1PTN (T,N)− PZT (Z, T )−DT (T ) (3)

Z ′ = GZ(Z)−DZ(Z) +m3PZN (Z,N) +m2PZT (Z, T ) (4)

The system contains four equations that represent the change in nutrients (E′), non-toxic phyto-
plankton (N ′), toxic phytoplankton (T ′), and zooplankton (Z ′) over time. For our specific case
we consider a Holling Type 1 functional response for predation rate, which means the predator
consumption increases linearly and the predators do not get satiated. We choose to represent a
population’s size by their biomass. Therefore we need to include conversion factors to account for
biomass gained by consumption. Also, for our specific case we choose nitrogen as our nutrient. We
now take the general equation and include our parameters. A diagram of this system is shown in
Figure 4. By doing this, we generate a system of differential equations that we can use to examine
our asymmetric IGP in the presence of a mutual predator.

μZZ

eTN

b2ZN

λE

b1ZT

μEE

a1ET μNN

λZ

a2ENμTT

Figure 4: A representational diagram of the flow of energy from the basal resource to the top
predator. E, N , T , Z represent nutrients, non-toxic phytoplankton, toxic phytoplankton and
zooplankton, respectively.

E′ = λE − a1ET − a2EN − μEE (5)

N ′ = a2c2EN − b2ZN − eTN − μNN (6)

T ′ = a1c1ET +m1eTN − b1ZT − μTT (7)

Z ′ = λZ + b1m2TZ + b2m3NZ − μZZ (8)

The parameter λi represents the inflow of nitrogen or Chaetognatha. With μi, we represent the
outflow or natural death rate of the respective biomass. Parameter ai represents the consumption
rate of nitrogen by either of the phytoplankton species, while bi is the predation rate of Chaetognatha
on a particular photoplankton species. We use parameter e to express the predation rate from
Protoperidinium to Heterocapsa. Finally, both ci and mi are conversion factors which express how
one biomass is converted to another during a consumption or predation event.
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Table 1: Parameter values used in our model with their descriptions.

Parameter Description

λE/μE (inflow of E)(outflow of E)−1

λZ inflow of Z
a1 consumption by T on E
a2 consumption by N on E
b1 predation of Z on T
b2 predation of Z on N
e predation of T on N
c1 mass conversion of E to T
c2 mass conversion of E to N
m1 mass conversion of N to T
m2 mass conversion of T to Z
m3 mass conversion of N to Z
μN outflow of N
μT outflow of T
μZ outflow of Z

4 Analysis

To understand our system of equations we begin by identifying the various equilibria of the system
and determining their stability. We identify four types of equilibria when there are no phytoplank-
ton, when toxic phytoplankton is present and non-toxic is not, when non-toxic is present and toxic
is not, or when they are in coexistence.

4.1 Phytoplankton Free Equilibrium (PFE)

The PFE is (
E∗ =

λE

μE
, N∗ = 0, T ∗ = 0, Z∗ =

λZ

μZ

)

To determine the stability of the PFE, we calculate the Jacobian and evaluate it at the equi-
librium point. Two of the eigenvalues are always negative (−μZ and −μE). The other two are
negative when the following two inequalities hold:

a2c2E
∗ < μN + b2Z

∗: births of N are less than deaths of N (9)

a1c1E
∗ < μT + b1Z

∗: births of T are less than deaths of T (10)

The first inequality tells that the growth rate of non-toxic phytoplankton is smaller than its outflow
(μN ) combined with the predation of zooplankton. Similarly, the second inequality requires the
growth rate of toxic plankton to be lower than its natural death rate combined with the predation
of zooplankton. Furthermore, we can prove the global stability of the PFE.
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Figure 5: A visual representation of the stability conditions associated with the PFE. In parameter
space, the shaded region represents the conditions under which the PFE is stable.

Theorem 1. If the births of N are less than their deaths and the births of T are less than their
deaths at the PFE, then the PFE is globally asymptotically stable.

Proof. We first show E≤E∗. From equation (5) with N , T = 0, we get

E′ ≤ λE − μEE.

Rearranging and multiplying by the integral factor gives

etμEE′ + μEe
tμEE ≤ λEe

tμE ,

which is equivalent to ∫ t

0
(EetμE )′dt ≤

∫ t

0
λEe

tμEdt.

Now, taking the integral from 0 to t gives

EetμE − E0 ≤ λE

μE
(etμE − 1)

EetμE ≤
(
E0 − λE

μE

)
+

λE

μE
etμE .

