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Abstract

The aim of this research is to determine the impact of needle exchange programs as motivation

for intravenous drug users to seek treatment for addiction. A mathematical model of the dy-

namics of a population of drug users that incorporates a needle exchange program is formulated.

We define the basic addiction reproduction number for the proposed model and explore its role

in the prevalence and control of needle-sharing drug addiction. Specifically, the local stability of

the injection-addiction free and endemic equilibria are determined. Sensitivity analysis is con-

ducted to determine the impact of perturbations of key parameters on the basic reproduction

number and endemic level of the subpopulations. Results include a notable impact of the inef-

fectiveness of the needle exchange program on the proportion of the subpopulation in treatment.

Furthermore, conditions necessary for an injection-addiction free population are determined.
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1 Introduction

Intravenous (IV) drug use is a chronic problem in many communities within the United States.

Although recreational IV drug use has decreased in the past twenty years, heavy injection drug use

remains a serious issue across many different demographics [7]. Among the many issues associated

with injection drug use, disease spread is a significant problem in IV drug user (IDU) communities

due to lack of access to sterile injection equipment [11]. Thus, many IDUs share needles and injec-

tion equipment, allowing diseases such as hepatitis B virus (HBV) and human immunodeficiency

virus (HIV) to be transmitted quickly throughout an IDU population [5].

There are two distinct approaches when considering IV drug addiction. The most common

method, which is referred to as the abstentionist model, encourages IDUs to seek treatment through

rehabilitation centers [9]. This approach focuses on changing behavior to abstain from drug use and

tends to be most effective if an IDU is self-motivated to seek treatment [3]. The other approach is a

harm-reduction model, which recognizes that not all IDUs have the desire or ability to change their

behavior. Harm reduction, also called harm minimization, risk reduction, or risk minimization,

approaches addiction with a series of goals, seeking to minimize risk associated with using injection

drugs [9]. Although there are many different manifestations of harm reduction practices, the most

common approach to minimizing risk with respect to IV drug use is providing access to a needle

exchange program.

Needle exchange programs (NEPs), also called syringe exchange programs, provide a location

for IDUs to dispose of used syringes in exchange for obtaining clean injection equipment. Emerging

in the late 1980’s as a response to the growing epidemic of HIV among IDUs, NEPs were illegal in

many locations in North America [9]. By the late 1980’s, NEPs had been developed through the

Department of Health in several major cities, including New York City and Seattle [9]. As of 2008,

there were almost 200 active NEPs across the United States [3, 5].

The purpose of an NEP is two-fold: first, it seeks to eliminate needle-sharing behaviors, there-

fore minimizing the risk of disease spread in a community. Second, NEPs help remove used needles

from a community by providing a safe, appropriate place for needle disposal [9]. Harm reduction
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approaches, by definition, do not explicitly aim to change addicts’ behavior; however, over 90%

of NEPs in the United States offer resources, counseling, and information on treatment and reha-

bilitation programs for addiction, and awareness of treatment options is one of the main reasons

IDUs choose to seek treatment [3, 5]. Since NEPs are an easy way to distribute information about

treatment resources, it is important to understand what, if any, role NEPs have on IV drug users

ultimately seeking treatment.

In 1989, Edward Kaplan produced the most widely-used mathematical model to study the

effectiveness of an NEP in decreasing disease spread among IDUs in New Haven, Connecticut

[11, 14, 12]. Building on his earlier work, Kaplan constructed a theory of needle circulation as a

method of quantifying how long a needle remained active in an IDU population [13]. Kaplan’s

approach treated the needles as a population and created a method of tracking the needles, which

helped rectify inaccurate data that was self-reported by IDUs on needle-sharing habits and injection

patterns. David Greenhalgh and Fraser Lewis expanded Kaplan’s work in 2001 by examining the

interactions between three different classes of infected needles and three classes of infected addicts,

concluding that there is a strong relationship between the spread of disease and the ways in which

addicts and needles interact [8]. In general, most of the mathematical models that consider NEPs

are focused on the spread of diseases, such as HIV and HBV, in IDU populations. Regarding

addiction models, White and Comiskey created a model to describe the dynamics of a heroin-

addicted population [19]. They considered those who are susceptible to begin using heroin, those

in active addiction, and those in treatment, allowing for relapse from treatment to heroin use. The

White-Comiskey model described the dynamics within a population of IDUs from an abstentionist

framework, and does not consider the role of NEPs in an addict population.

Our research synthesized these approaches, considering the impact of an NEP on the addiction

process. The model we present does not consider the impact of NEPs on the spread of diseases

among IDUs as the Kaplan and Greenhalgh models do, but amends the White-Comiskey model

to consider the impact of an NEP on IDUs seeking treatment. By defining the parameters that

lead to and from the NEP in relation to one another, we establish a relationship between these

parameters that defines the overall effectiveness of the program. Furthermore, we consider the
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injection-addiction free equilibrium, the point at which no one in the population is engaging in IV

drug use. We determine what conditions are necessary with the presence of an NEP to maintain

a basic reproduction number less than one; that is, what conditions lead to the cession of IV drug

use within a population.

There are several relevant questions to address from this model construction. First, at what

minimum rate must people begin utilizing an NEP to create a population free from needle-sharing

behavior? In correlation, at what maximum rate may people leave the NEP to maintain popu-

lation dynamics free from needle-sharing behavior? Third, what impact does the effectiveness of

the NEP have on the endemic level of treatment? Finally, which parameters are most important

to the overall system? To address these questions, we consider two models. First, we consider a

model that includes a relapse rate from treatment. Second, we consider an amended model where

relapse is not taken into account. Although the rate of relapse is high among injection drug users,

the purpose of this research is to study the impact of NEPs on those entering treatment and is not

concerned with the impact of relapse on the injection-addiction system [2].

2 Formulation of the Model

We adapt the model proposed by White and Comiskey [19] and consider a non-constant population

of people engaging in IV drug use. As a result of interactions with IDUs, people will either begin

using injection drugs and transition to a population that shares needles with one another or remain

free from injection-addiction until death. People in the needle-sharing population will either seek

treatment, begin using an NEP, or continue sharing needles until death. People using the NEP will

either abandon the program and resume sharing needles, seek treatment, or remain in the NEP

until death. Figure (2) shows a diagram for the transition between population states and Table (1)

defines the model parameters and states. Those in treatment will either relapse to addiction and

sharing needles or remain isolated from injection drug use until death. In constructing this model,

we make the following assumptions:

• The total population is a population of addicts that mix homogeneously and varies in size.
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• IV drug use is initiated through contact with someone already engaged in IV drug use; thus,

only the needle-sharing population has contact with the non-IDU population.

