
Substance Abuse via Legally Prescribed Drugs: The Case of

Vicodin in the United States

Wendy K. Caldwell1, Benjamin Freedman2, Luke Settles3, Michael M. Thomas4,
Anarina Murillo5, Erika Camacho5,6, Stephen Wirkus5,6

1 Department of Mathematics, University of Tennessee-Knoxville, Knoxville, TN
2 Department of Mathematics, Bucknell University, Lewisburg, PA

3 Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, IL
4 Department of Mathematics and Statistics, Kennesaw State University, Kennesaw, GA

5 Mathematical, Computational, and Modeling Sciences Center, Arizona State University, Tempe, AZ
6 School of Mathematical and Natural Sciences, Arizona State University at West Campus, Glendale, AZ

Abstract

Vicodin is the most commonly prescribed pain reliever in the United States. Research in-
dicates that there are two million people who are currently abusing Vicodin, and the majority
of those who abuse Vicodin were initially exposed to it via prescription. Our goal is to deter-
mine the most effective strategies for reducing the overall population of Vicodin abusers. More
specifically, we focus on whether prevention methods aimed at educating doctors and patients on
the potential for drug abuse or treatment methods implemented after a person abuses Vicodin
will have a greater overall impact. We consider one linear and two non-linear compartmental
models in which medical users of Vicodin can transition into the abuser compartment or leave
the population by no longer taking the drug. Once Vicodin abusers, people can transition into a
treatment compartment, with the possibility of leaving the population through successful com-
pletion of treatment or of relapsing and re-entering the abusive compartment. The linear model
assumes no social interaction, while both non-linear models consider interaction. One considers
interaction with abusers affecting the relapse rate, while the other assumes both this and an
additional interaction between the number of abusers and the number of new prescriptions.
Sensitivity analyses are conducted varying the rates of success of these intervention methods
measured by the parameters to determine which strategy has the greatest impact on controlling
the population of Vicodin abusers. These results give insight into the most effective method
of reducing the number of people who abuse Vicodin. From these models, we determine that
manipulating parameters tied to prevention measures has a greater impact on reducing the pop-
ulation of abusers than manipulating parameters associated with treatment. We also note that
increasing the rate at which abusers seek treatment affects the population of abusers more than
the success rate of treatment itself.
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1 Introduction

Among medically accessible pain relievers, Vicodin is the most widely prescribed in the United
States [26]. Although it comprises 4% of the world’s population, the United States uses 99% of
the world’s supply of hydrocodone, the narcotic agent in Vicodin [21]. Vicodin is a Schedule III
narcotic and is a combination of hydrocodone, an opioid analgesic, and acetaminophen, the active
ingredient in Tylenol. The increase in prescriptions that has taken place in the last two decades has
resulted in a corresponding growth in Vicodin abuse [25]. Abuse rates increased from 7% in 1993
to 16% in 2003 [7]. Research indicates that the most common path to becoming a Vicodin abuser
begins with a prescription. Most abusers obtain the drug via prescription, whether it be their
own or a prescription of a friend or relative [15]. Vicodin abuse can cause a number of dangerous
side effects: liver failure, difficulty breathing, jaundice, slowed heart rate, seizures, and death [29].
Many prescribers of Vicodin are unaware of its potential for chemical and physical dependence [28].
Most abusers who initially start using Vicodin because of a doctor’s prescription are not informed
of the risks for drug dependence [8]. Although treatment methods and prevention programs exist,
they have varying success rates and ignore the shifting needs of the drug-abusing population as it
ages. Research indicates that treatment should be tailored to different demographics rather than
a one-size-fits-all approach [6].

In 1999, approximately 9 million Americans admitted to using prescription drugs for non-
medical reasons [21]. Consequently, population-level models for prescription drug abuse exist
[8,23,32]. Because Vicodin relapse dynamics are comparable to those in smoking tobacco as well as
some diseases, we are using the framework of an epidemiological model, considering the level and
means of Vicodin use for our compartments [27]. However, unlike many epidemiological models,
we do not consider social interaction necessary to entering or leaving the compartments. Because
most Vicodin abusers are introduced to the drug via prescription and not through experimentation
with other users, there is no assumed interaction between the medical user and abuser compart-
ments. Those who come to Vicodin through other means most frequently obtain the drug from
someone with a prescription, so the population of non-prescribed recreational users can be lessened
by decreasing the number of prescribed abusers [25].

Educating medical professionals has proven successful in limiting the number of Vicodin pre-
scriptions [28]. However, 40% of medical professionals indicated they had received no training on
the risks of Vicodin dependency. Abuse prevention measures focused on increasing education of
physicians, pharmacists, and the public have been generally neglected [21]. Education of physi-
cians regarding Vicodin abuse prevention has been neglected, and doctors and patients are often left
without necessary information to manage the risk of taking the drug. This information increases
the ability to recognize abuse and can aid in preventing its spread [20]. A study of pharmacists in
the United States and Canada indicated that nearly 90% of pharmacists had refused to fill a pre-
scription for a patient when there were concerns of drug abuse, and more than 75% had attempted
to contact the prescribing physician when they had such concerns [3]. A program implemented
in California to educate prescribers of Vicodin on the risks associated with the drug led to a 95%
decrease in the number of Vicodin prescriptions [28].

In the following sections, we develop three mechanistic mathematical models for a population
introduced to Vicodin by prescription and their dynamics and transition through the stages of
medical use, drug abuse, and treatment. We model relapse into the abuse compartment in two
ways: two non-linear models incorporating social interaction and one linear Compartmental Vi-

2



codin Transition (CVT) Model without it. In Section 2, we include the analysis of the CVT Model.
In Section 3, which contains the non-linear models, we consider the rate of entrance into the pop-
ulation as a constant through the Social Interaction with Constant Prescription Rate (SIC) Model
and also varying according to the population of Vicodin abusers through the Social Interaction with
Abuse-Dependent Prescription Rate (SIAD) Model. By analyzing three models addressing these
characteristics, we are able to better identify the main drivers of abuse and relapse and how to
better prevent their occurrences. We analyze the impact of our parameters and initial conditions
on the solutions and the impact of parameters on our steady-state system to determine whether
focusing on abuse prevention methods is treatment methods would be more effective in reducing
the number of Vicodin abusers in this population.

2 Compartmental Vicodin Transition Model

In this model, we consider a population of individuals initially prescribed Vicodin by a medical
professional and classify them according to level of Vicodin use. The first compartment, consisting
of acute medical users (M), is the one into which people immediately enter when prescribed the
narcotic. If the supply of Vicodin is only for up to three months, patients leave the population.
If not, they enter a chronic compartment (C1). They transition to the C2 compartment if they
continue to take Vicodin for medical reasons. If individuals in C2 begins taking the drug either
recreationally or in a manner inconsistent with the prescribed dosage, they become members of the
abuse compartment (A). Otherwise, if the patients stop taking Vicodin, they leave C2 and exit
the population. Once in the abusive compartment, individualsl can either remain there or seek
treatment [14, 35]. Individuals in the treatment compartment (T ) can either leave the population
through successful treatment or re-enter the A compartment through relapse. The model considers
a 40-month time period. Figure 1 shows the flow diagram for this model, along with associated
linear rates between compartments. The parameters are defined in Table 1, and the compartments
are described by equations (1) - (5). An in-depth explanation of parameter values can be found in
Appendix IV. For the purposes of this model, we assume 30 days represents one month.

We are able to obtain a lower bound of 0.00125%, derived from the number of people who used
prescription opioids for non-medical use, and an upper bound of 0.126%, derived from the number
of people who sought treatment for abuse [12]. We thus conclude that the number of abusers who
die from overdosing on Vicodin is not statistically significant and can be neglected for this model.
For an explanation of all parameters excluded from this model, see Appendix IV.

dM

dt
= Λ− (α1 + α2)M (1)

dC1

dt
= α1M − (δ + β)C1 (2)

dC2

dt
= δC1 − (δ + β)C2 (3)

dA

dt
= δC2 + γ1T − εA (4)

dT

dt
= εA− (γ1 + γ2)T (5)
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Figure 1: CVT Model. This figure shows the linear representation of a population of Vicodin patients as they transition
through chronic use, abuse, treatment, and possible relapse.

Table 1: Parameter Explanations

Parameter Definition Unit Value

Λ rate of new medical Vicodin users entering the population
people
month

[2671212, 3303044]

α1 rate of acute users becoming chronic users 1
month

[0.175, 0.240]

α2 rate of acute users ending Vicodin treatment 1
month

1.762α1 ≤ α2 ≤ 7.850α1

β rate of chronic users ending Vicodin treatment 1
month

0.205β ≤ δ ≤ 0.513β

δ rate of chronic users moving to next compartment 1
month

0.0862− β ≤ δ ≤ 0.256− β

ε rate of abusers entering treatment for Vicodin abuse 1
month

[.014,.042]

γ∗1 relapse rate (CVT Model) 1
month

[.046,.45]

γ2 successful treatment rate 1
month

[.038,.55]

*For both the SIC and SIAD Models, the units of γ1 change to 1

people×month
, where people is defined by the

population of the United States in recent years, and its value range is [1.26× 10−10, 1.50× 10−9]. Refer to Appendix
IV for derivations and references.
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Equation (1) calculates the population of the acute medical user compartment (M) by taking
the inflow of new acute medical users per month (Λ) and subtracting the population that exits M
per month (the M population multiplied by the sum of both exit rates, α1, and α2). Equation
(2) represents the population of the first chronic user compartment (C1). This is calculated by
taking the flow into C1, α1M , and subtracting the outflow, (δ + β)C1. Equation (3) represents
the population of C2 and is calculated by taking the flow into C2, δC1 and subtracting the flow
out of C2, (δ + β)C2. Equation (4) represents the population of the A compartment. This is
calculated by taking δC2 and γ1T , the entrances into A, and subtracting εA, the exit from A.
Finally, Equation (5) represents the T population. We calculate this by taking the entrance into
T , εA, and subtracting the exits from T , (γ1 + γ2)T .

In effort to understand the long-term dynamics of this system, we compute the equilibrium
point of the system, denoted (M∗, C∗

1 , C
∗
2 , A

∗, T ∗) and given by:

M∗ =
Λ

α1 + α2

C∗
1 = M∗

(
α1

δ + β

)

C∗
2 = C∗

1

(
δ

δ + β

)

A∗ = T ∗
(
γ1 + γ2

ε

)

T ∗ = C∗
2

(
δ

γ2

)

which is globally stable, meaning that regardless of parameter values and initial populations, the end
result over time is the equilibrium point (see Appendix I). The equilibrium point M∗ corresponds
to the carrying capacity of the acute medical user population. That is, the values of the acute user
compartment will reach the steady state (M∗) independent of the initial population size. Note,
the equilibrium of each of the other four classes is dependent on the carrying capacity, and the
steady state of each class is defined recursively in terms of the steady states of other classes by
multiplying by the entrance rate and the average waiting time in each compartment (i.e. α1

δ+β ).
This demonstrates the significance of the steady state in propagating through the long-run behavior
of the model, as long run behavior is determined by the long run behavior of other classes, and all
depend on the carrying capacity. M∗ is the ratio of new Vicodin patients to the rates at which
people leave the M compartment. Note that this ratio influences the magnitudes of all other steady
states. Therefore, M∗ is important to the overall size of the population.

