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Abstract

The rubeola virus, commonly known as measles, is one of the major causes of vaccine-
preventable deaths among children worldwide. This is the case despite the fact that an effective
vaccine is widely available. Even in developed countries elimination efforts have fallen short as
seen by recent outbreaks in Europe, which had over 30,000 cases reported in 2010. The string
of measles outbreaks in France from 2008-2011 is of particular interest due to the documented
disparity in regional vaccination coverage. The impact of heterogeneous vaccine coverage on
disease transmission is a broad interest and the focus of this study. A Susceptible-Exposed-
Infectious-Recovered (SEIR) multi-patch epidemiological model capturing the regional differ-
ences in vaccination rates and mixing is introduced. The mathematical analysis of a two-patch
system is carried out to help our understanding of the behavior of multi-patch systems. Nu-
merical simulations are generated to aid the study of the system’s qualitative dynamics. Data
from the recent French outbreaks were used to generate parameter values and to help connect
theory with application. Our findings show that heterogeneous vaccination coverage increases
controlled reproduction number compared to comparable homogeneous coverage.

1



Contents

1 Introduction 3

2 Biological Overview 3
2.1 Measles Virus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Complications Associated with Infection . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 MMR Vaccine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Epidemiological Overview 4
3.1 Measles Throughout History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Current Measles Outbreaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 The Measles Epidemic in France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 The Anti-Vaccine Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Model 7
4.1 General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Positive Invariance and Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Analysis 11
5.1 Basic Reproductive Number and the Disease Free Equilibrium . . . . . . . . . . . . . 11
5.2 Endemic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 RC and Vaccination Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Numerical Simulations 22
6.1 Two-Patch Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Multi-Patch Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Results and Discussion 26
7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendices 28

A Parameter Calculation 28
A.1 Ni - population size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.2 µ - birth and death rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.3 φ - disease incubation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.4 γ - recovery rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.5 δi - vaccination coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.6 π - inter-patch mixing proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.7 β - scaled successful contact rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.8 α - scaled mixing parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2



1 Introduction

Measles is a highly contagious virus from the Morbillivirus genus [25] that continues to affect more
than 30 million individuals worldwide [17]. The World Health Organization (WHO) has estimated
that between the years 2000 and 2003 measles has accounted for 1 in every 25 childhood deaths,
significantly higher than the ratio of deaths due to other diseases such as HIV/AIDS [35]. This
statistic reflects the high communicability of the disease, as it travels through susceptible pockets of
populations at an alarmingly fast rate. It was found that there is an approximately 85% chance that
someone who comes into direct contact with the disease, such as a susceptible household contact,
will become infected [30]. Although this disease has a very high transmission rate, there are no
animal reservoirs for disease resurrection [25] nor has the virus mutated enough to alter immunogenic
epitopes [24]. Therefore, complete eradication of the disease is theoretically possible.

The disease doesn’t preferentially target a certain gender or race; the prevalence of the disease in
any population thus depends primarily on socioeconomic factors, environmental conditions, and the
relative vaccination coverage within the region [22]. Measles epidemics tend to occur every 2 to 5
years, during the winter and spring seasons of temperate climates [22]. It is still uncertain whether
this seasonality is primarily due to the actual climate conditions or the indirect social behavior and
population movement that arises from these conditions.

2 Biological Overview

2.1 Measles Virus Characteristics

The virus is transmitted through respiratory droplets present in sneezes and coughs; it initially
attacks the host’s respiratory tract and from there becomes systemic [15]. The initial symptoms
usually occur 8-14 days after infection and are characterized by a runny nose, a gradually increasing
fever, watery eyes, a cough, drowsiness, and a loss of appetite [3]. Following these symptoms, white
lesions known as Koplik’s spots appear on the inside lining of the mouth opposite the molars [3].
These lesions preclude the characteristic measles rash, which occurs two to three days later and
travels from the face to the body’s extremities [3]. The rash consists of reddish patches that are
approximately 3-8mm in diameter; these patches appear gradually and last from about 3 to 7 days
[28]. Because the characteristic rash generally appears at the end of the communicable period,
the strategy of quarantining infected individuals becomes difficult to assess. There is currently no
known cure for the virus [17].