• Not all IDUs will utilize an NEP; thus, we define an ineffectiveness rate in Equation (6).

• Some portion of the IDU population using an NEP will abandon the program.

• Those in treatment are not engaging in IV drug use and are therefore isolated from needle-

using communities.

• When relapse is considered, addicts relapse into risky behavior; thus, relapse only returns to

a needle-sharing population.

Figure 1: This figure shows the representation of a population of drug users as they transition
through injection drug abuse, possible interaction with an NEP, and treatment for addiction.

The dyamics of the population are governed by the following system of ordinary differential equa-

tions:
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Ȧ = Λ− β1A
US
N
− µA (1)

U̇S = β1A
US
N
− (q + p1 + µ+ δ)US + p2UE + β3T

US
N

(2)

U̇E = qUS − (δ + µ+ p2 + p3)UE (3)

Ṫ = p1US + p3UE − (δ + µ)T − β3T
US
N

(4)

Ṅ = Λ− µN − δ(US + UE + T ) (5)

where

N = A(t) + US(t) + UE(t) + T (t).

Table 1: Parameter Definitions

Parameter Definition Unit Reference

A population susceptible to IV drug use People [6, 10, 15]

US population engaged in IV drug use and share needles People [6, 10, 15, 18]

UE population engaged in IV drug use using an NEP People [15]

T population in treatment for IV drug addiction People [4]

N total population People [1, 10]

Λ recruitment rate people [1, 6, 10, 17]

β1 rate at which someone transitions to IV drug use time−1 [16]

β3 rate of relapse time−1 [2]

µ natural death rate time−1 [10]

δ drug-related death rate time−1 [6, 10, 17]

p1 rate at which people sharing needles seek treatment time−1 [4, 6, 10, 18]

p2 rate at which people stop using an NEP time−1 [6, 10, 18]

p3 rate at which people who use an NEP seek treatment time−1 [4, 18]

q rate at which people begin using an NEP time−1 [6, 10, 18]

Equation (1) describes the average rate of change in the number of addicts (A) susceptible to

transitioning to IV drug addiction by considering a recruitment rate (Λ) and subtracting number

of individuals that exits via positive contact between an IDU and the susceptible population (β1),

or via natural death (µ). Equation (2) represents the average rate of change in the population

of IDUs who exchange needles (US) with assumed homogenous mixing. Susceptible individuals
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enter the needle-sharing compartment through positive contact with an IDU. Intravenous drug

users may enter this compartment if they abandon an NEP and begin sharing needles with other

IDUs. The population exits this compartment by entering the treatment class (p1), through natural

death or drug-related death (µ and δ, respectively), or by engaging with an NEP (q). Equation (3)

represents the average rate of change in population of IDUs actively using an NEP, entering the UE

population directly from the US population. Those in an NEP may seek treatment for addiction

(p3), abandon the NEP (p2), or die through natural causes (µ) or as a result of drug abuse (δ). We

consider the rate at which people leave the UE compartment, disregarding death, as p2 + p3. Thus,

the ineffectiveness of the NEP is defined as the ratio of rates of people leaving the NEP to return

to needle-sharing behavior, and is represented by the parameter α, where

α =
p2

p2 + p3
,

p2 =
α

1− α
p3.

Equation (4) describes the average rate of change in the population seeking treatment (T ) for in-

travenous drug addiction. Entry to the T compartment is through both the population of IDUs

who are in an NEP and the population of IDUs who are sharing needles.

Analysis of Injection-Addiction Model with Relapse

We consider the case where β3 > 0 and thus, there is some relapse from treatment to the population

engaged in sharing needles.

Basic Reproductive Number

The basic reproductive number, R0, is defined as the average number of secondary cases produced

by one case of sharing needles during the time when an IDU is introduced into a population of

addicts that is completely free from needle-sharing. Thus, R0 is given by
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R0 =
β1(p2 + p3 + µ+ δ)

(p1 + q + µ+ δ)(p2 + p3 + µ+ δ)− p2q
,

=
β1

q + p1 + µ+ δ

[
1

1−∆

]
= R̃0 +

∆

1−∆

where

R̃0 =
β1

q + p1 + µ+ δ
,

∆ =
qp2

(p2 + p3 + µ+ δ)(q + p1 + µ+ δ)
.

Here, R̃0 is the basic reproduction number if the NEP is fully effective; that is, if p2 = 0, then R0 is

represented by R̃0. Thus, R0 is the sum of two terms: one term represents the basic reproductive

number for a fully effective NEP, and the other term is an excess reproductive number due to the

waning of the NEP.

R0 can also be written as

R0 =
β1

M
, (6)

where

M = q + p1 + µ+ δ −Qp2,

Q =
q

µ+ δ + p2 + p3
.

Here, 1/M represents the average length of the time period during which an injection-addiction

individual can transmit the behavior of needle-sharing.
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Injection-Addiction Free Equilibrium

For this model, we consider the injection-addiction free equilibrium as the point at which there are

no IDUs within a susceptible population of addicts. The injection-addiction free equilibrium point

is obtained by setting the left-hand side of (1)-(5) equal to zero and setting US = 0 and UE = 0.

Thus, we obtain the injection-addiction free equilibrium point (Λ
µ , 0, 0, 0)′ where “prime” denotes

vector transpose. To test the stability of the injection-addiction-free equilibrium, we consider the

Jacobian matrix evaluated at (Λ
µ , 0, 0, 0)′.

J( Λ
µ
,0,0,0) =



−µ −β1 0 0

0 β1 − (q + p1 + µ+ δ) p2 0

0 q −(µ+ δ + p2 + p3) 0

0 p1 p3 −(µ+ δ)


(7)

Two of the eigenvalues for this Jacobian (7) are given by

λ1 = −µ, λ2 = −(µ+ δ) < 0

while the other two correspond to the eigenvalues of the sub-Jacobian

J2 =

 β1 − (q + p1 + µ+ δ) p2

q −(µ+ δ + p2 + p3)


In order for the matrix J2 to have negative eigenvalues, we must have tr(J2) < 0 and det(J2) > 0.

The second condition holds if and only if R0 < 1 and this condition ensures that the first condition

is satisfied, where R0 is the basic reduction number and is given by (6). Thus, we show the following

proposition.

Proposition 1. The injection-addiction free equilibrium E0 = (Λ
µ , 0, 0, 0)′ is locally asymptotically
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stable if and only if R0 < 1.