2.1 Simulations of CVT Model

Figures 2-6 were created with initial conditions obtained from the Substance Abuse and Mental
Health Services Administration, Michael’s House, and TIME [1, 17, 34]. Initially, there are 37.6
million people in the acute compartment, 5.64 million in the first chronic compartment (C1), 3.76
million in the second chronic compartment (C2), 2 million in the abuser compartment (A), and
700,000 in the treatment compartment (T ) [1,17,34]. The values of the parameters are assumed to
remain constant over time because we do not consider exogenous perturbation that would change
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the parameters over time (see Table 1 for parameter definitions). Using the function ODE15 in
Matlab 2013a, we numerically estimate the number of people in our compartments over a course
of 40 months. This time frame is realistic for practical applications as it allows enough time for
the system to stabilize and provides a reasonable timeline for policy implementations and further
study.

Table 2: Simulation Parameter Values

Λ α1 α2 β δ ε γ1 γ2
Arbitrary 3000000 .220 .950 .140 .0500 .0300 .240 .293

Pessimist 3303044 .240 .423 .169 .0869 .014 .038 .0458

Optimist 2671212 .175 1.374 .213 .0436 .042 .45 .55

For parameter explanations, see Table 1.

Table 3: Simulation Initial Conditions

M0 C10 C20 A0 T0

37, 600, 000 5, 640, 000 3, 760, 000 2, 000, 000 700, 000

These are the initial coniditions used for all simulations. For parameter explanations, see Table 1.

The simulation curves in Figure 2 show a steep decrease in the number of acute users. This is
due to the exit rate of M being significantly greater than the exit rates of the other compartments,
which is consistent with the data [31]. It displays the populations of the respective compartments
over the course of 40 months. The population of compartment C1 experiences a spike to 9 million
people in the initial two months, but then decreases to 1 million in the following five months.
After 40 months, there are approximately 1.7 million abusers, a decrease of 300,000 from the inital
population. The model predicts that the Vicodin abuser population increases and exceeds that
of the other compartments after 10 months for the selected parameters. This is a fairly positive
outcome, because the sum of the three medical populations is greater than the abuse population.

Figure 3 assumes the worst case for parameter values, in which rates of transition into abuse
and into relapse are at their maximums. Thus, compared with the previous graph, Figure 3 has
a larger abuser population. This is noteworthy as it indicates the possibility of a large, steadily
increasing abuser population. At the end of the time interval, there are a predicted 8 million
individuals in the abuser compartment. Figures 2 and 4 have early small peaks in abuse followed
by slow decrease. Figure 3 shows no peak or decrease in the populaion of A, indicating a steady rise
in the population of abusers. There still fails to be a time in which the abuser population exceeds
the sum of the medical populations. This plot shows that there may be a need for a change in
Vicodin abuse prevention and/or treatment policy.

Figure 4 makes opposing assumptions to those of Figure 3. The parameters for movement
into the substance-abusing population (α1, δ , ε, γ1) are at their lower bounds, and parameters
for exiting the total population (β, α2, γ2) are high. The figure shows that the populations are
generally lower, and the abuse compartment decreases in population size. This is indicative of a
declining A population that eventually drops below the M population. This decrease is the result of
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Figure 2: CVT Model Simulation with Arbitrary Parameter Values. The plot above displays a 40-month period
with arbitrary parameters selected from the acceptable ranges according to data. It predicts that although the first 12 months
show a peak in the population of Vicodin abusers, the number of abusers decreases in the next 24 months.
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Figure 3: CVT Model Pessimistic Curve. This plot displays the scenario in which all of the parameters assume values
of the least desirable outcomes. In this case, the abuse population grows by a large degree, so it is necessary to enhance Vicodin
abuse prevention and treatment methods.
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Figure 4: CVT Model Optimistic Curve. The figure shows the behaviors of the populations of the compartments if all
of the parameters assume their most desirable values within our range. The population of users is kept to a minimum.

an elevated rate of exit from the abuser compartment. After approximately 10 months, the number
of abusers begins to decline, and after 30 months, it falls below the number of acute users (M).
This plot shows that our estimated parameter range includes a case in which abuse is declining, so
prevention or treatment may already be having a limited controlling effect.

The graph with arbitrary parameters predicts a decrease in Vicodin abuse over the next 40
months after increasing to a peak in 10 months. The most desirable set of parameters predicts a
similar result but sooner, reaching the peak around six months. The least desirable set of parameters
predicts an increase in abuse over 40 months.

2.2 Sensitivity Analysis of the CVT Model

Sensitivity analysis involves a numerical method of solving the adjoint equations to analyze the
influence of all parameters in the model in addition to examining the normalized sensitivity indices
of the equilibrium points of the system. Refer to Appendix VI for the derivation of the adjoint
equations. Specifically, we focus on how a small perturbation of each parameter influences the
population of the abuser compartment over time. The sensitivity of the parameters of the system
is illustrated in Figure 6. The normalized sensitivity of selected parameters of the equilibrium is
discussed in the next section.

The results from the sensitivity analyses enable us to measure the degree to which each of the
rates affects the number of abusers. From this information, we know which rates should be changed
in order to decrease the abuser population as much as possible. From this, we can determine the
most effective method (prevention, treatment, etc.) of controlling the abusers.
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2.3 Analysis of Normalized Sensitivity Indices of the CVT Model

Recall that A is the compartment of abusers, and we are interested in how treatment or prevention
affects this compartment. We consider reducing δ, the rate at which chronic patients become Vi-
codin abusers, as prevention and reducing γ1, the relapse rate, as indicative of successful treatment.
The parameter δ, the transition rate between C2 and A, is also the transition rate between C1 and
C2. For simplicity, we assume these two rates to be equal and give them the same corresponding
parameter (δ). This is an assumption that we make because we are concerned with the behavior of
A, and the division of the chronic classes is based on the length of time spent in the chronic class.
Additionally, β and γ2 are indicators of prevention and treatment, respectively. We analyze the
sensitivity of the equilibrium solution of abusers, A∗:

A∗ =

(
Λ

α1 + α2

)(
α1

δ + β

)(
δ

δ + β

)(
δ

γ2

)(
γ1 + γ2

ε

)
.

In finding the sensitivity of A∗ with respect to each parameter, we compute the partial derivative
of A∗ with respect to the parameter and divide that by the ratio of A∗ to the parameter. This

results in the value of the ratio,
% change in A∗

% change in the parameter
, or the elasticity of A∗ with respect

to each parameter. So for each percent change in a certain parameter, the percent change in
A∗ corresponds to the change in the parameter multiplied by this ratio of percent changes. We
select arbitrary values of percent change that we fluctuate parameters by in order to observe the
resulting percent change in A∗. These changes are standard through analysis of each parameter so
we can observe similarities and differences of each A∗ with regards to the same change in various
parameters.

Analyzing the percent change of A∗ with respect to the percent change in γ1:

∂A∗

∂γ1

γ1
A∗ =

γ1
γ1 + γ2

.

Analyzing the percent change of A∗ with respect to the percent change in γ2:

∂A∗

∂γ2

γ2
A∗ =

−γ1
γ1 + γ2

Examining the percent change of A∗ with respect to the percent change in δ:

∂A∗

∂δ

δ

A∗ =
2β

δ + β

Examining the percent change of A∗ with respect to the percent change in β:

∂A∗

∂β

β

A∗ =
−2β

δ + β

Analysis of ε, which is the rate at which abusers go to treatment, can determine if increasing ε
affects the A compartment. Thus, examining the percent change of A∗ with respect to the percent
change in ε:

∂A∗

∂ε

ε

A∗ = −1
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Analyzing the rate of percent change of A∗ with respect to the percent change in Λ, the rate of
new Vicodin-prescribed patients per month:

∂A∗

∂Λ

Λ

A∗ = 1

We first choose arbitrary values of our parameters from the estimated ranges in Table 1 (γ1 =
0.200, γ2 = 0.250, δ = 0.053, β = 0.150). The results are shown in Figure 5. Additional results can
be found in Appendix V. From Figure 5, we conclude that prevention (δ and β) affects A∗ more

Figure 5: Normalized Sensitivity Indices of CVT Model. The magnitude of these percentages measures the effect
of the indicated parameter on A∗. For tables of values of pertubations other than 10%, see Appendix V.

than the other parameters. The treatment parameters (γ1 and γ2) lead to a smaller percentage
change in A∗. A percent change in δ and β yields an even larger percent change in number of
abusers. For example, a 10% change in δ yields a 14.8% change in A∗ while a 10% change in γ1
yields a 4.44% change in A∗. Note that δ and β have the same magnitude of effect, as do γ1 and
γ2.

2.4 Adjoint Sensitivity Analysis of the CVT Model

We conduct sensitivity analysis of our parameters to determine those that have the greatest effect
on the population of the A compartment. We utilize an adjoint method for sensitivity analysis to
find the sensitivity equations needed, which yields the same result as forward sensitivity analysis
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(see Appendix III). Recall the system of equations of the CVT Model is:

dM

dt
= Λ− (α1 + α2)M

dC1

dt
= α1M − (δ + β)C1

dC2

dt
= δC1 − (δ + β)C2

dA

dt
= δC2 + γ1T − εA

dT

dt
= εA− (γ1 + γ2)T.

Let Ṁ denote dM
dt , Ċ1 denote dC1

dt , Ċ2 denote dC2
dt , Ȧ denote dA

dt , and Ṫ denote dT
dt . Using the

adjoint sensitivity method [4], we rewrite the system of ordinary differential equations:

�F (t, �x,�̇x, �p) =

⎡
⎢⎢⎢⎢⎢⎣

Ṁ − Λ + (α1 + α2)M

Ċ1 − α1M + (δ + β)C1

Ċ2 − δC1 + (δ + β)C2

Ȧ− δC2 − γ1T + εA

Ṫ − εA+ (γ1 + γ2)T

⎤
⎥⎥⎥⎥⎥⎦ = 05×1,

where �xT =
[
M C1 C2 A T

]
is the vector containing the different compartment populations

over time, and �x(0)T =
[
M(0) C1(0) C2(0) A(0) T (0)

]
is the vector containing the initial

population sizes of each compartment.
We define our parameter vector �p such that �pT =

[
Λ α1 α2 δ β ε γ1 γ2 u1 u2 u3 u4 u5

]
,

where ui for i=1,...,5 represents our initial condition parameters for which the sensitivity indices
will be computed. For the purpose of calculating the sensitivity of our solutions to our initial
conditions, we define

�y(0) =

⎡
⎢⎢⎢⎢⎣
M(0)(1− u1)
C1(0)(1− u2)
C2(0)(1− u3)
A(0)(1− u4)
T (0)(1− u5)

⎤
⎥⎥⎥⎥⎦ .