Taking the limit as t → ∞:

lim
t→∞E ≤ λE

μE
+ lim

t→∞

(
E0 − λE

μE

)
e−μEt,
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which is E ≤ E∗.
By the same process we can show Z ≥ λZ

μZ
. Now we prove that N → 0 as t → ∞. From equation

(6), we obtain

N ′ ≤ N(a2c2E
∗ − Z∗b2 − μN ),

N ′ ≤ −βN,

where β = −a2c2E
∗ + Z∗b2 + μN ≥ 0 from equation (9). Again, multiplying by the integral factor

gives

N ′eβt + βNeβt ≤ 0∫ t

0

(
Neβt

)′
dt ≤

∫ t

0
0 dt.

Integrating from 0 to t, we have

Neβt −N0 ≤ 0

N ≤ N0e
−βt.

Taking the limit as t → ∞
0 ≤ N ≤ lim

t→∞N0e
−βt

It follows from the Squeeze Theorem that, N → 0 as t → ∞. Now we show that T → 0 as t → ∞.
From equation (7), we obtain

T ′ ≤ T (a1c1E
∗ − Z∗b1 − μT ),

T ′ ≤ −γT,

where γ = −a1c1E
∗ +Z∗b1 + μT ≥ 0 from equation (10). Again multiplying by the integral factor,

we get

T ′eγt + γTeγt ≤ 0,∫ t

0

(
Teγt

)′
dt ≤

∫ t

0
0 dt,

Integrating from 0 to t gives

Teγt − T0 ≤ 0

T ≤ T0e
−γt.

Taking the limit as t → ∞
0 ≤ T ≤ lim

t→∞Tt0e
−γt

It again follows from the Squeeze Theorem that, T → 0 as t → ∞.
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Next we show E → E∗ as t → ∞. E′ = λE − μEE − F (t)E, where F (t) = a1T + a2N . Since
N → 0 and T → 0, F (t) → 0. The limiting equation of E is

E′ = λE − μEE.

So, we can show E → E∗ as t → ∞.
The process to show Z → Z∗ as t → ∞ is the same as to show E → E∗ as t → ∞. Therefore the
PFE (E∗, 0, 0, Z∗) is globally asymptotically stable. �

4.2 Toxic Phytoplankton Free Equilibrium (TPFE)

Now we analyze the boundary equilibria obtained when the toxic species of phytoplankton is zero,
and the non-toxic is non-zero. The TPFE is given by

λE − a2EN − μEE = E′ = 0 (11)

a2c2E − b2Z − μN = N ′ = 0 (12)

T = T ′ = 0 (13)

λZ + b2m3NZ − μZZ = Z ′ = 0 (14)

We first solve equations (11) and (14) for E and Z, respectively to get

E∗
2 =

λE

a2N + μE
, (15)

Z∗
2 =

λZ

μZ − b2m3N
. (16)

Next we substitute equations (15) and (16) into equation (12). We then obtain the quadratic
equation

AN2 +BN + C = 0. (17)

where

A = μNa2b2m3 > 0,

B = b2m3μEμN − a2c2λEb2m3 − μNa2μZ − a2λZb2,

C = −μEμNμZ + a2c2λEμZ − μEλZb1 = μEμZ(−μN + a2c2
λE

μE
− b1

λZ

μZ
).

Using these substitutions and the quadratic formula we get

N∗
2 =

−B ±√
B2 − 4AC

2A
. (18)

Examining the definitions of A, B, and C, we see that A > 0 is always true. To have a single
positive toxic free boundary equilibrium we need C < 0, this is equivalent to

λE

μE
a2c2 < μN +

λZ

μZ
b1,
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which, in conjunction with T = 0 implies that the PFE is globally stable. Thus we consider C > 0
for the remainder of this discussion.
The Jacobian matrix of the system of equations (1-4) is