Endemic Equilibrium and Stability

On putting the derivatives in the left-hand side of equations (1)-(5) equal to zero and solving the

resulting system with respect to the model states, we arrive at the proportions of subpopulations

in the endemic state as

x =
A∗

N∗
=

µ+ δ

δ + µ+ β1ys
,

ye =
U∗E
N∗

=
qys

µ+ δ + p2 + p3
, (8)

z =
T ∗

N∗
=

ys
δ + µ+ β3ys

(
p1 +

p3q

µ+ δ + p2 + p3

)
,

where ys is given by

β1β3(1 +Q)y2
s + (β1M + β3[(1 +Q)(µ+ δ)− β1])ys + (µ+ δ)[M − β1] = 0 (9)

and

Q =
q

µ+ δ + p2 + p3
,

M = q + p1 + µ+ δ − p2Q.

Equation (9) can have up to two feasible solutions. It has a unique solution if β1 > M . However,

if β1 < M and β3 >
M2

p3Q+p1
, it can have two solutions. The condition β3 >

M2

p3Q+p1
is necessary

but not sufficient for the existence of two solutions. In fact, it is the condition for the existence

of backward bifurcations, which means that the needle-sharing problem persists in the population

even if R0 is reduced to below one.
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Since the analytical stability is difficult to establish, we consider the numerical stability of the

endemic equilibrium. We use the parameter values given in Table 4 with the exception of β1 and

β3, which are manipulated to fit the conditions of the following two cases.

Case 1: β1 > M

For the case where β1 > M , there is a unique solution for Equation (9) and therefore there is a

unique endemic equilibrium for the model (1)-(5). For β1 = 0.0168 and β3 = 0.023145, the endemic

equilibrium is

E1 = (6272.6657, 4016.26855, 6608.98791, 1695.4217)′

which produces the following characteristic polynomial

λ4 + 2.78 ∗ 10−3λ3 + 1.90 ∗ 10−3λ2 + 1.1 ∗ 10−5λ+ 6.9 ∗ 10−7 = 0.

The above characteristic polynomial has the eigenvalues

λ1 = −0.0092, λ2 = −0.0092, λ3 = −0.0072, λ4 = −0.0022.

Since all eigenvalues are negative, the endemic equilibrium point E1 is stable when β1 > M .

Case 2: β1 < M and β3 >
M2

p3Q+ p1

If we choose β1 to be slightly less than M and β3 >
M2

p3Q+ p1
, there are two possible endemic

equilibria. For example, if β1 = 0.00505996 and β3 = 0.110154, the two endemic equilibria are

given by E11 and E12 where

E11 = (28584.9, 5071.85, 1091.82, 513.813)′, E12 = (58618, 99.0248, 21.3171, 34.3771)′.

Thus, the corresponding characteristic polynomials are given by

PE11 = λ4 + 0.0864λ3 + 0.0014λ2 + 1.7 ∗ 10−6λ+ 8.89119 ∗ 10−11 = 0,
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PE12 = λ4 + 0.0699λ3 + 2.7246 ∗ 10−4λ2 + 1.4425 ∗ 10−7λ− 6.1783 ∗ 10−12 = 0.

The characteristic polynomials have the eigenvalues

λ11 = −0.01945, λ12 = −0.06568, λ13 = −0.0006439 + 0.0005305i, λ14 = −0.0006439− 0.0005305i,

and

λ21 = −0.0658, λ22 = −0.00346, λ23 = −0.00068, λ24 = 0.0000398.

The eigenvalues generated from E11 have all negative real parts. Therefore, E11 is locally

asymptotically stable. However, the eigenvalues generated by E12 contain one with a positive

value, which implies that E12 is unstable.

From Case 1, we see that when β1 > M , there exists a unique endemic equilibrium point that

is stable. Therefore, when R0 is greater than one, there exists a unique equilibrium point that is

locally asymptotically stable. From Case 2, we see two endemic equilibrium points although the

basic reproductive number is less than one. Only one of these two points is locally asymptotically

stable.

3 Analysis of a perfect-treatment model

We consider the case where treatment is effective and the rate of relapse, β3 = 0. The system of

differential equations governing this model is given in Appendix 9.3.

Analysis of equilibria

The relapse-free model has the same injection-addiction-addiction free equilibrium and stability

E0 = (Λ
µ , 0, 0, 0)′ outlined in Proposition 1 and the same basic reproduction number, R0 shown in

Equation (6). Now, we consider the case in which US and UE do not equal zero in order to obtain

the injection-addiction endemic equilibrium point. The endemic equilibrium (A∗, U∗S , U
∗
E , T

∗) is

unique and is given by the following equations
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X∗ =
µ+ δ

δ + µ+ β1Y ∗S
,

Y ∗S =
(µ+ δ)(β1 −M)

β1M
,

Y ∗E = QY ∗S , (10)

Z∗ =
(p1 +Qp3)

δ + µ
Y ∗S ,

N∗ =
Λ[

µ+ δ − δ
R0

] ,
where

X∗ =
A∗

N∗
, Y ∗S =

U∗S
N∗

, Y ∗E =
U∗E
N∗

, Z∗ =
T ∗

N∗
.

To determine the stability of the endemic equilibrium, we consider the Jacobian matrix evalu-

ated at

A∗ =
Λ

(µ+ δ)R0 − δ
,

U∗S =
Λ(µ+ δ)

M

(1− 1
R0

)

µ+ δ(1− 1
R0

)
,

U∗E =
Λ(µ+ δ)Q

M

(1− 1
R0

)

µ+ δ(1− 1
R0

))
,

T ∗ =
Λ(p1 + p3Q)

M

1− 1
R0

µ+ δ(1− 1
R0

)
,

which can be viewed in Appendix 9.2. It is clear that the endemic equilibrium exists if and only

if R0 > 1. By substituting the parameter values from Table 4, we determine the unique endemic

equilibrium point

(1931.036, 6755.86, 2999.42, 3991.40),

which produces the characteristic polynomial given by

λ4 + 0.425λ3 + 0.00648λ2 − 0.000635λ− 610−8 = 0.
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The eigenvalues associated with the Jacobian at the endemic equilibrium are

λ1 = −0.00323, λ2 = −0.00536507, λ3 = −0.0376654− 0.0144795i, λ4 = −0.0376654 + 0.0144795i.

Since the real part of all eigenvalues are negative, the endemic equilibrium is locally asymptotically

stable.