�y(0) is the vector that contains the ui (for i=1,...,5) percent change of the initial population sizes
of the compartments.

Because we want to minimize the population of abusers (A), we define the objective function

A(�x, �p) =
∫ T
0 g(�x, t, �p)dt =

∫ T
0 Ȧdt. We want to analyze this, because we are interested in how much

the abuser population (A) is affected by small changes in the parameters and the initial population
size of each compartment (�p).

Following the second step of the algorithm for computing the sensitivity equations (see Appendix
VI) [4], the adjoint is gx + λT (Fx − Ḟẋ)− λ̇TFẋ = 0, where:

• λ is the Lagrange multiplier, and λT =
[
λ1 λ2 λ3 λ4 λ5

]
11



• gx is the partial of A with respect to the population sizes of the compartments (�x):

gx = ∂Ȧ
∂�x =

[
∂Ȧ
∂M

∂Ȧ
∂C1

∂Ȧ
∂C2

∂Ȧ
∂A

∂Ȧ
∂T

]
=

[
0 0 δ −ε γ1

]
• Fx is the partial of our system of ODEs (F ) with respect to �x:

Fx =

⎡
⎢⎢⎢⎢⎣
(α1 + α2) 0 0 0 0

−α1 (δ + β) 0 0 0
0 −δ (δ + β) 0 0
0 0 −δ ε −γ1
0 0 0 −ε (γ1 + γ2)

⎤
⎥⎥⎥⎥⎦

• �̇x is the derivative of compartment vector (�x) with respect to time
(
�̇xT =

[
Ṁ Ċ1 Ċ2 Ȧ Ṫ

])
.

• Fẋ is the partial of our system of ODEs (F ) with respect to the �̇x:

Fẋ =

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

• Ḟẋ is the parital of the derivative of our ODE system (Ḟ ) with respect to �̇x and Ḟẋ = 05×5.

Now, solving for the λT (Fx − Ḟẋ) part of the adjoint, we note that Fx − Ḟẋ = Fx. Therefore,
multliplying the transpose of the Lagrange multiplier vector by the partial of our system of ODEs
with respect to the compartmental populations yields:
λTFx =

[
(α1 + α2)λ1 − α1λ2 (δ + β)λ2 − δλ3 (δ + β)λ3 − δλ4 ελ4 − ελ5 γ1λ4 + (γ1 + γ2)λ5

]
.

For the final section of the adjoint (λ̇TFẋ), the product of the transpose of the Lagrange
multiplier vector and the partial of our system of ODEs with respect to the derivative of the
compartmental populations is: λ̇TFẋ =

[
λ̇1 λ̇2 λ̇3 λ̇4 λ̇5

]
.

Combining the results from above, we obtain the adjoint equation:

(α1 + α2)λ1 − α1λ2 − λ̇1 = 0

(δ + β)λ2 − δλ3 − λ̇2 = 0

δ + (δ + β)λ3 − δλ4 − λ̇3 = 0

−ε+ ελ4 − ελ5 − λ̇4 = 0

γ1 − γ1λ4 + (γ1 + γ2)λ5 − λ̇5 = 0

with initial conditions λi(T)=0, for i = 1, ...,5.
Now, we simultaneously solve the initial value problem: F = 0,

�x(0)T =
[
M(0) C1(0) C2(0) A(0) T (0)

]
. Also, we solve the general sensitivity equation dA

dp =∫ T
0 (gp + λTFp)dt+ λTFẋ|t=0�y

−1
x(0) �yp, where:
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• gp is the partial of Ȧ with respect the the vector of parameters (�p):

gp =
[
0 0 0 C2 0 −A T 0 0 0 0 0 0

]
• Fp is the partial of our system of ODEs (F ) with respect to the the parameters (�p):

Fp =

⎡
⎢⎢⎢⎢⎣
−1 M M 0 0 0 0 0
0 −M 0 C1 C1 0 0 0
0 0 0 C2 − C1 C2 0 0 0 0
0 0 0 −C2 0 A −T 0 5× 5
0 0 0 0 0 −A T T

⎤
⎥⎥⎥⎥⎦.

• �yp is the partial of the percent change in initial compartment populations (�y) with respect to
the parameters (�p):

�yp =

⎡
⎢⎢⎢⎢⎣

−M(0) 0 0 0 0
0 −C1(0) 0 0 0

0 0 0 −C2 0 0
5× 8 0 0 0 −A(0) 0

0 0 0 0 −T (0)

⎤
⎥⎥⎥⎥⎦ .

• �y −1
x(0) is the inverse of the partial of the percent change in initial compartment populations (�y)

with respect to the initial population vector (�x(0)):

�yx(0) =

⎡
⎢⎢⎢⎢⎣
1− u1 0 0 0 0

0 1− u2 0 0 0
0 0 1− u3 0 0
0 0 0 1− u4 0
0 0 0 0 1− u5

⎤
⎥⎥⎥⎥⎦, �y −1

x(0) =

⎡
⎢⎢⎢⎢⎢⎣

1
1−u1

0 0 0 0

0 1
1−u2

0 0 0

0 0 1
1−u3

0 0

0 0 0 1
1−u4

0

0 0 0 0 1
1−u5

⎤
⎥⎥⎥⎥⎥⎦.

• All previously seen expressions (λT , Fẋ) have the same definitions from above.

Within the integrand of the general sensitivity equation, we have the product of the Lagrange
multiplier vector (λT ) and the partial derivative of our system of ODEs with respect to the the
parameters (Fp), which is:

λTFp =
[
v w

]
, where

v =
[−λ1 (λ1 − λ2)M λ1M (λ2 − λ3)C1 + (λ3 − λ4)C2

]
w =

[
λ2C1 + λ3C2 (λ4 − λ5)A (−λ4 + λ5)T

]
Multiplying the the Lagrange multiplier vector (λT ) by the partial of our system of ODEs with

respect to the derivative of the compartment vector with respect to time (Fẋ) with the inverse
of the partial of the percent change in initial compartment populations with respect to the ini-
tial population vector (�y −1

x(0)), and with the partial of the percent change in initial compartment

populations with respect to the parameters (�yp), we have:
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Fẋ|t=0�y
−1

x(0) �yp =

⎡
⎢⎢⎢⎢⎢⎢⎣

−M(0)
1−u1

0 0 0 0

0 −C1(0)
1−u2

0 0 0

0 0 0 −C2(0)
1−u3

0 0

5× 8 0 0 0 −A(0)
1−u4

0

0 0 0 0 −T (0)
1−u5

⎤
⎥⎥⎥⎥⎥⎥⎦
,

λTFẋ|t=0�y
−1

x(0) �yp =
[
0 0 0 0 0 0 0 0 −λ1

M(0)
1−u1

−λ2
C1(0)
1−u2

−λ3
C2(0)
1−u3

−λ4
A(0)
1−u4

−λ5
T (0)
1−u5

]
.

Thus, from dA
dp , we add gp and λTFp together within the integrand and then add λTFẋ|t=0�y

−1
x(0) �yp

outside of it. Now, we have the sensitivity equations:

∂A

∂Λ
=

∫ T

0
−λ1dt

∂A

∂α1
=

∫ T

0
(λ1 − λ2)Mdt

∂A

∂α2
=

∫ T

0
λ1Mdt

∂A

∂δ
=

∫ T

0
(λ2 − λ3)C1 + (λ3 − λ4 + 1)C2dt

∂A

∂β
=

∫ T

0
λ2C1 + λ3C2dt

∂A

∂ε
=

∫ T

0
(λ4 − λ5 − 1)Adt

∂A

∂γ1
=

∫ T

0
(−λ4 + λ5 + 1)Tdt

∂A

∂γ2
=

∫ T

0
λ5Tdt

∂A

∂u1
= −λ1

M(0)

1− u1
∂A

∂u2
= −λ2

C1(0)

1− u2
∂A

∂u3
= −λ3

C2(0)

1− u3
∂A

∂u4
= −λ4

A(0)

1− u4
∂A

∂u5
= −λ5

T (0)

1− u5
.

By varying the upper limit of integration, T, from [0, 60], we are able to get the sensitivity of
the population of the abusers (A) with respect to each parameter over the first 60 months using
MATLAB. See Figure 6.
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Figure 6: Sensitivity of the CVT Model. These figures illustrate the sensitivity indices (Λ
A

∂A
∂Λ

, etc.) and indicate the
degree to which the parameters are correlated to the number of people in A. The plots show that improvements in prevention
(decreasing δ and/or increasing β) and a higher intervention rate (increasing ε) have the greatest decreasing effect on the number
of people in the abuse compartment. In the bottom graph, the most influential initial population is the abuser compartment
(u4). (Note: in the top graph, α1

A
∂A
∂α1

and Λ
A

∂A
∂Λ

overlap after approximately 35 months; in the bottom graph, u1, u2, and u5

overlap; for initial conditions refer to Table 3)
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2.5 Results and Conclusions of the CVT Model

The sensitivity analysis allows us to observe the long-term behavior of the system, assuming no
interaction between compartments. We determine how influential each parameter is in affecting the
population of A over time and whether or not each parameter is positively or negatively correlated
with A. Figure 6 and 7 show that increasing abuse-prevention efforts (i.e., decreasing δ and/or
increasing β) is the strongest method for decreasing the number of people in the Vicodin abuser
compartment. At 60 months, the sensitivity indices are 0.9478 and -0.9160 for δ and β, respectively.
The intervention rate (ε) is the next most influential in reducing the population of A with a
sensitivity index of -0.6646. The initial value of A has a strong inverse relationship with the
number of abusers over time, as demonstrated in the lower portion of Figure 6. All other initial
conditions have a direct relationship, with C2 having the greatest influence among those. However,
the current populations of each compartment, which we take as our initial conidtions, are not
changeable. Introducing a non-linear model will enable us to observe social interaction, specifically
those in the A and T compartments, to determine if this impacts the population of A.

The parameters and initial conditions of the simulation curves of the CVT Model were derived
from data. However, there are some limitations to the curves themselves. For example, there is
a sharp decrease in the number of acute medical users (M) during the first few months of the
simulation. This is not the data suggests. In Figure 3, the population of the abuse compartment
outnumbers the other compartment populations. Recall that the total number of medical users is
the sum of M , C1, and C2. However, abusers do not actually outnumber medical users.
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Figure 7: Sensitivity Index Magnitudes Comparison for the CVT Model. This plot compares the magnitudes
of the sensitivity indices of the most influential parameters for the linear model from Figure 6. Starting with the strongest
influence on the size of the abuser compartment, we have the rate at which chronic users become abusers (δ), the rate at
which chronic users stop taking Vicodin (β), and the rate at which abusers enter treatment (ε). The sensitivity indices of the
initial conditions were not considered, because the current population values cannot be changed. The indices stabilize after
approximately 200 months.
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3 Non-linear Models

In order to address the fact that people in treatment are more prone to relapse in the event that
they come into contact with those who are still abusing Vicodin while in treatment, we introduce
two models with abuser-treatment interaction terms, a more realistic interpretation of the data.