⎡
⎢⎢⎢⎢⎢⎣

−N∗
2a2 − T ∗

2 a1 − μE −a2E
∗
2 −a1E

∗
2 0

N∗
2a2c2 0 −N∗

2 e −N∗
2 b2

T ∗
2 a1c1 m1eT

∗
2 a1E

∗
2c1 +N∗

2 em1 − Z∗
2b1 − μT −T ∗

2 b1

0 Z∗
2b2m3 Z∗

2b1m2 N∗
2 b2m3 + b1m2, T

∗
2 − μZ

⎤
⎥⎥⎥⎥⎥⎦

Substituting T = 0, we get the following Jacobian

⎡
⎢⎢⎢⎢⎢⎣

−N∗
2a2 − μE −a2E

∗
2 −a1E

∗
2 0

N∗
2a2c2 0 −N∗

2 e −N∗
2 b2

0 0 a1E
∗
2c1 +N∗

2 em1 − Z∗
2b1 − μT 0

0 Z∗
2b2m3 Z∗

2b1m2 N∗
2 b2m3 − μZ

⎤
⎥⎥⎥⎥⎥⎦

We can see that there is only one nonzero element in the third row, so this is an eigenvalue:

λ1 = a1E
∗
2c1 +N∗

2 em1 − Z∗
2b1 − μT .

A condition for stability requires λ1 < 0, so

a1c1E
∗
2 + em1N

∗
2 − b1Z

∗
2 − μT < 0. (19)

Rearranging equation (19), we obtain

a1c1E
∗
2 + em1N

∗
2 < b1Z

∗
2 + μT ,

births of T < deaths of T.

In biological terms, this means that the birth rate due to consumption of nutrients and non-toxic
phytoplankton is smaller than the death rate due to predation by zooplankton and outflow. We
now reduce the matrix to a 3× 3 system.

⎡
⎢⎢⎣

−N∗
2a2 − μE −a2E

∗
2 0

N∗
2a2 c2 0 −N∗

2 b2

0 Z∗
2b2m3 N∗

2 b2m3 − μZ

⎤
⎥⎥⎦

We now obtain our remaining three eigenvalues from JTPFE . We proceed to use Routh-Hurwitz
criteria. Calculating the first Routh-Hurwitz parameter, which states that W1 = |JTPFE |must be
greater than zero to have stability, we obtain

W1 = (a2N
∗
2 + μE)(b2N

∗
2 )(b2m3Z

∗
2 ) + a2E

∗
2(a2c2N

∗
2 )(μZ − b2m3N

∗
2 )

Therefore, μZ − b2m3N
∗
2 > 0 implies W1 > 0.
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Moving on to the second Routh-Hurwitz criteria parameter W2 = -Tr(JTPFE), we obtain

W2 = a2N
∗
2 + μE + (μZ − b2m3N

∗
2 )

which must also be greater than zero for stability of the equilibrium point. If we assume the same
condition for stability as with W1, when μZ − b2m3N

∗
2 > 0, then W2 > 0. Thus we comply with

the requirements for this part of Routh-Hurwitz criteria.

For W3, the third parameter of Routh-Hurwitz criteria, we get

W3 = (a2E
∗
2)(a2c2N

∗
2 ) + (b2N

∗
2 )(b2m3Z

∗
2 ) + (a2N

∗
2 + μE)(μZ − b2m3N

∗
2 ) > 0

Therefore, if we assume the same condition for stability as with W1, where μZ − b2m3N
∗
2 > 0, then

W3 > 0, and we comply with the requirements for this part of Routh-Hurwitz criteria.

The fourth part of Routh-Hurwitz Criteria dictates that W2W3 > W1.

W2W3 = (a2N
∗
2+μE)(b2m3Z

∗
2 )(b2N

∗
2 )+(μZ−b2m3N

∗
2 )(a2E

∗
2)(a2c2N

∗
2 )+(a2N

∗
2+μE)[(a2E

∗
2)(a2c2N

∗
2 )+

(a2N
∗
2 + μE)(μZ − b2m3N

∗
2 )] + (μZ − b2m3N

∗
2 )[(b2N

∗
2 )(b2m3Z

∗
2 ) + (a2N

∗
2 + μE)(μZ − b2m3N

∗
2 )

We can see that if μZ − b2m3N
∗
2 > 0, then W2W3 = W1 +X, where X > 0. This implies that

W2W3 > W1. Therefore, we can conclude that if the conditions λ1 < 0 and μZ − b2m3N
∗
2 > 0 are

met, we will have a stable (TPFE) boundary equilibrium.