4 Normalized Sensitivity Analysis

Normalized Sensitivity Analysis of R0

In considering the dynamics of the injection-addiction system, we conduct normalized sensitivity

analysis on R0 and the endemic proportions of subpopulations to determine the impact of parameter

perturbations on the dynamics of the system. The normalized sensitivity indices given by Equation

(8) are useful to understand which parameters impact the basic reproduction number as well as

the endemic equilibrium points. By computing the normalized sensitivity indices, we consider the

percent change in the output with respect to a percent change in the parameter input. Those

parameters with the largest magnitude of change impact the compartment the most; the sign

indicates whether the change produces an increase or decrease.

We first consider the normalized sensitivity indices for R0 by taking the partial derivative of

R0 with respect to each parameter and multiply the derivative with the ratio of the parameter to

R0. For example, to determine the sensitivity of R0 with respect to β1, we compute the following:

Sβ1 = β1

R0

∂R0
∂β1

= β1M
β1

1
M = 1. (11)

This value represents the percent change in R0 with respect to a 1% change in the parameter value

β1. Similarly to Equation (11), we compute the following sensitivity indices for R0.

Analyzing the percent change in R0 with respect to the percent change in q, p1, p2, p3, µ, and δ,
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respectively, we obtain the following sensitivity indices:

q

R0

∂R0

∂q
= − Q

M
(p3 + µ+ δ),

p1

R0

∂R0

∂p1
= − p1

M
,

p2

R0

∂R0

∂p2
=

p2Q
2

qM
(p3 + µ+ δ),

p3

R0

∂R0

∂p3
=
−p2p3Q

2

qM
,

µ

R0

∂R0

∂µ
= − µ

M
(1 +

p2

q
Q2),

δ

R0

∂R0

∂δ
= − δ

M
(1 +

p2

q
Q2).

We use the parameters values from Table 4 to study the sensitivity of R0 to each parameter. We

compute normalized sensitivity analysis on all parameters, but we are only concerned with analyz-

ing the impact of parameters that we are able to control: p1, p2, p3 and q. The numerical solutions

to the sensitivity of R0 with respect to each parameter are given by Table 2 and a graphical depic-

tion is given by Figure 2.

Table 2: Percent Change in R0 with respect to parameters

Parameter p1 p2 p3 q µ δ β1

% change -0.12% 0.29% -0.12% -0.32% -0.15% -0.58% 1%

Although we cannot control the successful contact rate, it is important to note that R0 is most

sensitive to perturbations in β1. Of parameters that are within our control, R0 is most sensitive to

changes in q and p2. As q increases, R0 decreases by 0.32%, while an increase in p2 increases R0.

Thus, as people enter the NEP, there are less people in the population to spread needle-sharing

behavior, and thus R0 decreases. However, as people abandon the NEP, there are more people in

the population that are sharing needles, and therefore the basic reproductive number increases.
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Figure 2: Change in R0 with respect to change in parameters

Normalized Sensitivity Analysis of Endemic Proportions of Subpopulations

We consider the normalized sensitivity indices of the endemic proportions of each subpopulation

represented in the compartments of Equation (10). Recall that in the endemic steady state, X∗

represents the proportion of the population susceptible to begin IV drug use, Y ∗S represents the

proportion of the population sharing needles, Y ∗E represents the proportion of the population using

an NEP, and Z∗ represents the proportion of the population in treatment. We are interested in

studying which parameter values have the greatest impact on the system overall; therefore, we study

the normalized sensitivity indices for X∗, Y ∗E , Y
∗
S , and Z∗, following the same process described in

Equation (11). We further examine the parameters that have the greatest impact on Z∗ in order

to study how the NEP impacts the endemic proportion of the subpopulation that seeks treatment.

From the resulting equations, we substituted the numerical parameter values from Table 4 into

the equations to determine the sensitivity of each endemic proportion of the subpopulations with

respect to β1, p1, p2, p3, q, µ, and δ. To analyze the sensitivity, we only consider those parameters

that we are able to control: p1, p2, p3, and q. The analytical results are available in Appendix 9.1,

and the numerical results are represented in Table 3 and Figures (3)-(6).

Figure 3 describes the sensitivity of X∗ with respect to each parameter. Among parameters we

can control, X∗ is most sensitive to perturbations in p2 and q. When q increases, X∗ increases by
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Table 3: Percent Change of Endemic Proportions of Subpopulations with Respect to Parameters

Parameter p1 p2 p3 q µ δ β1

Change in X∗ 0.12% -0.29% 0.12% 0.32% 0.15% 0.58% -1%

Change in Y ∗S -0.14% 0.33% -0.14% -0.37% 0.03% 0.12% 0.16%

Change in Y ∗E -0.14% -8.65% 0.18% 0.63% 0.02% 0.08% 0.16%

Change in Z∗ 0.34% -0.13% 0.36% 0.14% -0.18% 0.69% 0.16%

Figure 3: Change in X∗ with respect to change in parameters

0.32%. In contrast, as p2 increases, X∗ decreases by 0.29%. Thus, as people join the NEP, the en-

demic subpopulation available to spread needle-sharing behavior decreases, and the subpopulation

susceptible to beginning IV drug use increases. However, as more people abandon the NEP, the

endemic subpopulation of people who are capable of spreading needle-sharing behavior increases

and the endemic subpopulation susceptible to beginning IV drugs decreases.

Figure 4: Change in Y ∗S with respect to change in parameters

17



Figure 4 describes the sensitivity of Y ∗S with respect to each parameter. Among parameters

we can control, Y ∗S is most sensitive to perturbations in q and p2. As q increases, Y ∗S decreases

by 0.37%, while an increase in p2 causes Y ∗S to increase by 0.33%. Thus, as more people join the

NEP, the endemic subpopulation sharing needles decreases, while as people abandon the NEP, the

endemic subpopulation sharing needles increases.

Figure 5: Change in Y ∗E with respect to change in parameters

Figure 5 describes the sensitivity of Y ∗E with respect to each parameter. Among parameters

we can control, Y ∗E is most sensitive to perturbations in q and p2. As q increases, Y ∗E increases

by 0.63%. However, as p2 increases, Y ∗E decreases by 8.65%. Thus, as people join the NEP, the

endemic subpopulation not sharing needles increases. However, as people abandon the NEP, the

endemic subpopulation not sharing needles dramatically decreases.

Figure 6: Change in Z∗ with respect to change in parameters
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Figure 6 describes the sensitivity of Z∗ with respect to each parameter. Among parameters

we can control, Z∗ is most sensitive to perturbations in p1 and p3. As p1 and p3 increases, the

population in treatment increases by 0.34% and 0.36%, respectively. Thus, as people seek treatment

for IV drug addiction, the endemic subpopulation in treatment increases.

5 Numerical Simulations

Impact of NEP on R0

Through sensitivity analysis, we determined that the basic reproductive number is impacted by

changes in both the rate at which people join the NEP and the rate at which people leave the NEP.