3.1 Social Interaction with Constant Prescription Rate (SIC) Model

This model incorporates social interaction between the abusers (A) and those in treatment (T ).
We assume that those in the T compartment who interact with those in the A compartment are
more likely to re-enter the A compartment than those who do not interact, which is consistent with
the data. A new range for the parameter γ1 results from dividing γ1 from the CVT Model by the
population of the United States (300 million people). This new range is γ1 ∈ [1.26× 10−10, 1.50×
10−9]. This model is based on studies that show social interaction between abusers and those in
treatment hinders recovery and increases the chance for relapse [2, 5].

M C1 C2 A T 

Λ

α2 β γ2

γ1A
δ

ε

β

α1 δ

Figure 8: Social Interaction with Constant-Prescription Rate (SIC) Model. This figure shows a model with social
interaction between abusers (A) and those in treatment (T ).

The governing dynamics of this system are given by:

dM

dt
= Λ− (α1 + α2)M (6)

dC1

dt
= α1M − (δ + β)C1 (7)

dC2

dt
= δC1 − (δ + β)C2 (8)

dA

dt
= δC2 + γ1AT − εA (9)

dT

dt
= εA− γ1AT − γ2T . (10)

This model is identical to the CVT Model with the exception of the interaction-influenced
relapse rate. This term increases the accuracy of our model [5, 22].
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The equilibrium point, denoted (M∗, C∗
1 , C

∗
2 , A

∗, T ∗), is:

M∗ =
Λ

α1 + α2

C∗
1 = M∗

(
α1

δ + β

)

C∗
2 = C∗

1

(
δ

δ + β

)

A∗ =
γ2T

∗

ε− γ1T ∗

T ∗ = C∗
2

(
δ

γ2

)
.

Observe that A∗ is positive only when T ∗ < ε
γ1
. We are only interested in cases where A∗ is positive

because that is when it is biologically relevant.
Let γL be the rate of relapse from the CVT Model, and note that γ1 = γL

N , where N is the

population of the United States. This condition becomes γL
T ∗
N < ε. If the product of the relapse

rate from the CVT model and the proportion of Americans in treatment is less than the rate at
which abusers seek treatment, A∗ is biologically relevant.

To assess stability of the equilibrium point, we linearize the system by looking at the Jacobian,
the matrix of partial derivatives. If all eigenvalues of the Jacobian evaluated at the equilibrium
point are negative, the point is stable. The Jacobian of the SIC Model is:⎛

⎜⎜⎜⎜⎝
−(α1 + α2) 0 0 0 0

α1 −(δ + β) 0 0 0
0 δ −(δ + β) 0 0
0 0 δ γ1T − ε γ1A
0 0 0 ε− γ1T −γ1A− γ2

⎞
⎟⎟⎟⎟⎠ .

Given the block structure of this matrix, the first three eigenvalues are on the diagonal, and we
observe that they are all negative. Therefore, isolating the bottom right 2× 2 matrix, we have:

Y =

(
γ1T − ε γ1A
ε− γ1T −γ1A− γ2

)
.

In order to have stability, the trace of this matrix must be negative, and the determinant must
be positive, as follows:

Tr(Y) = γ1T − ε− γ1A− γ2 < 0,

Det(Y) = εγ2 − γ1γ2T > 0.

Substituting the equilibrium points into the trace and determinant yields:

Tr(Y) =

(
γ1δ

γ2

)
C∗
2 − ε− δγ1C

∗
2

ε−
(
δγ1
γ2

)
C∗
2

− γ2 < 0,

Det(Y) = εγ2 − δγ1C
∗
2 > 0.
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For Det(Y) > 0, we have,

ε− δγ1
γ2

C∗
2 = γ1

(
ε

γ1
− δ

γ2
C∗
2

)
= γ1(

ε

γ1
− T ∗) > 0.

Simplifying the condition on the determinant, we obtain:

δγ1C
∗
2 < εγ2

C∗
2 <

εγ2
δγ1

T ∗ <
ε

γ1
.

This is the same condition we had before for the existence of a biologically relevant A∗.
Simplifying the trace:

Figure 9: Plot of T ∗ vs. A∗. This shows that A∗ is positive when T ∗ < ε
γ1

. Note that the vertical asymptote occurs at

T ∗ = ε
γ1

where ε = 0.0300 and γ1 = 0.0000000008

Tr(Y) =

(
γ1δ

γ2

)
C∗
2

(
ε−

(
δγ1
γ2

)
C∗
2

)
− ε

(
ε−

(
δγ1
γ2

)
C∗
2

)
− δγ1C

∗
2 − γ2

(
ε−

(
δγ1
γ2

)
C∗
2

)

= −
((

γ1δ

γ2

)
C∗
2

)2

+ 2ε

(
γ1δ

γ2

)
C∗
2 − ε2 − εγ2

= −
((

γ1δ

γ2

)
C∗
2 − ε

)2

− εγ2 < 0.

Therefore, the trace is always negative, and the equilibrium point needs T ∗ < ε
γ1

in order to be
stable. When T ∗ > ε

γ1
, there is a saddle and a change in stability. Plotting A∗ vs. T ∗ in Figure

19



9, we see that to the left of T ∗ = ε
γ1
, we have A∗ > 0, and A∗ → ∞ as T ∗ → ε

γ1
. To the right

of T ∗ = ε
γ1
, we have A∗ < 0. The switch in stability appears at T ∗ = ε

γ1
, and we thus conclude

that we have a bifurcation at infinity. The population, however, is still bounded for T ∗ < ε
γ1

(see
Appendix II).

Setting parameters to values that fall within the realistic ranges yields a stable equilibrium.
When reviewing this model, the issue of a bifurcation at infinity when T ∗ = ε

γ1
and the observation

that A appears unbounded for T ∗ ≥ ε
γ1

point leads us to modify this non-linear model, as described
in the next section.

3.2 Social Interaction with Abuse-Dependent Prescription Rate (SIAD) Model

We consider a model that expresses the entrance rate of new Vicodin patients into the system as an
inverse function of the abuser population (A). A program in California indicates shows that when
prescribers are aware of the risks, the number of Vicodin prescriptions decreases by 95% [28]. With
this model, we determine how varying the flow of new Vicodin patients into the acute medical user
(M) compartment affects the total population of abusers (A) (see Figure 9).

M C1 C2 A T 

α2 β γ2

γ1A
δ

ε

β

α1 δ

Λ
1+ ρA

Figure 10: Social Interaction with Abuse-Dependent Prescription Rate (SIAD) Model. This model considers
Λ to be dependent on the population of the (A) compartment.

The governing equations of this non-linear system are given by:

dM

dt
=

Λ

1 + ρA
− (α1 + α2)M

dC1

dt
= α1M − (δ + β)C1

dC2

dt
= δC1 − (δ + β)C2

dA

dt
= γ1AT − εA+ δC2

dT

dt
= −γ1AT + εA− γ2T

The parameter ρ, which has unit 1
people

, determines the rate at which the entrance rate de-

creases with respect to the abuser population (A). When ρ is small, the system behaves similarly
to the SIC Model. When ρ is large, the entrance function decreases quickly.
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We analyze the stability of the equilibria of this system numerically.There are two equilibrium
points, one yields all positive values while the other yields all negative values. We know that there
is some type of unstable object between the two equilibrium points. We do not know what this is,
but we know it exists in dynamical theory. For our paramater ranges, both equilibria are stable;
however, only the positive equilibrium is bioligically relevant.
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Figure 11: Numerical Solutions of the SIAD Model. This plot illustrates the numerical solutions of the SIAD Model.
Note that this model has 500,000 fewer abuser after 40 months than in the SIC Model

3.3 Adjoint Sensitivity Analysis of the SIAD Model

We utilize the adjoint method for sensitivity analysis to examine this model [4]. We focus on small
perturbations of each parameter to determine the effect on the population of abusers (A). Figure 12
on page 26 demonstrates these findings. Recall the system of equations of the SIAD Model is:

dM

dt
=

Λ

1 + ρA
− (α1 + α2)M

dC1

dt
= α1M − (δ + β)C1

dC2

dt
= δC1 − (δ + β)C2

dA

dt
= δC2 + γ1AT − εA

dT

dt
= εA− γ1AT − γ2T.

Let Ṁ denote dM
dt , Ċ1 denote dC1

dt , Ċ2 denote dC2
dt , Ȧ denote dA

dt , and Ṫ denote dT
dt . Using the

adjoint sensitivity method [4], we rewrite the system of ordinary differential equations:
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F (t, �x,�̇x, �p) =

⎡
⎢⎢⎢⎢⎢⎣

Ṁ − Λ
1+ρA + (α1 + α2)M

Ċ1 − α1M + (δ + β)C1

Ċ2 − δC1 + (δ + β)C2

Ȧ− δC2 − γ1AT + εA

Ṫ − εA+ γ1AT + γ2T

⎤
⎥⎥⎥⎥⎥⎦ = 0,

where �xT =
[
M C1 C2 A T

]
is the vector containing the different compartment populations

over time, and �x(0)T =
[
M(0) C1(0) C2(0) A(0) T (0)

]
is the vector containing the initial

population sizes of each compartment.
We define our parameter vector �p such that �pT =

[
Λ ρ α1 α2 δ β ε γ1 γ2 u1 u2 u3 u4 u5

]
,

where ui for i=1,...,5 represents our initial condition parameters for which the sensitivity index is
computed. For the purpose of calculating the sensitivity of our solutions to our initial conditions,
we define

�y(0) =

⎡
⎢⎢⎢⎢⎣
M(0)(1− u1)
C1(0)(1− u2)
C2(0)(1− u3)
A(0)(1− u4)
T (0)(1− u5)

⎤
⎥⎥⎥⎥⎦.

�y(0) is the vector that contains the ui (for i=1,...,5) percent change of the initial population sizes
of the compartments.

Because we want to minimize the population of abusers (A), we define the objective function

A(�x, �p) =
∫ T
0 g(�x, t, �p)dt =

∫ T
0 Ȧdt. We analyze this because we are interested in how much the

abuser population (A) is affected by small changes in the parameters and the initial population of
each compartment (�p).

Following the second step of the algorithm for computing the sensitivity equations [4], the
adjoint is gx + λT (Fx − Ḟẋ)− λ̇TFẋ = 0, where:

• λ is the Lagrange multiplier, and λT =
[
λ1 λ2 λ3 λ4 λ5

]
.

• gx is the partial of A with respect to the population sizes of the compartments (�x):

gx = ∂Ȧ
∂�x =

[
∂Ȧ
∂M

∂Ȧ
∂C1

∂Ȧ
∂C2

∂Ȧ
∂A

∂Ȧ
∂T

]
=

[
0 0 δ γ1T − ε γ1A

]
.