4.3 Non-Toxic Phytoplankton Free Equilibrium (NTPFE)

For the non-toxic phytoplankton population becoming extinct (N = 0), we have:

λE − a1ET − μEE = E′ = 0 (20)

N = N ′ = 0 (21)

a1c1E − b1Z − μT = T ′ = 0 (22)

λZ + b1m2TZ − μZZ = Z ′ = 0 (23)

We solve for E and Z using equations (20) and (23) to achieve

E∗
3 =

λE

a1T + μE
(24)

Z∗
3 =

λZ

μZ − b1m2T
(25)

Substituting the values for E and Z into equation (22), we obtain the quadratic equation

ATT
2 +BTT + CT = 0

where

AT = a1b1m2μT

BT = b1m2μEμT − a1b1c1m2λE − a1b1λZ − a1μTμZ

CT = a1c1μZλE − b1μEλZ − μEμTμZ = μEμZ(a1c1
λE

μE
− b1

λZ

μZ
− μT )

12



With these substitutions we get:

T ∗
3 =

−BT ±
√

BT
2 − 4ATCT

2AT

Similar to the T = 0 boundary equilibria, if CT < 0, then the discriminate is also greater than zero.
We would have two real solutions, one positive and one negative. Since CT < 0 implies:

λE

μE
a1c1 < μT +

λZ

μZ
b1

births of T < deaths of T.

Which guarantees that the PFE is globally stable since N = 0. We consider CT > 0 for the
remainder. Now, substituting T into equations (24) and (25)

E∗
3 =

λE

a1
−B±√

B2−4AC
2A + μE

Z∗
3 =

λZ

μZ − b1m2

(
−B±√

B2−4AC
2A

)

Theorem 2. Assume NTPFE exists. If μZ − b1m2T
∗
3 > 0 and λ1 < 0 then the NTPFE is locally

asymptotically stable.

See Appendix B for the accompanying proof.

4.4 Phytoplankton Coexistence Equilibria (PCE)

For the coexistence equilibria where all populations are greater than zero, we have to solve the
following equations:

λE − (a1T + a2N + μE)E = E′ = 0 (26)

a2c2E − b2Z − eT − μN = N ′ = 0 (27)

a1c1E +m1eN − b1Z − μT = T ′ = 0 (28)

λZ + (b1m2T + b2m3N − μZ)Z = Z ′ = 0 (29)

Explicitly, E is given by

λZ + (−A3
E +A1E +A2)[b1m2(AE −B(−A3

E +A1E +A2)− C) + b2m3(−DE + F (−A3
E +A1E +A2) +G)− μZ ] = 0 (30)

and N , T , Z are as follows

N∗
4 = G−DE + FZ (31)

T ∗
4 = AE −BZ − C (32)

Z∗
4 =

−A3

E
+A1E +A2, (33)

13



Where

A =
a2c2
e

B =
b2
e

C =
μN

e

D =
a1c1
m1e

F =
b1
m1e

G =
μT

m1e

and

A1 =
a1A− a2D

a1B − a2F

A2 =
μE + a2G− a1C

a1B − a2F

A3 =
λE

a1B − a2F

We consider two special cases that reduce this to a cubic equation in the Appendix. We found a
single stable coexistence equilibrium for our biologically informed parameters. Work is continued
numerically as further analytical attempts prove impracticle.

5 Simulation

We used simulation to explore different values for the parameters λE , μE , a1, a2, and e and to
observe the effects on the solution. For our case, we are most interested in the different results
gained when varying λE and μE , as these are parameters we have the ability to control. We begin
by showing time series results for non-extinction cases.

Table 2: Parameter values used for simulation.

Parameters λE/μE λZ μZ a1 a2 b1 b2 e c1 c2 m1 m2 m3 μN μT

Value 1.3924 0.75 0.7 1 1.3 0.34 0.1 0.5 60 78.125 0.3 0.1 0.1 1 0.9

Resource [4] est. est. est. [23] est. est. [5] [22] [22] [22] [20] [20] est. est. est.
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Figure 6: Time series of our model converging to an equilibrium in which every population is non-
zero. To generate the figure we consider the parameters in Table 2, the initial conditions E0 = 1,
N0 = 5, T0 = 5, and Z0 = 1 as well as λE = 0.5, μE = 0.3591 and e = 0.1.

In Figure 6 we see that both phytoplankton populations quickly jump to levels that are much
higher than their initial conditions. This is because the initial nitrogen concentration is relatively
high leading to explosive growth. After the exhaustion of resources the phytoplankton population
begins to fall. Toxic phytoplankton fall more slowly than non-toxic because the toxic phytoplankton
are able to feed on their non-toxic counterpart. As phytoplankton populations decline, zooplankton
grow to carrying capacity. Toxic phytoplankton die off down to their equilibrium state, and once
they are sufficiently low, the non-toxic phytoplankton are able to grow up to capacity.
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Figure 7: Time series of our model converging to an equilibrium in which the toxic population goes
to zero. To generate the figure we consider the parameters in Table 2, the initial conditions E0 = 1,
N0 = 5, T0 = 5, and Z0 = 1 as well as λE = 0.1, μE = 0.07182 and e = 0.1.