2.2 Complications Associated with Infection

Although the measles virus encodes for a haemagglutinin protein that elicits a strong immune
response and grants recovered individuals immunity [25], the serious complications associated with
the virus have life-long consequences that pose major public health concerns. The measles virus has
the potential to affect many organ systems throughout the body. In particular it attacks epithelial,
reticuloendothelial, and white blood cells [28]. Since white blood cells are necessary for proper
immune function, an infected patient can often develop severe health problems that are otherwise
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unassociated with the initial measles infection. These complications occur in roughly 10-30% of
measles patients and account for most of the reported fatalities [32]. Common secondary infections
include bacterial ear infections, pneumonia, diarrhea, and otitis media [32].

In rare cases, some infected individuals can also develop neurological and optical problems. An
estimated 1 in 1000 patients develop a form of encephalitis at the time of measles recovery. The
acute encephalitis is severe inflammation of the brain that causes vomiting, convulsions, coma, brain
damage, and even death [5]. Since measles is associated with a vitamin A deficiency, the virus can
additionally place infected persons at higher risks for eye diseases, including xerophthalmia, corneal
ulceration, keratomalacia, and subsequent blindness [32]. It is estimated that 15,000 of the 60,000
blindness cases reported each year among children in low income countries can be attributed to
measles [32].

2.3 MMR Vaccine

Finding an effective measles vaccine has been a main focus of many physicians and scientists for
the past century. It wasn’t until 1954 that biomedical scientist John Enders and physician T.C.
Peebles were able to isolate a live but attenuated measles virus in tissue cultures in Boston [29].
This vaccine entered the United States market in 1963, but had the tendency to cause fever and rash
in vaccinated individuals and was eventually replaced by the MMR vaccine in the 1970’s [25].

The MMR vaccine is a mixture of three vaccines that immunize against measles, mumps, and rubella
(German measles) [23]. This vaccine has been clinically proven to be safe and costs less than 1
U.S. dollar per child [14]. The introduction of this combined vaccine has significantly reduced the
occurrence of measles outbreaks in developed countries. For the first 6 months of life, an infant
usually possesses natural immunity from the disease due to maternal antibodies still present in
the infant’s system [22]. This passive immunity will wear off and it is therefore recommended
to administer the MMR vaccine in two doses to optimize efficacy: the first when the recipient is
between 12 and 15 months old and the second when the recipient is between 4 and 6 years old [25].
It has been found that the vaccine has approximately 90-95% efficacy [9].

3 Epidemiological Overview

3.1 Measles Throughout History

There have been multiple measles epidemics throughout history. American historian William Mc-
Neil claims that measles and other related diseases most likely originated in China sometime be-
tween A.D. 37 and A.D. 653 [22]. Since then, measles epidemics have continued to plague mankind.
In the Middle Ages, many people confused the disease with smallpox [22]. When the Europeans
settled in North America during the fifteenth and sixteenth centuries, they unknowingly brought
measles to the indigenous populations. Because these native populations had not yet developed
any antibodies to help fight off the virus, many epidemics broke out and hundreds of thousands of
Native Americans reportedly died over the course of several centuries [17]. Several South American
Indian tribes in the Amazon were also lost, with the most notable epidemic causing 30,000 deaths
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in 1749 [35]. It wasn’t until 1758 that physicians began to classify the disease as “infectious” [22].
Despite many attempts to prevent and cure the disease, these epidemics continued to occur all
around the world; during the American Civil War, 4,000 soldiers perished after becoming affected
[17]. Outbreaks continued to occur until a weakened measles vaccine was introduced in the 1960’s.
The most current measles vaccine has substantially decreased the number of measles outbreaks
occurring worldwide.

3.2 Current Measles Outbreaks

Despite the MMR vaccine available today, many countries are still dealing with the disease. It is
estimated that only 50% of all measles cases are actually reported to the World Health Organiza-
tion. This statistic indicates that every year the virus infects an estimated 50 million individuals,
and as a result, causes 1.5 million deaths annually [22]. These numbers reflect the ease with which
measles can re-infect a community even when only small pockets of the population are susceptible.
In Quebec, Canada, where the average population immunity is estimated to be 95%, an initial
outbreak consisting of 94 cases transmitted through largely unrelated networks of unvaccinated
individuals [25]. The same problem is exacerbated in developing countries where vaccination cov-
erage is more sparse throughout the regions, namely in southern and eastern Africa. Out of the 46
African countries affected, recent measles outbreaks have been the most prevalent in South Africa,
Zimbabwe, Zambia, and Malawi [25].