We also noted that the average number of new needle-sharing cases caused by one needle-sharing

individual is most sensitive to changes in the successful contact rate. In the construction of the

model, Equation (6) defines the ineffectiveness of the NEP as the ratio of rates of people leaving

the NEP to return to needle sharing behavior over the sum of people leaving the NEP program for

treatment and needle-sharing behavior; that is,

α =
p2

p2 + p3
.

Figure (7) graphically represents the impact of the ineffectiveness of the NEP on the basic repro-

duction number.

As the ineffectiveness of the NEP increases, we observe a slow increase in the basic reproduction

number until α ≈ 0.7, or 70% ineffective. At that threshold, we observe a sharp incline in R0, which

implies that when approximately 70% of NEP participants leave the program to return to needle-

sharing behavior, the NEP does not help control the spread of injection drug use behavior.
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Figure 7: Change in Basic Reproduction Number as ineffectiveness of NEP increases

The Impact of an NEP on the endemic equilibrium without relapse

To further study the relationship between the ineffectiveness of an NEP and IDUs seeking treatment,

we consider the numerical plots of the treatment and needle-sharing compartments with respect

to α. When the ineffectiveness if closer to zero, the NEP is more effective; however, when the

ineffectiveness approaches 1, the program is less effective in getting IDUs to seek treatment.

First, we consider the impact of the ineffectiveness of the NEP on those in a population that

shares needles, shown in Figure (8). We note that a certain level of ineffectiveness does not have a

signficant impact on the needle-sharing population, although there is a slight increase as the NEP

becomes less effective. However, we note a threshold at which the ineffectiveness of the NEP causes

a steep increase in the needle-sharing population.

Next, we consider the relationship between the endemic point, T ∗, and the ineffectiveness of

the NEP, α, shown in Figure (9).

Figure (7) corresponds to Figures (8) and (9), showing a similar critical point in ineffectiveness

of the NEP. We note a critical ineffectiveness point, occuring approximately at α = 0.7. Prior to

this threshold, the ineffectiveness of an NEP does not discourage IDUs from seeking treatment.

However, if the NEP program is less than 30% effective, IDUs seeking treatment dramatically
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Figure 8: The interaction between U∗S and α

Figure 9: The interaction between T ∗ and α

decreases.

Injection-Addiction Model Simulations

In order to understand the dynamics of the injection-addiction system, we plotted the state variables

over short and long time periods using numerical values for the parameters in Table 1. The
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numerical values for the parameters defined in Table 1 are outlined in Tables 4 and 5. Due to

scarcity of data, as well as the unpredictability of IDU populations, it is crucial to recognize

the limitations of generalizing IDU populations and behaviors. Our population and parameter

estimates were based on data from Baltimore, Maryland, and some of the values were available

through literature. Those that were were not directly available were determined through algebraic

manipulation, which provided the estimates available in Tables 4 and 5. For more information

about parameter estimation, see Appendix 9.4.

Table 4: Simulation Parameter Values

Parameters Λ β1 β3 p1 p2 p3 q µ δ

Values 40.36 0.042 0.05875 0.00071 0.0497 0.00221 0.0187 0.0187 0.00255

Table 5: Simulation Initial Conditions

Parameter Value Reference

A0 58,783 [1, 10, 4, 6]

US0 9574 [6, 10]

UE0 1030 [6, 10]

T0 325 [4]

Figure 10: Short-term system dynamics
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Figure 10 represents the dynamics of the system over the course of three years. During this

time period, the dynamics of the system appear linear. There is some interaction occurring as the

susceptible class visibly decreases and the injection-addiction population slowly increases. Over the

course of three years, however, we do not observe a significant change in the treatment compartment,

and we cannot see the full dynamics of the compartment interactions.

Figure 11: Long-term system dynamics

Figure (11) represents the dynamics of the system over fifty years. In Figure (11), we are able to

observe the fluctuation in the compartments over time. Under the assumption that the associated

parameters are applicable to a long-term model, we see that the treatment state increases slowly,

ultimately reaching a steady state. We note that the greatest increase in the treatment state

appears to coincide with the increase in the UE state. We also note that the susceptible state

rapidly drops near the beginning, but slowly increases over time and ultimately reaches a steady

state.

While it’s important to consider the long-term dynamics of the model, it is also important to note

that IDU populations are unpredictable. Therefore, Figures (10) and (11) are not good predictors

for the long-term dynamics of the IDU population, although they do describe the stability of the

model.
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6 Controlling the Problem of Needle-Sharing Behavior

With the analysis of this model, we are able to address several questions raised at the beginning

of this paper. First, we considered at what minimum rate people must begin utilizing an NEP

to create a population free from needle-sharing behavior. To determine this, we consider what

conditions are necessary on q such that R0 < 1. By setting R0 < 1 and solving for q, we are able

to determine the following condition:

q >
β1 − (p1 + µ+ δ)(µ+ δ + p2 + p3)

µ+ δ + p3
.

To understand this condition, we consider the implications with respect to β1, the rate of successful

contact between US and UE classes and conclude the following:

Proposition 2.

• If β1 < p1 + µ+ δ, then R0 < 1 holds ∀ q.

• If β1 > p1 + µ+ δ, then R0 < 1 when q > q∗ where q∗ is given by

β1 − (p1 + µ+ δ)(µ+ δ + p2 + p3)

µ+ δ + p3
.

Next, we considered at what maximum rate people may abandon the NEP and still maintain

addiction-injection free population dynamics. We again set R0 < 1 and solved for p2, coming to

the following result:

p2 <
(µ+ δ + p3)(q + p1 + µ+ δ − β1)

β1 − (p1 + µ+ δ)
.

We consider this result in terms of β1 and come to the following conclusion:

Proposition 3.

• If β1 > p1 + µ+ δ + q, then @ a minimum p2.
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• If p1 + µ+ δ < β1 < p1 + µ+ δ + q, then R0 < 1 when p2 < p∗2 where p∗2 given by

(µ+ δ + p3)(q + p1 + µ+ δ − β1)

β1 − (p1 + µ+ δ)
.

• If β1 < p1 + µ+ δ, then R0 < 1 holds ∀ p2.

By Proposition 2 and 3, we conclude that, if the successful contact rate β1 is relatively small,

then any solutions for q and p2 will satisfy the conditions, and the population will ultimately reach

an injection-addiction free equilibrium. If the successful contact rate is within a certain range, then

q > q∗ and p2 > p∗2 to achieve an injection-addiction free equilibrium. If the successful contact rate

is high enough, however, there is no minimum value for p2 such that injection-addiction equilibrium

can ever be achieved; that is, the population will never be free from injection drug behavior.