In Figure 7, we decrease the flow of nitrogen, which decreases the maximum density of plankton.
This also increases the competition over nitrogen. Since non-toxic phytoplankton outcompete toxic
phytoplankton in nitrogen intake, toxic phytoplankton are driven to extinction. Note that even
though non-toxic phytoplankton are the only phytoplankton in this case, the final density is less
than that of the coexistence case. This is simply due to the decreased amount of resources in the
environment.
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Figure 8: Time series of our model converging to an equilibrium in which the non-toxic population
goes to zero. To generate the figure we consider the parameters in Table 2, the initial conditions
E0 = 1, N0 = 5, T0 = 5, and Z0 = 1 as well as λE = 0.5, μE = 0.3591 and e = 0.2.

The beginning of Figure 8 is similar to that of Figure 6. However, the increased predation by
toxic phytoplankton on non-toxic phytoplankton causes the extinction of non-toxic phytoplankton
following the scarcity of nitrogen. Because of the lack of non-toxic phytoplankton the carrying
capacity of toxic phytoplankton is higher than in the coexistence case.
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Table 3: Bistable Phase Portrait Parameters
Parameters λE/μE λZ μZ a1 a2 b1 b2 e c1 c2 m1 m2 m3 μN μT

Estimate 1.3924 0.75 0.7 1 1.3 0.7 0.4 0.5 60 78 0.3 0.1 0.1 1 0.9

Resource [4] est. est. est. [23] est. est. [5] [22] [22] est. [20] [20] est. est. est.
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Figure 9: Phase Portrait for Coexistence: This figure was generated using the parameters in Table
3.

Figure (9) is the phase portrait of our model for a parameter set that is bistable. The two
stable equilibria are coexistence and toxic free conditions. Interestingly, the coexistence case has a
high portion of toxic phytoplankton. From these figures we can see that the equilibria the solution
converges to depends primarily on the density of zooplankton when toxic phytoplankton are near
extinction.
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Figure 10: Phase portrait for phytoplankton free equilibrium: non-toxic vs. toxic. This figure was
generated using random initial conditions and parameters that fit the stability conditions of the
PFE.

Our final simulation shown in Figure 10 demonstrates the global stability of the phytoplankton
free equilibrium. To obtain this figure we had to assume incredibly high levels of predation. This
demonstrates robustness in the phytoplankton population. Algal blooms take place in ways very
similar to the simulations we have conducted. They tend to grow very quickly and do not last long
before achieving a steady state in which side effects are not experienced.

6 Ratio of Protoperidinium to Total Phytoplankton

Since mussels are filter feeders, they do not discern their prey. By reducing the fraction of total
phytoplankton that are toxic, we will be reducing the amount of toxin that mussels consume.
Figures 11 through 13 demonstrate the effect on this ratio of nitrogen flow, nitrogen uptake by
toxic phytoplankton, intraguild predation, and the presence of a mutual predator. Figure 11 is
critical to our work as it shows a range in which nitrogen concentration is at a level that supports a
low toxic to non-toxic ratio. Notice that we reach a peak when λE is approximately 0.7, and then
declines above and below. This is likely due to the fluctuation of non-toxic phytoplankton in total
which affects the food source for the toxic phytoplankton. This shows that control of the ratio of
harmful phytoplankton can be carried out through the monitoring of nitrogen deposit (λE).
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Figure 11: The relationship between nitrogen flow (μE varies with λE) and the toxic to non-toxic
ratio.
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Figure 12: Comparison of the effect of toxic spp. nitrogen uptake rate (a1) vs. their predation on
the non-toxic spp. (e) and their effects on the ratio T
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Figure 13: Comparison of the effect of toxic spp. nitrogen uptake rate (a1) vs. their predation
on the non-toxic spp. (e) and their effects on the ratio T

N+T . In this case we do not consider the

effect from the zooplankton population and we see that the ratio T
N+T is much higher than when

zooplankton are considered.