Although measles was considered to be eliminated in the United States as of 2000, many European
countries are still battling this disease. The majority of outbreaks occur in Bulgaria, France, Italy,
Germany, Ireland, the United Kingdom, and Spain [13]. In addition, these outbreaks are beginning
to affect the U.S. again. In 2011, the U.S. saw the highest number of annual measles cases in 2011
since 1995. The Centers for Disease Control and Prevention primarily attribute these new cases to
Americans traveling to Europe and bringing back the disease [33].

3.3 The Measles Epidemic in France

After the MMR vaccine was instituted in France during the 1980’s, the disease was practically
nonexistent in the country. Unfortunately, the virus reappeared in 2008 [18]. The measles epidemic
in France during 2008-2011 was the largest modern measles outbreak in Europe and is projected
to increase even more during the next cycle [13]. Thus far, over 22,000 cases have been reported
in the country, with 5,000 patients hospitalized from associated complications [7]. According to
the World Health Organization, the measles strain originating from France has since traveled to
Denmark, Gemany, Italy, Romania, Russia, and Belgium [19].

Prior to the outbreak, the average immunization coverage in France fell below the recommended
95% [18]. The primary cause for this average decrease was the lack of homogenous vaccination rates
throughout the country; some regions had over 95% of citizens vaccinated, while others had under
85% of citizens vaccinated [7]. It has been noted that the districts containing the lowest vaccine
coverage rates were located in southern France. As shown in Fig. 2, there are large disparities of
vaccine coverage in each French district, suggesting that this heterogeneity may significantly impact
the disease’s transmission.
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Figure 1: A map of France representing the MMR1 coverage rates in each district from 2003-3008.
The data was collected from health certificates for children at 24 months of age. Figure reproduced
from [7].

3.4 The Anti-Vaccine Trend

Recently, a large portion of the global public has been losing confidence in the vaccine industry; this
has had a significant impact on disease elimination efforts. For example, there have been multiple
poliovirus outbreaks in Northern Nigeria due to the boycotting of the polio vaccine campaign [24].
Many anti-vaccine proponents argue that the particular disease being vaccinated against is relatively
mild and does not need vaccination coverage while others believe that the vaccine poses more of
a danger than does the disease itself. Additionally, there are certain conservative religous sects
that oppose vaccination and other modern health care methodologies. Whatever the reason, new
epidemics are occurring throughout the world as a result of this social trend.

It has been speculated that the main cause for the wide disparity of vaccine coverage in France
is not due to the vaccine’s cost, but because many parents in particular districts are refusing to
vaccinate their children. When a fraudulent paper was published by Wakefield, et al. in 1998 that
hypothesized an association between the MMR vaccine and autism, a widespread public fear of the
vaccine was born. Such unfounded fears were exacerbated in France when concerns surfaced around
a hepatitis b vaccine. When these fears are combined with France’s less aggressive vaccination
policies, the anti-vaccination movement has fertile ground in which to grow [24].

We are motivated to construct a mathematical model for the spread of measles in France because we
are interested in potential underlying forces inherent in the epidemic. We are specifically interested
in the geographic heterogeneity of France because the epidemics correlate with low vaccination cov-
erage in the southern regions. We aim to determine the impact of heterogenous vaccination coverage
on epidemics to gain insight on disease dynamics within developed and developing countries.
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4 Model

The outbreaks in France and the heterogeneous nature of vaccine coverage motivated us to study a
two patch SEIR model. The country is divided by regions into separate populations based on the
vaccination rate given by [7]. We justify the use of an SEIR model because measles has a latent
period where patients are infected but not infective. Additionally, we assume that the population
is born either susceptible or immune based on a combination the vaccination rate of the regions
and the expected efficacy of the vaccine. The recovered class also includes those who are vaccinated
and imbues perfect immunity against measles. Finally, we assume that birth rate of the population
is equal to the death rate, and infection with measles does not increase death rate.