• Fx is the partial of our system of ODEs (F ) with respect to �x

Fx =

⎡
⎢⎢⎢⎢⎢⎣

(α1 + α2) 0 0 ρΛ
(1+ρA)2

0

−α1 (δ + β) 0 0 0
0 −δ (δ + β) 0 0
0 0 −δ ε− γ1T −γ1A
0 0 0 γ1T − ε γ1A+ γ2

⎤
⎥⎥⎥⎥⎥⎦.

• �̇x is the derivative of the compartment vector (�x) with respect to time
(
�̇xT =

[
Ṁ Ċ1 Ċ2 Ȧ Ṫ

])
.

• Fẋ is the partial of our system of ODEs (F ) with respect to the �̇x:
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Fẋ =

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦.

• Ḟẋ is the partial of the derivative of our ODE system (Ḟ ) with respect to �̇x and Ḟẋ = 05×5.

Now, solving for the λT (Fx − Ḟẋ) part of the adjoint, we note that Fx − Ḟẋ = Fx. Therefore,
multliplying the transpose of the Lagrange multiplier vector by the partial of our system of ODEs
with respect to the compartmental populations yields λTFx =

[
v w

]
, where

v =
[
(α1 + α2)λ1 − α1λ2 (δ + β)λ2 − δλ3 (δ + β)λ3 − δλ4

]
w =

[
ρΛ

(1+ρA)2
λ1 + ε(λ4 − λ5) + Tγ1(λ5 − λ4) −γ1Aλ4 + (γ1A+ γ2)λ5

]
.

For the final section of the adjoint (λ̇TFẋ), the product of the transpose of the Lagrange
multiplier vector and the partial of our system of ODEs with respect to the derivative of the
compartmental populations is λ̇TFẋ =

[
λ̇1 λ̇2 λ̇3 λ̇4 λ̇5

]
.

Combining the results from above, we obtain the adjoint equation:

(α1 + α2)λ1 − α1λ2 − λ̇1 = 0

(δ + β)λ2 − δλ3 − λ̇2 = 0

δ + (δ + β)λ3 − δλ4 − λ̇3 = 0(
ρΛ

(1 + ρA)2

)
λ1 + (ε− γ1T )(λ4 − λ5 − 1)− λ̇4 = 0

γ1A(1− λ4) + (γ1A+ γ2)λ5 − λ̇5 = 0

with initial conditions λi(T)=0, for i = 1, ..., 5.
Now, we simultaneously solve the initial value problem: F = 0,

�x(0)T =
[
M(0) C1(0) C2(0) A(0) T (0)

]
. Also we solve the general sensitivity equation, dA

dp =∫ T
0 (gp + λTFp)dt+ λTFẋ|t=0�y

−1
x(0) �yp, where:

• gp is the partial of Ȧ with respect the the vector of parameters (�p)

gp =
[
0 0 0 0 C2 0 −A AT 0 0 0 0 0 0

]
.

• Fp is the partial of our system of ODEs (F ) with respect to the the parameters (�p):

Fp =

⎡
⎢⎢⎢⎢⎣
− 1

1+ρA
ΛA

(1+ρA)2
M M 0 0 0 0 0

0 0 −M 0 C1 C1 0 0 0
0 0 0 0 C2 − C1 C2 0 0 0 0
0 0 0 0 −C2 0 A −AT 0 5× 5
0 0 0 0 0 0 −A AT T

⎤
⎥⎥⎥⎥⎦.
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• �yp is the partial of the percent change in initial compartment populations (�y) with respect to
the parameters (�p):

�yp =

⎡
⎢⎢⎢⎢⎣

−M(0) 0 0 0 0
0 −C1(0) 0 0 0

0 0 0 −C2 0 0
5× 8 0 0 0 −A(0) 0

0 0 0 0 −T (0)

⎤
⎥⎥⎥⎥⎦.

• �y −1
x(0) is the inverse of the partial of the percent change in initial compartment populations (�y)

with respect to the initial population vector (�x(0)):

�yx(0) =

⎡
⎢⎢⎢⎢⎣
1− u1 0 0 0 0

0 1− u2 0 0 0
0 0 1− u3 0 0
0 0 0 1− u4 0
0 0 0 0 1− u5

⎤
⎥⎥⎥⎥⎦, �y −1

x(0) =

⎡
⎢⎢⎢⎢⎢⎣

1
1−u1

0 0 0 0

0 1
1−u2

0 0 0

0 0 1
1−u3

0 0

0 0 0 1
1−u4

0

0 0 0 0 1
1−u5

⎤
⎥⎥⎥⎥⎥⎦.

• All previously seen expressions (λT , Fẋ) have the same definitions from above.

Within the integrand of the general sensitivity equation, we have the product of the Lagrange
multiplier vector (λT ) and the partial derivative of our system of ODEs with respect to the the
parameters (Fp), which is:

λTFp =
[
v w

]
, where

v =
[
− λ1

1+ρA
λ1ΛA

(1+ρA)2
(λ1 − λ2)M λ1M (λ2 − λ3)C1 + (λ3 − λ4)C2

]
w =

[
λ2C1 + λ3C2 (λ4 − λ5)A (−λ4 + λ5)AT λ5T 0 0 0 0 0

]
.

Multiplying the the Lagrange multiplier vector (λT ) by the partial of our system of ODEs
with respect to the the derivative of the compartment vector with respect to time (Fẋ) with the
inverse of the partial of the percent change in initial compartment populations with respect to the
initial population vector (�y −1

x(0)), and with the partial of the percent change in initial compartment

populations with respect to the parameters (�yp), we have:

Fẋ|t=0�y
−1

x(0) �yp =

⎡
⎢⎢⎢⎢⎢⎢⎣

−M(0)
1−u1

0 0 0 0

0 −C1(0)
1−u2

0 0 0

0 0 0 −C2(0)
1−u3

0 0

5× 9 0 0 0 −A(0)
1−u4

0

0 0 0 0 −T (0)
1−u5

⎤
⎥⎥⎥⎥⎥⎥⎦
,

λTFẋ|t=0�y
−1

x(0) �yp =
[
0 0 0 0 0 0 0 0 0 −λ1

M(0)
1−u1

−λ2
C1(0)
1−u2

−λ3
C2(0)
1−u3

−λ4
A(0)
1−u4

−λ5
T (0)
1−u5

]
.

Thus, from dA
dp , we add gp and λTFp together within the integrand and then add λTFẋ|t=0�y

−1
x(0) �yp
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outside of it. Now we have the sensitivity equations:

∂A

∂Λ
=

∫ T

0
− λ1

1 + ρA
dt

∂A

∂ρ
=

∫ T

0

λΛA

(1 + ρA)2
dt

∂A

∂α1
=

∫ T

0
(λ1 − λ2)Mdt

∂A

∂α2
=

∫ T

0
λ1Mdt

∂A

∂δ
=

∫ T

0
(λ2 − λ3)C1 + (λ3 − λ4 + 1)C2dt

∂A

∂β
=

∫ T

0
λ2C1 + λ3C2dt

∂A

∂ε
=

∫ T

0
(λ4 − λ5 − 1)Adt

∂A

∂γ1
=

∫ T

0
(−λ4 + λ5 + 1)ATdt

∂A

∂γ2
=

∫ T

0
λ5Tdt

∂A

∂u1
= −λ1

M(0)

1− u1
∂A

∂u2
= −λ2

C1(0)

1− u2
∂A

∂u3
= −λ3

C2(0)

1− u3
∂A

∂u4
= −λ4

A(0)

1− u4
∂A

∂u5
= −λ5

T (0)

1− u5
.

By varying the upper limit of integration, T, from [0, 60], we are able to get the sensitivity of
the population of the abusers (A) with respect to each parameter over the first 60 months using
MATLAB. See Figure 12.

3.4 Results and Conclusions of SIAD Model

Figure 12 and 13 imply that the rate of transition to abuse from chronic medical use of Vicodin
(δ) has a strong positive correlation with the abuser population (A). Additionally, the rates of
movement from abuse to treatment (ε) and movement out of the population from chronic medical
use (β) have strong negative correlations. We conclude that the rate at which chronic medical users
of Vicodin become abusers has the greatest influence on the total number of abusers both initially
and as time progresses. The rate at which Vicodin abusers enter treatment has a strong inverse
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relation to the size of the abuser compartment. That is, increases in the rate of abusers seeking
treatment has a large impact on reducing the number of abusers. The rate at which chronic medical
users stop taking Vicodin has a stronger negative correlation than the rate at which abusers enter
treatment. Note that intially δ has the greatest influence on A, but after approximately 60 months,
the magnitudes of influence of ε and β near that of δ.

The initial sizes of the chronic medical user compartments (C2) have positive correlations
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Figure 12: Sensitivity of the SIAD Model. These figures illustrate the sensitivity indices (Λ
A

∂A
∂Λ

, etc.) and indicate
the degree to which the parameters affect the number of people in A. The top graph indicates that prevention rates (δ and β)
and the rate at which abusers seek treatment (ε) have the greatest influence on the size of the A compartment. The bottom
graph indicates that the initial size of the abuser compartment affects the number of abusers the most. (Note: in the top graph
α1
A

∂A
∂α1

and Λ
A

∂A
∂Λ

overlap and ρ
A

∂A
∂ρ

, γ1
A

∂A
∂γ1

, and γ2
A

∂A
∂γ2

are 0)

with the size of the abuser compartment (A). This makes sense in the context of our model,
because the only pathway to abuse is through chronic medical use of Vicodin. Additionally, all
other compartments, with the exception of the initial population of the abuser compartment, have
positive correlations with the size of the abuser population. This enables more people to have a
potential for drug abuse of Vicodin. The initial size of the abuser compartment has a negative
correlation because there is an inverse relationship between the number of abusers and the rate of
new Vicodin-prescribed patients. Thus, the larger the initial abuser compartment is, the smaller
the rate at which newly prescribed medical users enter the population. A large initial number of
Vicodin abusers causes a decrease in the abuser compartment.
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Figure 13: Sensitivity Index Magnitude Comparison for the SIAD Model. This plot compares the magnitudes
of the sensitivity indices of the most influential parameters for the SIAD Model from Figure 12. Starting with the strongest
influence on the size of the abuser compartment, we have the rate at which chronic users become abusers (δ), the rate at which
chronic users stop taking Vicodin (β), and the rate at which abusers enter treatment (ε). However, after 50 months have passed,
δ and β have the same influence on A. The sensitivity indices of the initial conditions were not considered, because the current
population values cannot be changed.

Analyzing the sensitivity of the SIAD Model, we determine that δ and β have the greatest
influence on the abuser population (A), while γ1 and γ2 have no influence. Because δ and β are
associated with prevention and γ1 and γ2 are associated with treatment, we conclude that improving
prevention is the most effective strategy for addressing the Vicodin abuse problem when considering
this model.