This research was undertaken with the goal of finding out how we could reduce the ratio of
toxic spp. population in the total population of phytoplankton. With this end in mind we analyzed
our model, and studied how the parameters affect the ratio of interest. For this section, we will
consider the effect of parameters a1 (nitrogen uptake by the toxic Protoperidinium spp.) and e
(predation of toxic on non-toxic). Only coexistence equilibria are considered when studying how
these parameters affect the population ratio. Figures 12 and 13 only show points in which all
populations exist. By analyzing our graphs we can see that for the case in which zooplankton is
not considered, the ratio of toxic population to total phytoplankton population is much higher than
when zooplankton is considered. This is due to a higher predation rate on toxic phytoplankton
by zooplankton. Therefore, the toxic phytoplankton population is more strongly affected by the
higher predator.
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7 Uncertainty Analysis

To fully inspect the ratio of Protoperidinium to total phytoplankton
(

T
N+T

)
as we have set out

to do, uncertainty analysis is utilized to determine which of our parameters has the greatest effect
on this ratio. The greater the effect means the estimated values for these parameters are very
important, and should be calculated with as much accuracy as possible as they could alter results
dramatically.

We use the method of Latin Hypercube Sampling (LHS) to determine the effect our parameters
have on the ratio of Protoperidinium to total phytoplankton. LHS is a method that is especially
useful for our purposes, as we have a high amount of parameters. Compared to pure random
sampling, the method of LHS requires fewer sampling runs and still produces the same accuracy.
LHS is conducted by separating the parameter range into n sections, each with the same probability
of being chosen from. This is done to guarantee that the entire sampling area is explored. Samplings
for each variable are taken. They then produce output for the ratio by randomly mixing samplings
for each parameter value . The samplings as well as the output are then rank transformed to fit the
linear model [14]. From this, the partial rank correlation coefficient (PRCC) is calculated between
(−1, 1) and used to produce Figure 14.

a1 a2 b1 b2 e c1 c2 m1 m2 m3 ΜN ΜT ΜE ΛE ΜZ ΛZ
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Figure 14: Uncertainty analysis of the ratio T
N+T and the parameters of our system.

From our analysis and the given results in Figure 14 we see that the parameters a1, a2, b1,
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e, c1, c2, m1, m2, m3, and μN have the greatest effect on the ratio T
N+T . Recall these particular

parameters are dependent on the species we choose to model using our equations. Although the ratio
is not affected as significantly by λE as compared to the parameters listed above, we demonstrated
in Section 6 that variation of this parameter still affects the ratio enough to meet our purposes.

We now examine the meaning of Figure 14 in detail to understand how our parameters affect
the model and ratio of toxic to total phytoplankton. Notice in the figure that a1, e, c1, m1,
and μN are of the same sign, and that the sign is opposite of a2, b1, c2, m2, and m3. Notice
that the meaning of the parameters with positive PRCC are consumption of nutrients by toxic
phytoplankton, predation on non-toxic by toxic phytoplankton, mass conversion from nutrients
to toxic phytoplankton, mass conversion from non-toxic to toxic phytoplankton, and outflow of
non-toxic phytoplankton. It is no surprise that increasing these parameters would also increase
the ratio of toxic to total phytoplankton. This corresponds to the fact that the parameters with
positive PRCC increase the ratio.

Recall that the remaining parameters of significance, a2, b1, c2, m2, and m3 represent consump-
tion of nutrients by non-toxic phytoplankton, predation by the zooplankton on toxic phytoplankton,
mass conversion from nutrients to non-toxic phytoplankton, mass conversion of toxic phytoplankton
to zooplankton, and mass conversion from non-toxic to zooplankton, respectively. It is intuitive
that an increase in each of these parameters will simultaneously decrease the ratio as they will ei-
ther decrease the number of toxic phytoplankton in the system or increase the number of non-toxic
phytoplankton.

Our analysis suggests that our model could be used to show relationships between other species,
but exploring different species is beyond the scope of this project. It appears that this type of
sensitivity analysis would be most helpful in deciding either what direction to go in or what species
to look into as future research. Thus, we conclude that in order to reduce the ratio for the species
we chose and their associated parameter values, we should look at the remaining parameters that
we can alter, such as λE . This would allow us to better guess the interactions between different
species.

8 Discussion

Our goal was to study how to lower the ratio of toxic phytoplankton to total phytoplankton
in a coexisting environment. We found that mutual predation by a zooplankton spp., such as
Chaetognaths, has a greater detrimental effect on the toxic spp. Protoperidinium than on the non-
toxic spp. We attributed the fact that Chaetognaths reduces our ratio of interest to the fact that
it senses its prey by vibration. Since Protoperidinium is bigger than Heterocapsa it is easier to find
and predate upon. Therefore, we infer that the predation rate on Protoperidinium would be much
higher relative to that of Heterocapsa.