Next we considered what conditions on α, the ineffectiveness of the NEP, were necessary to maintain

an injection-addiction free equilibrium. To determine this, we consider p2 = α
(1−α)p3 and R0 = β1

M .

By substituting p2 = α
(1−α)p3, we determine that R0 < 1 when α∗ > α.

Proposition 4.

• If β1 < q + µ+ δ + p1, then R0 < 1 ∀ α.

• If µ+ δ + p1 < β1 < q + µ+ δ + p1, then α∗ > α where α∗ is given by

α∗ =
(µ+ δ + p3)(q + µ+ δ + p1 − β1)

qp3 + (µ+ δ)(q + µ+ δ + p1 − β1).

• If q + µ+ δ + p1 < β1, then @ condition on α such that R0 < 1.

By Proposition 4, we conclude that if the successful contact rate is relatively small, then the

system will reach an injection-addiction free equilibrium regardless of the ineffectiveness of the

NEP. For a slightly larger successful contact rate, the effectiveness of the NEP, given as ENEP , is

given as follows

ENEP = (1− α) =
p3[β1 − (µ+ δ + p1)]

qp3 + (µ+ δ)(q + µ+ δ + p1 − β1)
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Finally, for a successful contact rate that is relatively large, the injection-addiction process cannot

be controlled by the effectiveness of the NEP.

7 Discussion

The analysis of model (1)-(5) is sufficient to answer the questions posed at the beginning of this

paper. We constructed a model to examine the dynamics of a population of addicts and IDUs with

the presence of an NEP. Within that model, we determined the basic reproduction number and

developed a biological interpretation of that number. Furthermore, we numerically established the

stability of the injection-addiction free equilibrium, and determined the endemic equilibria for two

cases of the model. We showed that, when relapse is taken into account, we have two cases for the

endemic equilibrium. When the basic reproduction number is larger than one, then there is one

stable endemic equilibrium. However, when the basic reproduction number is less than one, we

showed that there are two possible endemic equilibria, one stable and one unstable. The behavior

of the endemic equilibria is determined by the numerical value of the relapse rate. When relapse is

not considered, however, we numerically determined that there is one stable equilibrium.

To address our research questions, we determined that, if the successful contact rate between

the IDU and non-IDU population is small enough, the system will ultimately reach an injection-

addiction free equilibrium regardless of the presence of an NEP. If the successful contact rate

is bounded between two established conditions, then an injection-addiction free equilibrium is

possible given a certain level of effectiveness of the NEP. If the successful contact rate is high

enough, however, the NEP is not sufficient to contain the injection-addiction behavior. Based on

the successful contact rate, we made several propositions on the maximum rate that people may

abandon the NEP and the minimum rate at which people much join an NEP in order to maintain

an injection-addiction free equilibrium. Furthermore, we showed that an NEP can be ineffective

to a certain degree without significantly impacting the endemic dynamics. However, if an NEP is

significantly ineffective, the treatment compartment dramatically decreases.

Through sensitivity analysis, we focused on those parameters within our control that impact
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the entire system. Therefore, we note that the rate at which an IDU begins using an NEP has

an impact on dynamics of the system each proportion of the endemic subpopulations, with the

exception of the non-IDU population. We also note that the rate at which people abandon the

NEP impacts each subpopulation, especially the endemic proportion of the subpopulation utilizing

the NEP.

From the research and analysis, it is clear that the presence of an NEP impacts the dynamics of

an IDU population. Although the results from this research provide insight to the impact of NEPs

on injection-addiction behavior, more research is needed to explore the factors that impact an IDU

population seeking treatment.

8 Future Study

This model is constrained by limited data and the difficult nature of quantifying IDU dynamics. As

a result, this is a generalized model that explores possible interactions, but does not fully capture the

dynamics of an IDU population or the role of NEPs within these communities. Further research is

needed to consider what additional factors may contribute to an IDU population choosing to utilize

an NEP, and what effect those factors may have on an IDU ultimately choosing to seek treatment

for addiction. Furthermore, much of the data available for numerical solutions was from the late

1990’s. Much of this data was collected in order to understand the spread of HIV within IDU com-

munities at that time. Future research includes investigating more recent data to understand how

IDU dynamics have changed in the past twenty years as knowledge of HIV has continued to expand.
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9 Appendix

9.1 Appendix 1

We compute the partial derivatives with respect to each parameter for X∗, Y ∗S , Y
∗
E , Z

∗ and multi-

ply that partial derivative by the parameter divided by the compartment. The following are the

analytical results used to generate the numerical sensitivity analysis.

Sensitivity Indices for X∗

p1

X∗
∂X∗

∂p1
=

p1

M

p2

X∗
∂X∗

∂p2
= −p2Q

2

Mq
(µ+ δ + p3)

p3

X∗
∂X∗

∂p3
=

p2p3Q
2

qM

q

X∗
∂X∗

∂q
=

Q

M
(µ+ δ + p3)

µ

X∗
∂X∗

∂µ
=

µ

M

[
1 +

p2Q
2

q

]
δ

X∗
∂X∗

∂δ
=

δ

M

[
1 +

p2Q
2

q

]
β1

X∗
∂X∗

∂β1
= −1
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Sensitivity Indices for Y ∗S

p1

Y ∗S

∂Y ∗S
∂p1

=
−p1β1

(β1 −M)M

p2

Y ∗S

∂Y ∗S
∂p2

=
p2β1

(β1 −M)M

(
Q2

q
(µ+ δ + p3)

)
p3

Y ∗S

∂Y ∗S
∂p3

=
−p2p3Q

2β1

(β1 −M)Mq

q

Y ∗S

∂Y ∗S
∂q

= − β1Q

(β1 −M)M
(µ+ δ + p3)

µ

Y ∗S

∂Y ∗S
∂µ

=
µ

µ+ δ
− µβ1

(β1 −M)M

(
1 +

p2

q
Q2

)
δ

Y ∗S

∂Y ∗S
∂δ

=
δ

µ+ δ
− δβ1

(β1 −M)M

(
1 +

p2

q
Q2

)
β1

Y ∗S

∂Y ∗S
∂β1

=
M

β1 −M

Sensitivity Indices for Y ∗E

p1

Y ∗E

∂Y ∗E
∂p1

=
−p1β1

M(β1 −M)

p2

Y ∗E

∂Y ∗E
∂p2

=
p2β1

(β1 −M)M

[
Q2

q
(µ+ δ + p3)− p2Q

q

]
p3

Y ∗E

∂Y ∗E
∂p3

= −p3Q

q

[
1 +

p2Q

M2( 1
M −

1
β1

)