4 Results and Conclusions

The CVT model assumes no interaction between any compartmental populations. After conducting
the linear analysis, two additional models, one with a single non-linear term (SIC) and the other
with two (SIAD), were analyzed. Placing a dependence on the abusers (A) for the relapse rate
introduces a social aspect to the model. Thus, the number of people in the A compartment
increases, individuals in treatment have more contact with abusers and are more prone to relapse.
In the SIAD model, we introduce a second non-linear term, an inverse relationshipe between the
number of abusers and the number of new Vicodin patients. This suggests that as the abusive
compartment grows, doctors and/or patients become aware of this, and less Vicodin is prescribed.
These changes add more realistic dimensions to the model, as these social interactions do take
place and have an influence on the flow within the model. Conducting sensitivity analyses on these
models, we consider prevention to be the most effective method of controlling Vicodin abuse in a
population that considers only those who are initially given a prescription for the drug.

All three models all indicate that the parameters representing exits from population via the
chronic compartments (β) and entrance into the abuser compartment from C2 (δ) have the greatest
impact on the population of abusers (A). Relative to other factors, changes in treatment success

27



(γ2) and failure (γ1) have little effect on the number of Vicodin abusers. For example, the magnitude
of the sensitivity index for δ is nearly three times larger than that of γ1 in the CVT Model. In the
SIAD Model, the magnitudes of the sensitivity indices for δ and β are greater than in the CVT
model, while the indices for γ1 and γ2 are 0. This means that in the SIAD model, changes in rates
of relapse and successful treatment have no effect on the number of abusers. Additionally, in the
SIAD Model, the importance of intervention (displayed by our parameter connecting the abuser
compartment to the treatment compartment, ε) influences the number of abusers. In the short
term, δ has a greater impact on A, while in the long term, δ and β have similar influences. Because
both of δ and β are associated with prevention rather than treatment, we determine that whether
focusing on the short term or the long term, prevention measures are more effective and should be
the focus of controlling the Vicodin abuse problem.

Fluctuations in these prevention parameters have a more significant effect on the number of
abusers over time. More specifically, implementing prevention measures that lower the rate of
chronic medical users becoming abusers (δ) or that raise the rate at which chronic patients stop
taking Vicodin (β) lowers the abuser population (A) in a more significant manner than implementing
treatment programs to lower the relapse rate (γ1) and raise the successful treatment rate (γ2).

While these models give insight into the Vicodin abuse problem, limitations exist. Many of
our parameters are not independent. For example, the value of the relapse rate (γ1) depends upon
the successful treatment rate (γ2). For additional parameter value calculations, see Appendix IV.
In these analyses, we assume that only one parameter value varies at a time, which may not be
feasible. Additionally, the bifurcation at infinity in the SIC Model creates a situation in which the
model is difficult to analyze in a biologically relevant manner. Furthermore, the acute medical user
population (M) decreases dramatically in the first few months of each model, and that behavior
does not seem consistent with the data [9,12,18,24,32]. For the purposes of this model, we assume
parameters to be constant over time. It is likely, however, that these parameter values change over
time.

4.1 Future Work

Our models could be further adapted to include those Vicodin abusers who were not introduced
to the drug via prescription. Also, more non-linear terms depicting realistic interactions could give
better results, or parameter change over time could be considered instead of assuming constant
parameter values over time. Also, different restrictions could be placed on the models so that they
depict only certain demographics.

Another possible future research pathway is to consider an economic application. Cost analysis
could be incorporated in order to determine the most cost-effective method to reduce the population
of abusers. We could also model the flow of Vicodin pills from the manufacturer to abusers.
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Appendix I

To determine stability, we examine the eigenvalues of our system:
λ1 = −(α1 + α2)

λ3 = λ2 = −(δ + β)

λ4 =
−(ε+ γ1 + γ2) +

√
ε2 + 2(γ1 − γ2)ε+ (γ1 + γ2)2

2

λ5 =
−(ε+ γ1 + γ2)−

√
ε2 + 2(γ1 − γ2)ε+ (γ1 + γ2)2

2

Because α1, α2, β, δ are positive, λ1, λ2, λ3, and λ5 are negative. To verify that λ4 is negative, we
need:

(ε+ γ1 + γ2) >
√

ε2 + 2(γ1 − γ2)ε+ (γ1 + γ2)2

⇒ [(ε+ γ1 + γ2)]
2 > ε2 + 2(γ1 − γ2)ε+ (γ1 + γ2)

2

⇒ ε2 + 2(γ1 + γ2)ε+ (γ1 + γ2)
2 > ε2 + 2(γ1 − γ2)ε+ (γ1 + γ2)

2

⇒ 2(γ1 + γ2)ε > 2(γ1 − γ2)ε

⇒ γ1 + γ2 > γ1 − γ2

⇒ γ2 > −γ2

Because γ2 > 0, this statement is always true. Therefore, all eigenvalues are negative, indicating
global stability since the system is linear.

Appendix II

Claim: the total population N is bounded in the SIC Model for T ∗ < ε
γ1
.

Proof. If T ∗ < ε
γ1
, then the explicit solution to dA

dt , A(t) = s2 − s3e
−ρ3t − s4e

−ρ4t + ce(γ1T
∗−ε)t , is

of exponential order, which means that ∃ a constant ρ and positive constants t0 and W such that

e−ρt|A(t)| < W

for all t > t0 at which A(t) is defined.
For any ρ > 0 and ρ3 = δ + γ > 0, ρ4 = α1 + α2 > 0

lim
t→∞ e−ρtA(t) = lim

t→∞ e−ρt(s2 − s3e
−ρ3t − s4e

−ρ4t + ce(γ1T
∗−ε)t)

= lim
t→∞ s2e

−ρt − s3e
−t(ρ+ρ3) − s4e

−t(ρ+ρ4) + ce−t(ρ−(γ1T ∗−ε)))

= 0

where T ∗ < ε
γ1
. This means that there exists a W > 0 and t0 > 0 so that e−ρt|A(t)| < W for t > t0.

So A(t) is bounded.
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Let N(t) = M(t) + C1(t) + C2(t) +A(t) + T (t),

dN

dt
= Λ− (α2M + βC1 + βC2 + γ2T )

≤ Λ− (ᾱM + ᾱC1 + ᾱC2 + ᾱT )

where ᾱ = min(α2, β, γ2)

= Λ− ᾱ(M + C1 + C2 + T )

= Λ− ᾱ(N −A)

⇒ dN

dt
≤ Λ− ᾱ(N −A)

Using the integrating factor technique with factor eᾱt and exponential order property (11) we can
get a bound on N(t). Because we know dN

dt + ᾱN ≤ Λ− ᾱA, we have

eᾱt
dN

dt
+ ᾱeᾱtN ≤ (Λ− ᾱA)eᾱt

d

dt
[Neᾱt] ≤ (Λ− ᾱA)eᾱt∫

d

dt
[Neᾱt]dt ≤

∫
(Λ− ᾱA)eᾱtdt

Neᾱt ≤ Λ

ᾱ
eᾱt − ᾱ

∫
Aeᾱtdt

N ≤ Λ

ᾱ
− ᾱe−ᾱt

∫
Aeᾱtdt.

Because A(t) is of exponential order [33], as is any exponential function ( e−ᾱt is also of exponential
order), there exist W > 0 and t > t0 such that e−ρt|A(t)e−ᾱt| < W for all t > t0, where A(t) is
defined.

⇒ |A(t)e−ᾱt| < We−ρt for any ρ > 0

Let 0 < ρ < ᾱ. Thus,

N(t) ≤ Λ

ᾱ
+ ᾱe−ᾱt

∫
|A(t)eᾱt|dt

≤ Λ

ᾱ
+ ᾱe−ᾱt

∫
|Weρt|dt

=
Λ

ᾱ
+

ᾱ

ρ
e−ᾱteρt

In the limit as t → ∞, N∗ is bounded by Λ
ᾱ because e(−ᾱ+ρ)t → 0. Therefore, N(t) is constant if

T ∗ < ε
γ1

(and, in particular, limt→∞N(t) = Λ
ᾱ ).

Appendix III

Forward sensitivity analysis of this non-linear model would require simultaneous integration of
numerous equations. Adjoint sensitivity allows us to single out specific variables to analyze their
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sensitivities. Here we consider a simple SI model and show that forward sensitivity analysis and
adjoint sensitivity analysis yield the same result. The system of equations of the linear model is:

dS

dt
= Λ− αIS − μS

dI

dt
= αIS − μI

Forward Sensitivity Analysis for the SI Model

Utilizing the simple SI model, we calculate the forward sensitivity equations. They are:

∂S

∂Λ
= 1− α

∂I

∂Λ
S − αI

∂S

∂Λ
− μ

∂S

∂Λ
∂S

∂α
= −IS − α

∂I

∂α
S − αI

∂S

∂α
− μ

∂S

∂α
∂S

∂μ
= −α

∂I

∂μ
− αI

∂S

∂μ
− S − μ

∂S

∂μ

∂I

∂Λ
= α

∂I

∂Λ
S + αI

∂S

∂Λ
− μ

∂I

∂Λ
∂I

∂α
= IS + α

∂I

∂α
S + αI

∂S

∂α
− μ

∂I

∂α
∂I

∂μ
= α

∂I

∂μ
S + αI

∂S

∂μ
− I − μ

∂I

∂μ

∂S

∂u1
= −α

∂I

∂u1
S − αI

∂S

∂u1
− μ

∂S

∂u1
∂S

∂u2
= −α

∂I

∂u2
S − αI

∂S

∂u2
− μ

∂S

∂u2
∂I

∂u1
= α

∂I

∂u1
S + αI

∂S

∂u1
− μ

∂I

∂u1
∂I

∂u2
= α

∂I

∂u2
S + αI

∂S

∂u2
− μ

∂I

∂u2

Adjoint Sensitivity Analysis of the SI Model

Let Ṡ denote dS
dt and İ denote dI

dt . Using the adjoint sensitivity method [4], we rewrite the system
of ordinary differential equations:

F (t, �x,�̇x, �p) =

[
Ṡ − Λ + αIS + μS

İ − αIS + μI

]
= 0

where �xT =
[
S I

]
is the vector containing the different compartment populations over time, and

�x(0)T =
[
S(0) I(0)

]
is the vector containing the initial population sizes of each compartment.

We define our parameter vector �p such that �pT =
[
Λ α μ u1 u2

]
, where ui for i=1,2 represents

our initial condition parameters for which the sensitivity index will be computed. For the purpose
of calculating the sensitivity of our solutions to our initial conditions, we define
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�y(0) =

[
S(0)(1− u1)
I(0)(1− u2)

]
.

Therefore, �y(0) is the vector that contains the ui (for i=1,...,5) percent change of the initial popu-
lation sizes of the compartments.