We also found that one of the most important parameters of our system was how efficient the
two phytoplankton types were at obtaining nitrogen from the environment. By varying the turnover
rate of nitrogen (λE

μE
), we could control the ratio of toxic to total phytoplankton in a coexisting

environment. For practical purposes, controlling the turnover rate is much more useful and feasible
than altering nitrogen consumption rates that vary mainly by species. For further work, studies
could include more in-depth work where nitrogen uptake and nitrogen turnover rate are concerned,
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as these are critical when considering the ratio. Our model would also be useful in examining other
species and environments to monitor effects on the ecosystem, human health, and economy.
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Appendix A

Proof of Theorem 2 We compute the Jacobian matrix of the system of equations (5)-(8) in order
to analyze the stability of the NTPFE equilibria.⎡

⎢⎢⎢⎢⎢⎣

−N∗
3a2 − T ∗

3 a1 − μE −a2E
∗
3 −a1E

∗
3 0

N∗
3a2 c2 F1 −N∗

3 e −N∗
3 b2

T ∗
3 a1 c1 m1 eT

∗
3 F2 −T ∗

3 b1

0 Z∗
3b2m3 Z∗

3b1m2 F3

⎤
⎥⎥⎥⎥⎥⎦

Where:

F1 = a2E
∗
3c2 − T ∗

3 e− Z∗
3b2 − μN

F2 = a1E
∗
3c1 +N∗

3 em1 − Z∗
3b1 − μT

F3 = N∗
3 b2m3 + b1m2 T

∗
3 − μZ

Next we evaluate this Jacobian matrix at our equilibrium point of (E∗
3 , N

∗
3 = 0, T ∗

3 , Z
∗
3 )⎡

⎢⎢⎢⎢⎢⎣

−T ∗
3 a1 − μE −a2E

∗
3 −a1E

∗
3 0

0 a2E
∗
3c2 − T ∗

3 e− Z∗
3b2 − μN 0 0

T ∗
3 a1 c1 m1 eT

∗
3 a1E

∗
3c1 +−Z∗

3b1 − μT −T ∗
3 b1

0 Z∗
3b2m3 Z∗

3b1m2 b1m2 T
∗
3 − μZ

⎤
⎥⎥⎥⎥⎥⎦

We can see that the item in the second row, second column position is the only nonzero element
in the second row. Therefore a2E

∗
3c2−T ∗

3 e−Z∗
3b2−μN is an eigenvalue and must be less than zero

in order to have a stable system. So we have one condition for stability at the NTPFE equilibrium
is

a2E
∗
3c2 < T ∗

3 e+ Z∗
3b2 + μN

In our 4 by 4 Jacobian, we can eliminate the second row and second column and reduce the Jacobian
to a 3 by 3 matrix. Also note that if we factor T out of equation (7), we have

(a1c1E
∗
3 − b1Z

∗
3 − μT )T

∗
3 = 0.
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Since T cannot be zero for the NTPFE case, a1c1E
∗
3 − b1Z

∗
3 − μT must be zero in order to insure

stability. So our reduced Jacobian is

⎡
⎢⎢⎣

−T ∗
3 a1 − μE −a1E

∗
3 0

T ∗
3 a1 c1 0 −T ∗

3 b1

0 Z∗
3b1m2 b1m2 T

∗
3 − μZ

⎤
⎥⎥⎦

To analyze the stability of this equilibrium point, we apply Routh-Hurwitz criterion to the 3
by 3 matrix.

W1 = −(det|Jacobian|) = −[(−a1T
∗
3 − μE)[(b1m2T

∗
3 b1Z

∗
3 )]− (−a1E

∗
3)(a1c1T

∗
3 )(b1m2T

∗
3 − μZ)]

One requirement for stability is W1 > 0, which is

(a1T
∗
3 + μE)(b1m2T

∗
3 b1Z

∗
3 ) + (a1E

∗
3)(a1c1T

∗
3 )(μZ − b1m2T

∗
3 ) > 0

We see that if μZ − b1m2T
∗
3 > 0, then W1 > 0. Therefore

μZ

b1m2
> T ∗

3 or
μZ

b1m2
>

−B ±√
B2 − 4AC

2A

Now we compute W2 = −Tr(Jacobian) = a1T
∗
3 + μE + (μZ − b1m2T

∗
3 ) > 0. If we assume

μZ − b1m2T
∗
3 > 0 as in the case for W1 > 0, then we have W2 > 0, and our second Routh-

Hurwitz criterion is met.