4.1 General Model

Generally, we construct our multi-regional model with four components: susceptible individuals that
are unvaccinated, exposed individuals in the latent period of the disease, infectious individuals, and
resistant individuals that are either recovered or vaccinated,

Ṡi = −SiFi(Ii, Ij)− µSi + (1− δi)µNi,
Ėi = SiFi(Ii, Ij)− (µ+ φ)Ei,

İi = φEi − (µ+ γ)Ii,

Ṙi = γIi − µRi + δiµNi,

where i = 1, 2, j = 1, 2, and i 6= j. The function Fi models the mixing of the two patches and
includes the contact rate and probability of infection given a successful contact. The function Fi
can take many forms depending on biological assumptions. Simple heterogenous mixing as discussed
in [12] is a reasonable assumption to begin with. Proportional mixing assumes that every individual
across the entire population associates with one another solely based upon that individual’s activity
level. Preferential mixing assumes that a subsection of each patch only mixes with members of the
same patch, while the remaining patch population mixes proportionally with the populations of
all patches [27, 12]. While the proportional mixing assumptions could accurately represent vaccine
coverage disparities, it fails to represent the natural patch isolation that occurs in such a large
geographical region as France. Therefore, we chose to use a preferential mixing model. Such
a model allows the representation of heterogeneous vaccination and activity rates as well as the
natural patch preference that occurs when considering a country regionally. Preferential mixing in
the general form expressed by [12] then gives the function:

Fi(Ii, Ij) = ai

pii Ii
Ni

+
∑
j 6=i

pij
Ij
Nj

 ,

where ai is representative of number of contacts that individuals make in a given time and the
likelihood there would be a successful transmission given the contact was with an infective. The
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proportion of contacts that susceptibles make with people in their own patch is expressed with the
term pii

Ii
Ni
, and the proportion of contacts with members of other patches is expressed in the term∑

pij
Ij
Nj
.

Thus the full form of our system given vaccination and preferential mixing is given by:

Ṡi = −aiSi
(
pii

Ii
Ni

+
∑

pij
Ij
Nj

)
− µSi + (1− δi)µNi,

Ėi = aiSi

(
pii

Ii
Ni

+
∑

pij
Ij
Nj

)
− (µ+ φ)Ei,

İi = φEi − (µ+ γ)Ii,

Ṙi = γIi − µRi + δiµNi.

where i = 1, 2, j 6= i.

4.2 Positive Invariance and Boundedness

First we will show upper boundedness of our model. As no real biological system would blow
up to infinity, it is important to show that any model is bounded above. To do so consider that
Ni = Si+Ei+ Ii+Ri and Ṅi = Ṡi+ Ėi+ İi+ Ṙi which becomes Ṅi = µNi−µ(Si+Ei+ Ii+Ri) =
µN − µN = 0. Therefore, as Ṅi = 0 for all time the population is constant for all time. Thus
N(t) = Ni(0) for all time, and is bounded by the initial condition for all time. This immediately
implies the boundedness of all class variables to be in the interval [0, Ni(0)].

Positive invariance guarantees that the model biologically is well posed and will not create illogical
solutions and negative populations. We will now show positive invariance of the system given
initial conditions (Si(0), Ei(0), Ii(0), Ri(0)) > 0 and Ni = Si + Ei + Ii + Ri = Ni(0). Towards
contradiction we assume ∃ts > t0 such that the first zero point is Si(ts) = 0. Now consider
Ṡi(ts)|Si(ts)=0 = (1− δi)Ni > 0 because δi < 1 and Ni > 0 given Ni(0) > 0. This implies that ∃tc
such that 0 ≤ tc ≤ ts and Si(tc) < 0. However, given that Si(0) > 0 and Si(ts) = 0 is the first zero
point, we have a contradiction. Therefore by proof through contradiction, Si > 0 ∀t ∈ [0,∞).

For all other state variables the proof follows similarly.

Positive invariance has been proven and have now shown all state variables are bounded both above
and below. Therefore given (Si(0), Ei(0), Ii(0), Ri(0), Ni(0)) > 0 all classes and total population
0 < (Si, Ei, Ii, Ri, Ni) ≤ Ni(0) ∀t ∈ [0,∞) and the model is well posed.

4.3 Rescaling

Starting from a multi-patch mixing model with vaccination, we examine how a special case of
preferential mixing can be expressed for a two-patch system.
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Ṡi = −aiSi
(
pii

Ii
Ni

+
∑

pij
Ij
Nj

)
− µSi + (1− δi)µNi,

Ėi = aiSi

(
pii

Ii
Ni

+
∑

pij
Ij
Nj

)
− (µ+ φ)Ei,

İi = φEi − (µ+ γ)Ii,

Ṙi = γIi − µRi + δiµNi,

where

pii = p11 = πi + (1− πi)p1,
pij = p12 = (1− πi)p2,

p1 = p2 =
(1− πi)aiNi

(1− π1)a1N2 + (1− π2)a2N2
.