Because we want to minimize the population of infected people (I), we define the objective

function I(�x, �p) =
∫ T
0 g(�x, t, �p)dt =

∫ T
0 İdt. We want to analyze this, because we are interested in

how much the infected population (I) is affected by small changes in the parameters and the initial
population size of each compartment (�p).

Following the second step of the algorithm for computing the sensitivity equations [4], the
adjoint is gx + λT (Fx − Ḟẋ)− λ̇TFẋ = 0 where:

• λ is the Lagrange multiplier, and λT =
[
λ1 λ2

]
• gx is the partial of I with respect to the population sizes of the compartments (�x)

gx = ∂İ
∂�x =

[
∂İ
∂S

∂İ
∂I

]
=

[
αI αS − μ

]
• Fx is the partial of our system of ODEs (F ) with respect to �x

Fx =

[
αI + μ αS
−αI −αS + μ

]

• �̇x is the derivative of compartment vector (�x) with respect to time
(
�̇xT =

[
Ṡ İ

])
.

• Fẋ is the partial of our system of ODEs (F ) with respect to the �̇x.

Fẋ =

[
1 0
0 1

]

• Ḟẋ is the parital of the derivative of our ODE system (Ḟ ) with respect to �̇x and Ḟẋ =

[
0 0
0 0

]

Now solving for the λT (Fx − Ḟẋ) part of the adjoint, we note that Fx − Ḟẋ = Fx. Therefore,
multliplying the transpose of the Lagrange multiplier vector by the partial of our system of ODEs
with respect to the compartmental populations yields:

λTFx =
[
(αI + μ)λ1 − αIλ2 αSλ1 + (−αS + μ)λ2

]
.

For the final section of the adjoint (λ̇TFẋ), the product of the transpose of the Lagrange multiplier
vector and the partial of our system of ODEs with respect to the derivative of the compartmental
populations is: λ̇TFẋ =

[
λ̇1 λ̇1

]
Combining the results from above we obtain the adjoint equation:

αI + (αI + μ)λ1 − αIλ2 − λ̇1 = 0

αS − μ+ αSλ1 + (−αS + μ)λ2 − λ̇2 = 0
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where the initial conditions are λ1(T ) = 0 and λ2(T ) = 0.
Now, we simultaneously solve the initial value problem: F = 0, �x(0)T =

[
S(0) I(0)

]
. In order

to find our sensitivity equations, we solve for dI
dp =

∫ T
0 (gp + λTFp)dt+ λTFẋ|t=0�y

−1
x(0) �yp, where:

• gp is the partial of I with respect the the vector of parameters (�p)

gp =
[
0 IS −I 0 0

]
• Fp is the partial of our system of ODEs (F ) with respect to the the parameters (�p)

Fp =

[−1 IS S 0 0
0 −IS I 0 0

]

• �yp is the partial of the percent change in initial compartment populations (�y) with respect to
the parameters (�p)

�yp =

[
0 0 0 −S(0) 0
0 0 0 0 −I(0)

]

• �y −1
x(0) is the inverse of the partial of the percent change in initial compartment populations (�y)

with respect to the initial population vector (�x(0))

�yx(0) =

[
1− u1 0

0 1− u2

]
, �y −1

x(0) =

[ 1
1−u1

0

0 1
1−u2

]

• All previously seen expressions (λT , Fẋ) have the same definitions from above.

Within the integrand we have the product of the Lagrange multiplier vector (λT ) and the partial
of our system of ODEs with respect to the the parameters (Fp), which comes to be:

λTFp =
[−λ1 (λ1 − λ2)IS λ1S + λ2I 0 0

]
Multiplying the the Lagrange multiplier vector (λT ) with the partial of our system of ODEs

with respect to the the derivative of the compartment vector with respect to time (Fẋ) with the
inverse of the partial of the percent change in initial compartment populations with respect to the
initial population vector (�y −1

x(0)), and with the partial of the percent change in initial compartment

populations with respect to the parameters (�yp), we have:

Fẋ|t=0�y
−1

x(0) �yp =

[
0 0 0 −S(0)

1−u1
0

0 0 0 0 −I(0)
1−u2

]
,

λTFẋ|t=0�y
−1

x(0) �yp =
[
0 0 0 −λ1

S(0)
1−u1

−λ2
I(0)
1−u2

]
.

Thus, from dI
dp we add gp and λTFp together within the integrand and then add λTFẋ|t=0�y

−1
x(0) �yp

outside of it:
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dI
dp =

∫ T

0

[ [
0 IS −I 0 0

]
+
[−λ1 (λ1 − λ2)IS λ1S + λ2I 0 0

]] dt+ [
0 0 0 −λ1

S(0)
1−u1

−λ2
I(0)
1−u2

]

Now we have the sensitivity equations:

∂I

∂Λ
=

∫ T

0
−λ1dt

∂I

∂α
=

∫ T

0
(1 + λ1 − λ2)ISdt

∂I

∂μ
=

∫ T

0
λ1S + (λ2 − 1)Idt

∂I

∂u1
= −λ1

S(0)

1− u1
∂I

∂u2
= −λ2

I(0)

1− u2

Comparison of Forward Sensitivity and Adjoint Sensitivity

Using MATLAB to analyze the sensitivities numerically, we were able to show that both types
of sensitivity analyses outlined above produced the same results for this simple system. In our
five-dimensional models, it would be necessary to consider many more equations for the forward
sensitivity analysis than for the adjoint method. Therefore, we will use the adjoint method for
analyzing the sensitivity of both the CVT Model and the SIAD Model.

Appendix IV

Estimation of Parameters
This section contains information on how we obtained acceptable ranges for our parameter values.

Estimation of Λ

We calculate Λ, the number of people receiving new prescriptions per month, by taking the new
percentage (43%) of the yearly total of Vicodin prescriptions [13, 36] and dividing by the average
supply per person, which ranges from 42.7 to 52.8 days [31]. Then adjusting all of this to fit the
time unit of one month, and we arrive at:

2, 671, 212 ≤ Λ ≤ 3, 303, 044

Estimation of α1 and α2

Recall that both α1 and α2 have unit (1/month). In the models, α1 is the rate at which acute
medical users of Vicodin become chronic medical users, and α2 is the rate at which acute medical
users stop taking Vicodin. The average waiting time for a person in this compartment is 1

α1+α2
≤

3, based on our definition of the acute medical users being supplied ≤ 90 days of Vicodin, the
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average wait time is less than or equal to 3 months. We use other data and estimations to get
a better approximation of the average waiting time. Comparing multiple studies, the average
percentage of all opioid patients who have been supplied less than three months is between 63.8%
and 88.7% [31]. In the model, the probability of an acute medical user no longer needing Vicodin
is α2

α1+α2
. Therefore, 0.638 ≤ α2

α1+α2
≤ 0.887. Through algebraic manipulation, we have:

0.638(α1 + α2) ≤ α2 ≤ 0.339(α1 + α2).

Solving for each side of the inequality, we have:

0.638α1 + 0.638α2 ≤ α2 and α2 ≤ 0.887α1 + 0.887α2

0.638α1 ≤ 0.362α2 and 0.113α2 ≤ 0.887α2

1.762α1 ≤ α2 ≤ 7.850α1

Now we need to consider what the average waiting time is in the acute compartment using
these ratios. The percentage of acute medical users who have a one-month supply or less of opioids
is between 72.9% and 88.4% [31]. Thus, in order to estimate the upper bound of the waiting time,
we use the smallest percentage of acute users and the smallest percentage of less than one month
supplied. Note that chronic users are passing through M , so those patients are in the compartment
for the full three months. We assume that the acute users who have more than a one-month supply
have a three-month supply.

0.638(0.729)(1) + 0.638(0.271)(3) + 0.362(3) = 2.070

Therefore, 1
α1+α2

≤ 2.070, which yields 0.175 ≤ α1 when 1.762α1 ≤ α2.
Next, we get a lower bound on the average waiting time. To do so, we use the largest percentage

of acute users and the largest percentage of acute patients with less than one month supplied. We
assume those with less than one month supplied received only a one-day supply of Vicodin and
those with more than one month supplied received 31 days. The users who become chronic medical
users will be in the compartment for 90 days.

0.887(0.884)(1) + 0.887(0.116)(31) + 0.113(90) = 14.14,

and we divide by 30 to get 0.471 months. Thus, 0.471 ≤ 1
α1+α2

. This gives α1 ≤ 0.240 when
α2 ≤ 7.850α1. Therefore, we have the following system of inequalities:

0.175 ≤ α1 ≤ 0.240

1.762α1 ≤ α2 ≤ 7.850α1

Realistic parameter estimations for α1 and α2 lie within the shaded area of Figure 14. Starting
with the highest intersection point and moving around clockwise, the intersection points are (0.240,
1.884), (0.240, 0.423), (0.175, 0.308), and (0.175, 1.374).

Estimation of δ and β

In the models, δ (1/month) is the rate at which chronic medical users become abusers, and β
(1/month) is the rate at which chronic medical users stop using Vicodin. Data suggests that the
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Figure 14: α1 and α2 Values. The shaded region indicates the acceptable range of α1 and α2 values.

average opioid exposure time for chronic pain patients ranges between 10.8 and 26.2 months [11].
Because these patients will have spent three months as acute patients in the M compartment, the
average time in the chronic compartments will be 7.8 to 23.2 months. Therefore, 7.8 ≤ 2

δ+β ≤ 23.2.
From this inequality, we obtain δ ≤ .256− β and δ ≥ .0862− β.

Additionally, the percentage of chronic opioid patients who develop abuse ranges from 2.9% to

11.5% [9, 11]. In the model, the probability of chronic medical users becoming abusers is
(

δ
δ+β

)2
.

Thus, 0.029 ≤
(

δ
δ+β

)2 ≤ 0.115. Through algebraic manipulation:

0.029(δ + β)2 ≤ δ2 ≤ 0.115(δ + β)2

0.170(δ + β) ≤ δ ≤ 0.339(δ + β)

Solving each side of the inequality, we have:

0.170δ + 0.170β ≤ δ and δ ≤ 0.339δ + 0.339β

0.170β ≤ 0.830δ and 0.661δ ≤ 0.339β

0.205β ≤ δ ≤ 0.513β

We now obtain a system of four inequalities:

δ ≤ .256− β

δ ≥ .0862− β

δ ≥ 0.205β

δ ≤ 0.513β

Realistic parameter estimations for δ and β lie within the shaded area of Figure 15. Starting
with the highest intersection point and moving around clockwise, the intersection points are (0.169,
0.0869), (0.213, 0.0436), (0.0715, 0.0147), and (0.0570, 0.0292).
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Figure 15: δ and β Values. The shaded region indicates the acceptable range of δ and β values.