Next we compute W3, our third Routh-Hurwitz criterion, which dictates we must have W3 > 0
W3 > 0 is equivalent to (a1E

∗
3)(a1c1T

∗
3 )+(b1T

∗
3 )(b1m2Z

∗
3 )+(−a1T

∗
3 −μE)(b1m2T

∗
3 −μZ) > 0. This

is
(a1E

∗
3)(a1c1T

∗
3 ) + (b1T

∗
3 )(b1m2Z

∗
3 ) + (a1T

∗
3 + μE)(μZ − b1m2T

∗
3 ) > 0

Again, if μZ − b1m2T
∗
3 > 0, then W3 > 0.

Finally, we check W2W3 > W1.

W2W3 = (a1T
∗
3 + μE)(b1T

∗
3 )(b1m2Z

∗
3 ) + (μZ − b1m2T

∗
3 )(a1E

∗
3)(a1c1T

∗
3 )+

(a1T
∗
3 + μE [a1E

∗
3)(a1c1T

∗
3 ) + (a1T

∗
3 + μE)(μZ − b1m2T

∗
3 )]+

(μZ − b1m2T
∗
3 )[(b1T

∗
3 b1m2Z

∗
3 ) + (a1T

∗
3 + μZ − b1m2T

∗
3 )]

Once again we assume μZ − b1m2T
∗
3 > 0. Note that W2W3 = W1 +X where X =

(a1T
∗
3 + μE [a1E

∗
3)(a1c1T

∗
3 ) + (a1T

∗
3 + μE)(μZ − b1m2T

∗
3 )]+

(μZ − b1m2T
∗
3 )[(b1T

∗
3 b1m2Z

∗
3 ) + (a1T

∗
3 + μZ − b1m2T

∗
3 )]

W2W3 = W1 +X implies that W2W3 > W1. Therefore, we can conclude that if both condition
(1) (Eigenvalue λ1 < 0) and condition (2) μZ − b1m2T

∗
3 > 0 are met, then we will have a stable

(NTPFE) boundary equilibria.
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Appendix B

Special Cases From Section 4.4
We now explore the special cases

b2m3F − b1m2B = 0

A1 = 0

from the PCE. These cases were chosen because they can be used to reduce the quartic equation
of N to a cubic equation.

Case 1: b2m3F − b1m2B = 0
We now make the proper substitutions into our first case and arrive at:

b2m3

(
b1
m1e

)
− b1m2

(
b2
e

)
= 0

Reducing, we attain:
m1m2 = m3

which is equivalent to both

m1 =
m3

m2
m2 =

m3

m1

Examining this conclusion biologically yields interesting, but unrealistic results. It states that the
loss of nutrients when a zooplankton eats a non-toxic phytoplankton is greater than the loss from
non-toxic to toxic and toxic to zooplankton. Trophic efficiency is a clear counterargument to this
statement. Still, assuming this condition is true, we achieve the cubic equation:

U1E
3 + U2E

2 + U3E + U4

where

U1 = A1b1m2A−A1b2m3D

U2 = A1b2m3G−A1b1m2C −A1μz +A2b1m2A−A2b2m3D

U3 = λZ −A3b1m2A+A3b2m3D − b1m2A2C +A2b2m3G−A2μz

U4 = A3b1m2c−A3b2m3G+A3μz

Case 2: A1 = 0

Looking specifically at the term A1, we see that this is equivalent to:

a1a2c2
e

− a1a2c1
m1e

= 0

Simplification yields:

m1 =
c1
c2
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Biologically this case means that all nitrogen is retained when a toxic phytoplankton consumes a
non-toxic one. Again, this condition is unlikely. Similar to the first condition, we are left with a
cubic equation:

V1E
3 + V2E

2 + V3E + V4

where

V1 = b1m2AA2 − b2m3DA2

V2 = λz − b1m2AA3 + b2m3DA3 − b1m2B(A2)
2 − b1m2CA2 + b2m3F (A2)

2 + b2m3GA2 − μzA2

V3 = b1m2BA2A3 + b1m2CA3 − b2m3FA2A3 − b2m3GA3 + μzA3 + b1m2BA3A2 − b2m3A3FA2

V4 = b1m2B(A3)
2 − b2m3F (A3)

2
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