For simplifying purposes, assume that ai = aj , Ni = Nj and πi = πj ;

(1− π)aN

(1− π)aN + (1− π)aN
=

(1− π)

(1− π) + (1− π)
,

p1 = p2 =
(1− π)

(1− π) + (1− π)
=

1

2
,

p11 = π + (1− π)p1 = π +
1− π

2
,

p12 = (1− π)p2 =
1− π

2
.

Therefore the system becomes:

Ṡi = −aSi
((

π +
1− π

2

)
Ii
Ni

+

(
1− π

2

)
Ij
Nj

)
− µSi + (1− δi)µNi,

Ėi = aSi

((
π +

1− π
2

)
Ii
Ni

+

(
1− π

2

)
Ij
Nj

)
− (µ+ φ)Ei,

İi = φEi − (µ+ γ)Ii,

Ṙi = γIi − µRi + δiµNi.
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Now consider the term;

aSi

((
π +

1− π
2

)
Ii
Ni

+

(
1− π

2

)
Ij
Nj

)
,

p11 = π +
1− π

2
=

2π

2
+

1− π
2

=
1 + π

2
,

1− p12 = 1− 1− π
2

=
2

2
− 1− π

2
=

1 + π

2
.

This allows the following rescaling;

ρ = p12 =
1− π

2
,

(1− ρ) = p11 =
1 + π

2
,

aSi

(
(1− ρ)

Ii
Ni

+ ρ
Ij
Nj

)
,

aSi(1− ρ)

(
Ii
Ni

+

(
ρ

1− ρ

)
Ij
Nj

)
,

βSi

(
Ii
Ni

+ α
Ij
Nj

)
,

where

β = a(1− ρ),

α =
ρ

1− ρ
.

The model is constructed to have a constant population invariant with respect to time, i.e. where
Ni = Si +Ei + Ii +Ri and the time derivative of Ni is Ṅi = Ṡi + Ėi + İi + Ṙi = 0. In addition, the
Ri class does not impact the dynamics the system, thus the two-patch model can be reduced to a 6
dimensional system by Ri = Ni−Si−Ei− Ii. In addition, we divide each variable by its respective

patch population size, (s1, e1, i1, s2, e2, i2) =
(
S1

N1
, E1

N1
, I1N1

, S2

N2
, E2

N2
, I2N2

)
. Thus the rescaled two-patch

system can be written as:

ṡ1 = −βs1(i1 + αi2)− µs1 + (1− δ1)µ,

ė1 = βs1(i1 + αi2)− (µ+ φ)e1,

i̇1 = φe1 − (µ+ γ)i1,

ṡ2 = −βs2(i2 + αi1)− µs2 + (1− δ2)µ,

ė2 = βs2(i2 + αi1)− (µ+ φ)e2,

i̇2 = φe2 − (µ+ γ)i2,
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which shall be investigated in the sections to follow.

5 Analysis

5.1 Basic Reproductive Number and the Disease Free Equilibrium

In epidemiological models, the basic reproductive number (R0) is an important element in analysis.
In brief, R0 represents the number of new cases that stem from an initial infective within an entirely
susceptible population. It is often the case that if R0 < 1 the disease will die out and if R0 > 1 the
disease will persist. However, this is not always the case in more complicated models. For models
that account for vaccination, it is also necessary to consider the reproduction number of the disease
given the controls (RC).

In our two-patch system we find both R0 and RC using the next generation operator method as
outlined in [34]. This allows for the restructuring of the model into a vector equation and finding
the next generation matrix, and evaluating at the disease free equilibrium. The spectral radius,
(largest eigenvalue), of this matrix is equivalent to RC for the system.

The disease free equilibria (DFE) occurs when a fixed point in any epidemiological system is such
that all disease-carrying classes are zero. For our rescaled two-patch model, the absence of disease
occurs when e∗1 = e∗2 = i∗1 = i∗2 = 0, s1 = s∗1, and s2 = s∗2. (Here, x∗i indicates a fixed value of xi).
Given the necessary absence of disease and the assumption of the existence of some s1 = s∗1 and
s2 = s∗2, we look for a point which satisfies,

ṡ1 = −βs1(i1 + αi2)− µs1 + (1− δ1)µ = 0,

ė1 = βs1(i1 + αi2)− (µ+ φ)e1 = 0,

i̇1 = φe1 − (µ+ γ)i1 = 0,

ṡ2 = −βs2(i2 + αi1)− µs2 + (1− δ2)µ = 0,

ė2 = βs2(i2 + αi1)− (µ+ φ)e2 = 0,

i̇2 = φe2 − (µ+ γ)i2 = 0.