]
q

Y ∗E

∂Y ∗E
∂q

= 1− β1q

M(β1 −M)

[
1− p2Q

q

]
µ

Y ∗E

∂Y ∗E
∂µ

= µ

[
−Q
q

+
1

µ+ δ
− β1

(β1 −M)M

(
1 +

p2Q
2

q

)]
δ

Y ∗E

∂Y ∗E
∂δ

= δ

[
−Q
q

+
1

µ+ δ
− β1

(β1 −M)M

(
1 +

p2Q
2

q

)]
β1

Y ∗E

∂Y ∗E
∂β1

=
M

β1 −M
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Sensitivity Indices for Z∗

p1

Z∗
∂Z∗

∂p1
=

p1

p1 +Qp3
− β1p1

M(β1 −M)

p2

Z∗
∂Z∗

∂p2
=

p2Q
2

q
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−p3

(p1 +Qp3)
+
β1(µ+ δ + p3)

M(β1 −M)

]
p3

Z∗
∂Z∗

∂p3
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Q2p3

q
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(µ+ δ + p2)

(p1 +Qp3)
− p2β1

M(β1 −M)

]
q

Z∗
∂Z∗

∂q
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p3Q
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− qβ1
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[
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q

]
µ

Z∗
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q
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q
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Sensitivity Indices for R0

q

R0

∂R0

∂q
= − Q

M
(p3 + µ+ δ)

p1
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9.2 Appendix 2

The Jacobian matrix evaluated at the endemic equilibrium point for the case where β3 = 0 is given

by the following:

JEE =



−β1
M

(µ+ δ)
[
1− 1

R0

]2
− µ −β1

R0

[
1−

(µ+δ)(1− 1
R0

)

M

]
β1(µ+δ)
R0M

[
1− 1

R0

]
β1(µ+δ)
R0M

[
1− 1

R0

]
β1
M

(µ+ δ)
[
1− 1

R0

]2 −β1
R0

[
1−

(µ+δ)(1− 1
R0

)

M

]
− (q + p1 + µ+ δ)

β1(µ+δ)
R0M

[
1− 1

R0

]
+ p2 −β1(µ+δ)

R0M

[
1− 1

R0

]
0 q −(µ+ δ + p2 + p3) 0

0 p1 p3 −(µ+ δ)



9.3 Appendix 3

Ȧ = Λ− β1A
US
N
− µA,

U̇S = β1A
US
N
− (q + p1 + µ+ δ)US + p2UE ,

U̇E = qUS − (δ + µ+ p2 + p3)UE , (12)

Ṫ = p1US + p3UE − (δ + µ)T,

Ṅ = Λ− µN − δ(US + UE + T ),

where

N = A(t) + US(t) + UE(t) + T (t).

9.4 Appendix 4

Estimating parameters is necessary for running simulations to show behavior of our model, as well

as necessary for sensitivity analysis. Unfortunately, given the uncertainty regarding the population

we have studied with regards to numbers and behaviors, it was very difficult to find the parameters

we needed in the literature. Therefore, all of our parameters are approximations. Due to the

brevity of our model, a decision based on the inability to model an unpredictable population of

drug addicts, our parameters are measured per month with the exception of initial conditions. An
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important note is that our parameters and approximations are based on Baltimore, MD (the city)

in the year 1998, and years around that time period, as well as state or national data in or around

that time.

Table 6: Our Estimated Initial Population Sizes
Population Population of the City N0 UE0 US0 T0 A0

People 654,590 69,387 1,030 9,574 325 58,458

Table 7: Our Estimated Parameters
Parameter µ δ Λ q p1 p2 p3 β1 β3

Values 0.00068 0.00255 40.36 0.0169 0.00071 0.00483 0.00221 0.042 0.05875

Estimation of Initial Population Sizes

For the Population of the City: Throughout our research we became interested in Balti-

more, Maryland in or around 1998 as a location and time frame to base our model on. We found

Maryland Vital Statistics: Annual Report 1998 from the Division of Health Statistics that provided

us with the population size of Baltimore city in 1998, 654,590 people.[10]

For the Total Population of Illicit Drug Users (N0): The Substance Abuse and Men-

tal Health Services Administration (SAMHSA) has conducted the National Household Survey on

Drug Abuse (NHSDA) across the years, and throughout research we came across their Main Find-

ings 1998 which provided us with a percentage of the total population of the United States that

used illicit drugs in the past year (for 1998). This percentage was 10.6%[1], and using this we

approximated how many people of our total population of Baltimore, MD[10] had used illicit drugs

within the past year :

Pop’n of Baltimore in 1998× 10.6% = Pop’n of Illicit Drug Users

654, 590 people× 0.106 ≈ 69, 387 people
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Therefore, our initial population of total drug users is 69,387 people. [10, 1]

For the Population of IDUs using an Exchange Program (UE0): In Needle-Exchange

Participation, Effectiveness, and Policy: Syringe Relay, Gender, and the Paradox of Public Health,

in the section where they go over their sample size and exchange program participation, we gathered

that 2,574 people over a 30mo period visited and participated in the needle-exchange program more

than one time.[18] To find a per-month number of people actively using a needle exchange program

we get:

2, 574 people

30 mo
= 85.8 people/mo

85.8 people/mo× 12 mo ≈ 1, 030 people for the year of 1998

Therefore, our initial population of IDUs using an NEP is 1,030 people. [?]

For the Population of IDUs who are Sharing Needles (US0): To find the number of IDUs

who are not using a needle-exchange program, and therefore we assume are sharing, we needed

to estimate the total number of IDUs in Baltimore in 1998. We found Estimating Numbers of

Injecting Drug Users in Metropolitan Areas for Structural Analyses of Community Vulnerability

and for Assessing Relative Degrees of Service Provision for Injecting Drug Users, which provided

estimations for the total population of IDUs in Baltimore in 1998. Although they provided a variety

of estimations (using different techniques) we chose the one that provided us with ≈ 162 IDUS per

10,000 people in a population, giving us[6]:

162 people

10, 000 people
=

x people

654, 590 people

162 people

10, 000 people
× 654, 590 people = x people

0.0162× 654, 590 people ≈ 10, 604 IDUs for Baltimore, MD 1998

Therefore, 10,604 people is our initial total population size of IDUs in Baltimore, MD 1998. [6, 10]

From this, we can find the number of IDUs who are sharing by subtracting the number of IDUs
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using the exchange program:

10, 604 people− 1, 030 people = 9, 574 IDUs who share for Baltimore, MD 1998 [18, 10, 6]

For the Population of IV Drug Addicts in Treatment (T0): In Drug Abuse Treatment

Success and Needle Exchange Participants, they grouped the individuals who entered based on how

they were referred either via NEP, or via Standard Referral. In total they had 325 in treatment,

and we use this number as our initial population size for the Treatment compartment. [4] For the

Drug Users not using IV Drugs (A0): Using the information gathered regarding population

sizes, we can calculate the number of illicit drug users not using IV drugs. We assume that people

who are using illicit drugs in Baltimore, MD 1998 minus the total IDU population would be the

population of drug users who are not IV drug addicts.