Estimation of ε

We calculate our ε value using the expected value of the time in the abusive compartment, 1
ε . On

average, a person remains an abuser for 24 to 72 months before seeking treatment [19]. Using these
time frames as bounds for 1

ε , we determined:

0.014 ≤ ε ≤ 0.042

Estimation of γ1 and γ2

To calculate γ1, the rate at which those in the treatment compartment re-enter the abuser compart-
ment, and γ2, the successful treatment rate, we defined treatment to last from one to 12 months.
We arrive at these bounds from data that relapses occur overwhelmingly within the first year of
treatment, in addition to data that indicates treatment should last at least one month [16, 30].
We also define relapse to indicate when a person in the treatment compartment returns to pre-
treatment abuse levels. For this model, we are not considering an isolated incident of taking a pill
to be relapsing, because the amount of time spent in the A compartment and then immediately
returning to the T compartment is not relevant. The percentage of people who return to previous
abuse levels within one year is 45%, and the percentage of those who do not return to those levels,
which we define as successful treatment, is 55% [17].

Because the time in the treatment compartment is defined to be between one and 12 months,
we can place upper and lower bounds on the expected waiting time as follows: 1 ≤ 1

γ1+γ2
≤ 12.

From our known relapse and success percentages, we can express the following: γ2 = 1.2̄γ1. Sub-
stituting this into the right-hand side of our inequality, we get γ1 ≥ 0.038. Substituting into the
left-hand side, we get γ1 ≤ 0.45. Thus, the range of values lies along the line γ2 = 1.2̄γ1 where
0.038 ≤ γ1 ≤ 0.450

For the non-linear models, the units of γ1 become 1/(people×month). These units are achieved
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through dividing the values of γ1 by 300 million which is the approximate population of the United
States in recent years [20]. Therefore, 1.26 × 10−10 ≤ γ1 ≤ 1.50 × 10−9 for the non-linear models.
We chose to divide the the original estimate by the total population of the country instead of just
the population of Vicodin users considered in the models, because those in treatment can interact
with many people that are not considered in the model.

Summary of Estimations

Note that all parameters have units of (1/month), except Λ, which has units of (people/month)

2, 671, 212 ≤ Λ ≤ 3, 303, 044

0.175 ≤ α1 ≤ 0.240

1.762α1 ≤ α2 ≤ 7.850α1

0.014 ≤ ε ≤ 0.042

0.046 ≤ γ1 ≤ 0.450 (linear model)

1.26× 10−10 ≤ γ1 ≤ 1.50× 10−9 (SIAD model)

0.038 ≤ γ2 ≤ 0.550

For δ and β estimations, refer to Figure 15. The parameter values are given in Table 1.

Excluded Parameters

We are able to place a lower bound of 0.00125%, derived from the number of people who used pre-
scription opioids for non-medical use, and an upper bound of 0.126%, derived from the number of
people who sought treatment for abuse. To obtain the lower bound, we took the number of abusers
to be equal to the number of people who have ever used prescription opioids for non-medical users,
giving a maximum value for the denominator of our ratio of abusers to overdoses. To obtain the
upper bound, we took the number of abusers to be equal to those who sought treatment, minimizing
the denominator of the same ratio [12]. We thus concluded that the number of abusers who die
from overdosing on Vicodin is not statistically significant and can be neglected for this model.

In our model, once a person has exited the population through successful treatment, we do
not consider the possibility that the person may re-enter the acute compartment. We make this
assumption based on data from requirements of those in treatment [32].

When referencing chronic medical users in our model, we are referring specifically to those
being treated for conditions that have non-malignant origin. Our research indicates that making
this distinction is common, especially when considering prescription drug abuse. These conditions
are sometimes referred to as CNCP (chronic non-cancer pain) or NCPC (non-cancer pain condi-
tion) [9, 10, 31].
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Table 4: Percent Change of A∗ with respect to γ1 (relapse rate)

Percent Change of γ1 +1% +2% +5% +10% -1% -2% -5% -10%

Percent Change of A∗ +0.44% +0.88% +2.22% +4.44% -0.44% -0.88% -2.22% -4.44%

Table 5: Percent Change of A∗ with respect to γ2 (successful treatment rate)

Percent Change of γ2 +1% +2% +5% +10% -1% -2% -5% -10%

Percent Change of A∗ -0.44% -0.89% -2.22% -4.44% +0.44% +0.88% +2.22% +4.44%

Table 6: Percent Change of A∗ with respect to δ (rate of chronic users becoming abusers)

Percent Change of δ +1% +2% +5% +10% -1% -2% -5% -10%

Percent Change of A∗ +1.48% +2.96% +7.39% +14.8% -1.48% -2.96% -7.39% -14.8%

Table 7: Percent Change of A∗ with respect to β (rate of chronic users ending Vicodin treatment)

Percent Change of β +1% +2% +5% +10% -1% -2% -5% -10%

Percent Change of A∗ -1.48% -2.96% -7.39% -14.8% +1.48% +2.96% +7.39% +14.8%

Table 8: Percent Change of A∗ with respect to ε (rate of abusers entering treatment)

Percent Change of ε +1% +2% +5% +10% -1% -2% -5% -10%

Percent Change of A∗ -1% -2% -5% -10% +1% +2% +5% +10%

Table 9: Percent Change of A∗ with respect to Λ (number of newly prescribed Vicodin users per month)

Percent Change of Λ +1% +2% +5% +10% -1% -2% -5% -10%

Percent Change of A∗ +1% +2% +5% +10% -1% -2% -5% -10%
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Appendix V

Appendix VI

Here we show our derivation of the adjoint equation and sensitivity equation [4]. The sensitivity
index component ∂A

∂pi
, for i = 1...n where n is the number of parameters in consideration, is contained

in dpA. To compute the total derivative (i.e., gradient) dpA =
(

∂A
∂p1

, · · · ∂A∂pn

)
=

∫ T
0 [gxdpx + gp]dt

we introduce the Lagrangian corresponding to the optimization problem

A(�x, �p) +

∫ T

0
λTF (t, �x, �̇x, �p)dt+ μT�y(�x(0), �p).

Because F (t, �x, �̇x, �p) = 0,

dpA =

∫ T

0
[gxdp�x+ gp]dt+

∫ T

0
λT [Fp + Fxdp�x+ Fẋdpẋ]dt+ μT (�yx(0)dp�x(0) + �yp)

where gi, Fi, and �yi represent partials with respect to i and μT = λTFẋ�y
−1

x(0) .

Using integration by parts to compute
∫ T
0 λT (Fẋdp�̇x)dt and rearranging terms we get:

dpA =

∫ T

0
(gp + λTFp)dt+

∫ T

0
[gx + λT (Fx − Ḟẋ)− λ̇TFẋ]dp�xdt

+λTFẋdp�x
∣∣∣T
0
+ μT (�yx(0)dp�x(0) + �yp)

dpA =

∫ T

0
(gp + λTFp)dt+

∫ T

0
[gx + λT (Fx − Ḟẋ)− λ̇TFẋ]dp�xdt

+(μT�yx(0) − λTFẋ)
∣∣∣
t=0

dp�x(0) + λTFẋ

∣∣∣
t=T

dp�x(T ) + μT�yp

Due to the fact that dp�x is very difficult to calculate, we set λT (T)=0, μT = λTFẋ�y
−1
x(0) and

gx + λT (Fx − Ḟẋ)− λ̇TFẋ = 0 (11)

Now, Equation 11 defines the adjoint equation with λT (T) = 0. Thus:

dpA =

∫ T

0
(gp + λTFp)dt+ λTFẋ�y

−1
x(0) �yp

and we just need to solve Equation 11 and compute the appropriate partials to get dpA.

Appendix VI

There are many methods of performing sensitivity analysis. However, in order to reduce the number
of equations that we are working with, we choose to use the adjoint method. Here we follow the
setup of the adjoint method from Bradley [4]. In the end we want to consider the normalized
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sensitivity indices (i.e ∂A
∂δ

δ
A) of the abuser population with respect to the parameters in order to

see the effects that changing parameter values has on the abuser population (A).
First, the system of ordinary differential equations for both the CVT (linear) and SIAD (non-

linear) Models can be rewritten as vectors equal to zero. For the CVT Model it would be formulated
as:

�F (t, �x,�̇x, �p) =

⎡
⎢⎢⎢⎢⎢⎣

Ṁ − Λ + (α1 + α2)M

Ċ1 − α1M + (δ + β)C1

Ċ2 − δC1 + (δ + β)C2

Ȧ− δC2 − γ1T + εA

Ṫ − εA+ (γ1 + γ2)T

⎤
⎥⎥⎥⎥⎥⎦ = 05×1.

The initial conditions in both models can be written such that �y(�x(0), �p) = 0 (M(0) - a = 0).
Now, we consider the problem of minimizing A(�x, �p) where

A(�x, �p) =

∫ T

0
g(�x, �p, t)dt

subject to �F (t, �x,�̇x, �p) = 0 and �y(�x(0), �p) = 0.
Then we consider the sensitivity index component ∂A

∂pi
, for i = 1...5, is contained in dpA. To

compute the total derivative (i.e., gradient) dpA =
(

∂A
∂p1

, · · · ∂A
∂p14

)
=

∫ T
0 [gxdpx+ gp]dt we introduce

the Lagrangian corresponding to the optimization problem

L = A(�x, �p) +

∫ T

0
λTF (t, �x, �̇x, �p)dt+ μT�y(�x(0), �p).

Because F (t, �x, �̇x, �p) = 0 and �y(�x(0), �p) = 0 are always satisfied, we are able to set the values of
λ, which depends on time, and μ, which is associated with the initial conditions. Now taking the
total derivative,

dpA =

∫ T

0
[gxdp�x+ gp]dt+

∫ T

0
λT [Fp + Fxdp�x+ Fẋdpẋ]dt+ μT (�yx(0)dp�x(0) + �yp)

where gi, Fi, and �yi represent partials with respect to i.
Using integration by parts to compute

∫ T
0 λT (Fẋdp�̇x)dt and rearranging terms, we get:

dpA =

∫ T

0
(gp + λTFp)dt+

∫ T

0
[gx + λT (Fx − Ḟẋ)− λ̇TFẋ]dp�xdt

+λTFẋdp�x
∣∣∣T
0
+ μT (�yx(0)dp�x(0) + �yp)

dpA =

∫ T

0
(gp + λTFp)dt+

∫ T

0
[gx + λT (Fx − Ḟẋ)− λ̇TFẋ]dp�xdt

+(μT�yx(0) − λTFẋ)
∣∣∣
t=0

dp�x(0) + λTFẋ

∣∣∣
t=T

dp�x(T ) + μT�yp

Due to the fact that dp�x is very difficult to calculate, we set λT (T)=0, μT = λTFẋ�y
−1
x(0) in order

to simplifiy. Also we can avoid computing dp�x at all other times t > 0 by setting

gx + λT (Fx − Ḟẋ)− λ̇TFẋ = 0
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Now, the previous equation defines the adjoint equation with λT (T ) = 0. Thus,

dpA =

∫ T

0
(gp + λTFp)dt+ λTFẋ�y

−1
x(0) �yp

and we solve the adjoint and compute the appropriate partials to get dpA. This yields the sensitivity
equations that, once normalized, we wish to work with.
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