We then find the DFE by considering

−µs∗1 + (1− δ1)µ = 0,

−µs∗2 + (1− δ2)µ = 0.

From this, we determine the disease free equilibrium to exist at
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s∗1 = 1− δ1,
s∗2 = 1− δ2,
e∗1 = e∗2 = 0,

i∗1 = i∗2 = 0.

To find the next generation matrix, we express the system as a set of vector equations where X is
the vector of infected classes and Y is the vector of uninfected classes. Thus, we have

dX

dt
= F(X,Y )− V(X,Y ),

dY

dt
= W(X,Y ).

Here, F(X,Y ) represents flows from Y into X, and V(X,Y ) represents all other flows. We then
set

F =

(
∂F
∂X

)
(DFE)

, V =

(
∂V
∂X

)
(DFE)

.

For our system, one gets

F(X,Y ) =


βs1(i1 + αi2)

0
βs2(i2 + αi1)

0

 , V(X,Y ) =


e1(µ+ φ)

−φe1 + i1(µ+ γ)
e2(µ+ φ)

−φe2 + i2(µ+ γ)

 ,

F(DFE) =


0 β(1− δ1) 0 β(1− δ1)α
0 0 0 0
0 β(1− δ2)α 0 β(1− δ2)
0 0 0 0

 , V(DFE) =


µ+ φ 0 0 0
−φ µ+ γ 0 0
0 0 µ+ φ 0
0 0 −φ µ+ γ

 .
We can compute the next generation matrix FV −1, where the spectral radius of FV −1 is the control
reproduction number RC , and the case without vaccination is the basic reproduction number R0.
As a result,

RC =
βφ
(

(1− δ1) + (1− δ2) +
√

4α2(1− δ1)(1− δ2) + (δ1 − δ2)2
)

2(µ+ φ)(µ+ γ)
,

R0 =
βφ(1 + α)

(µ+ φ)(µ+ γ)
.
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From literature, ([21], [8], [10]), we find R0 to be commonly considered between 12 and 16. We use
this information in our estimation of other parameters as seen in Appendix A.

From theorems of the next generation operator and definitions of R0 and RC we also know imme-
diately that the disease free equilibrium is stable when RC < 1. Therefore no further analysis is
needed. It is the case that if

RC =
βφ
(

(1− δ1) + (1− δ2) +
√

4α2(1− δ1)(1− δ2) + (δ1 − δ2)2
)

2(µ+ φ)(µ+ γ)
< 1

the DFE is stable.

5.2 Endemic Equilibrium

Solving for the endemic equilibrium explicitly, (s∗1, i
∗
1 6= 0, e∗1 6= 0, s∗2, e

∗
2 6= 0, i∗2 6= 0), proved

analytically formidable. Instead, we adopted the method of solving the equations systematically to
produce expressions for the equilibrium points in terms of the exposed classes. then

s∗1 =
µ(1− δ1)(µ+ γ)

βφ(e∗1 + αe∗2) + µ(µ+ γ)
,

e∗1 =
e∗2(µ(βφ(1− δ2)− (µ+ φ)(µ+ γ))− e∗2βφ(µ+ φ))

αβφ(e∗2(µ+ φ)− µ(1− δ2))
,

i∗1 =
e∗1φ

µ+ γ
,

s∗2 =
µ(1− δ2)(µ+ γ)

βφ(e∗2 + αe∗1) + µ(µ+ γ)
,

e∗2 =
e∗1(µ(βφ(1− δ1)− (µ+ φ)(µ+ γ))− e∗1βφ(µ+ φ))

αβφ(e∗1(µ+ φ)− µ(1− δ1))
,

i∗2 =
e∗2φ

µ+ γ
.

Upon substituting D1 = 1− δ1, D2 = 1 = δ2, A = µ+ γ, and B = µ+ φ, our endemic equilibrium
equations become

13



s∗1 =
µD1A

βφ(e∗1 + αe∗2) + µA
,

e∗1 =
e∗2(µ(βφD2 −AB)− e∗2βφB)

αβφ(e∗2B − µD2)
,

i∗1 =
e∗1φ

A
,

s∗2 =
µD2A

βφ(e∗2 + αe∗1) + µA
,

e∗2 =
e∗1(µ(βφD1 −AB)− e∗1βφB)

αβφ(e∗1B − µD1)
,

i∗2 =
e∗2φ

A
.