69, 387 people− 10, 604 IDUs− 325 those in treatment for IV drug addiction = 58, 793 people

Thus, the number of illicit drug users who are not addicted to IV drugs is 58,793 which represents

the initial at-risk population of our model. [1, 10, 6, 4] [18, 10, 6]

Estimation of Parameters

For the Natural Death Rate (µ): In Maryland Vital Statistics: Annual Report 1998 a crude

death rate for the state of Maryland in 1998 was given as 817.4/100,000 died per year. Thus, we

found that 0.008174 divided by 12 months gave us a monthly natural death rate of 0.00068/mo for

µ. [10]

For the IV Drug Related Death Rate (δ): In Smart Steps: Treating Baltimore’s Drug Problem

we found that 324 individuals had died from overdose in 1999.[17] If we assume the rate at which

people die due to overdose is similar to the rate at which people die to withdrawal we can say

generally that δ is the death due to IV drug-related death:
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324 people die

10, 604 IDU pop’n
= 3.06% IDUs die a year due to overdose

3.06%

12 mo
= 0.00255/mo

Thus, the rate at which IV drug addicts die due to IV drug-related death is δ = 0.00255/mo.

[17, 6, 10]

For the Number of People Who Enter the At-Risk Population (Λ): In our search to find

a Λ value, we discovered in SAMHSA’s Main Findings 1998 that between the years 1997 and 1998

there was a 0.6% decrease in the proportion of the total population that used illicit drugs, which

is a 0.05% decrease per month. Thus, our Λ rate must have less people entering the illicit drug

user population than leaving the population. Notice that the only exit from our model is via death

(natural or IV drug-related), and that because people in A do not die due to IV drug-related death:

Λ− (µ+ δ)N + δA = −0.0005N.

Λ = (µ+ δ)N − 0.0005N − δA

Λ = (0.00068 + 0.00255)N − 0.0005N − (0.00255)A

Λ = 0.00323(654, 590)− 0.0005(654, 590)− 0.00255(654, 590)

Λ ≈ 40.36

Thus, approximately 40 people enter the at-risk (A) population per month.[6, 10] From this, we can

find the number of IDUs who are sharing by subtracting the number of IDUs using the exchange

program:

10, 604 people− 1, 030 people = 9, 574 IDUs who share for Baltimore, MD 1998 [18, 10, 6]

For the rate at which People Move to NEP (q): In Needle-Exchange Participation, Ef-
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fectiveness, and Policy: Syringe Relay, Gender, and the Paradox of Public Health we found the

information we could use to find the number of people who began using a needle exchange program

per month. In this paper they said 5,369/30mo visited the Baltimore Needle Exchange Program,

which would be ≈ 178.97 IDUs/mo, visited out of the US population. [18] Then

178.97 people/mo

9, 574 US IDU pop’n
= 0.0187 begin using NEP/mo

Thus, the rate at which IDUs who share begin to use an NEP is q = 0.0187/mo. [17, 6, 10]

For the Rate at which People in US go to Treatment (p1): In Drug Abuse Treatment

Success and Needle Exchange Participants, they grouped the individuals who entered based on how

they were referred either via NEP, or via Standard Referral. We assume that because 82 were

IDUs going into treatment via NEP referral, that standard referrals would be IDUs not in a needle

exchange program. Therefore we find that 243 IDUs from US went into treatment out of the 325

total participants. [4]

243 people

3 years
= 81 people/yr via standard referral

81 people/yr

9, 574 pop’n of US
= 0.00846/year

0.00846/year

12mo
= 0.00071/mo

Thus, the rate at which IDUs who share go to treatment (T ) is p1 = 0.00071/mo. [4, 18, 10, 6]

For the rate at which People in UE return to US (p2): In Needle-Exchange Participation,

Effectiveness, and Policy: Syringe Relay, Gender, and the Paradox of Public Health we found the

information we could use to find the number of people who began using a needle exchange program

per month. In this paper they said 1,190/30mo visited the Baltimore Needle Exchange Program

39



only once, and that 873/30mo did not return the needles they had obtained from the NEP. We

interpreted this as 1,910 visited once and of those 1,910, 873 did not even return their needles after

their initial visits (thus meaning they did not even use the program for one full needle exchange).

Recall that 2,574/30mo had used the program more than once, thus:[18]

2, 574 use NEP− (1910 used only once− 873 did not return)

30 mo
≈ 51.23 stop using NEP/mo

51.23 stop using/mo

1, 030 pop’n of UE
≈ 0.0497

Thus, the rate at which IDUs in an NEP returning to a population of IDUs who share is p2 =

0.0497/mo. [17, 6, 10]

For the Rate at which People in UE go to Treatment (p3): In Drug Abuse Treatment

Success and Needle Exchange Participants, they grouped the individuals who entered based on

how they were referred either via NEP, or via Standard Referral. There were 82 IDUs going into

treatment via NEP referral, giving us: [4]

82 people

3 years
≈ 27.33 people/yr via NEP referral

27.33 people/yr

1, 030 pop’n of UE
= 0.0265/year

0.0256/year

12mo
= 0.00221/mo

Thus, the rate at which IDUs who use a needle exchange program go to treatment (T ) is p3 =

0.00221/mo. [4, 18, 10, 6]

For the Rate of At-Risk Individuals Becoming IDUs (β1): We found a paper, The

Impact and Cost-Effectiveness of Methadone Maintenance Treatment in Preventing HIV and Hep-
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atitis C, which provided the rate of 0.5 of becoming an IDU with successful contact per year. Thus,

getting a monthly rate of ≈ 0.042/mo. [16]

For the Rate of People in Treatment Relapsing back into the US population (β3):

We found a paper, Time to Relapse Questionnaire (TQR): A Measure of Sudden Relapse in Sub-

stance Dependence, which provided a relapse rate of 66%− 75% per year going back into the IDU

population that shares needles (US). Thus, on average we get a monthly rate of β3 = 0.05875/mo.[2]
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