Notice that all potential equilibrium values, namely s∗1, i
∗
1, s
∗
2, i
∗
2, are positive if and only if e∗1 > 0

and e∗2 > 0. Thus we analyze the equations for e∗1 and e∗2 for conditions under which these variables
are positive. The results are presented in the following statements.

Theorem 1. If the endemic equilibrium exists in R+ then e∗i is bounded.

Proof. W.L.O.G., consider the equation for e∗i from the endemic equilibrium:

e∗i =
e∗j (µ(Djβφ−AB)−Bβφe∗j )

αβφ(Be∗j −Djµ)

where i 6= j. Assume that the denominator is positive,

αβφ(Be∗j −Djµ) > 0

Then it must hold that,

Be∗j > Djµ⇒ e∗j >
Djµ

B

The numerator must then also be positive for the endemic equilibrium to exist in R+,

e∗j (µ(Djβφ−AB)−Bβφe∗j ) > 0

which is only possible if two conditions hold:

Djβφ > AB

and
µ(Djβφ−AB) > Bβφe∗j .

If we assume Djβφ > AB, then:

µ(Djβφ−AB) > Bβφe∗j

14



⇒ Djµ

B
− µA

βφ
> e∗j >

Djµ

B
,

which is a contradiction since µA
βφ > 0. Then the only possibility is that e∗i <

Djµ
B . Thus if the the

endemic equilibrium exists in R+, e∗i must be bounded above by
Djµ
B .

Theorem 2. If e∗j <
Djµ
B , then the endemic equilibrium always exists in R+.

Proof. W.L.O.G., consider the equation for e∗i from the endemic equilibrium:

e∗i =
e∗j (µ(Djβφ−AB)−Bβφe∗j )

αβφ(Be∗j −Djµ)

where i 6= j. When e∗j <
Djµ
B , the denominator is negative. Thus for the endemic equilibrium to

exist in R+ the numerator must also be negative. We have two options:

Case 1. Djβφ < AB. Then the numerator is always negative.

Case 2. Djβφ > AB. The numerator is only negative if µ(Djβφ−AB) < Bβφe∗j . Indeed,

µ(Djβφ−AB) < Bβφe∗j

⇒ Djµ

B
− µA

βφ
< e∗j <

Djµ

B

This always holds if e∗j <
Djµ
B , thus under this condition, the endemic equilibrium always exists in

R+.

Theorem 3. If Djβφ > AB then RC > 1

Proof. Recall that

RC =
βφ
(

2− δ1 − δ2 +
√

(δ1 − δ2)2 + 4α2(1− δ1)(1− δ2)
)

2(µ+ γ)(µ+ φ)
,

which, under the above algebraic simplifications becomes

RC =
βφ
(
D1 +D2 +

√
(D2 −D1)2 + 4α2D1D2

)
2AB

.

If we have Djβφ > AB then

RC =
βφ
(
D1 +D2 +

√
(D2 −D1)2 + 4α2D1D2

)
2AB

>
2AB + βφ

√
(D2 −D1)2 + 4α2D1D2

2AB
> 1.

Thus if Djβφ > AB, RC > 1.

Theorem 4. If D1 = D2 ≡ D then D < AB
βφ ⇒ RC < 1 + α and D > AB

βφ ⇒ RC > 1.
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Proof. When D1 = D2 ≡ D we can show that

RC =
βφ
(
D1 +D2 +

√
(D2 −D1)2 + 4α2D1D2

)
2AB

=
βφ
(

2D +
√

4α2D2
)

2AB
=
βφ (D + αD)

AB
=

βφ

AB
D(1 + α).

If D < AB
βφ then

RC =
βφ

AB
D(1 + α) <

βφ

AB

AB

βφ
(1 + α) = 1 + α.

If D > AB
βφ then

RC =
βφ

AB
D(1 + α) >

βφ

AB

AB

βφ
(1 + α) = 1 + α ≥ 1.

Corollary 1. If D1 = D2 ≡ D then D < AB
βφ(1+α) =

(
1
R0

)
⇒ RC < 1

Stability of the Endemic Equilibria

Numerical methods and algorithms derived from the above theorems allowed for both the existence
and stability of the endemic equilibrium to be calculated.
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Figure 2: Bifurcation diagram showing the existence and stability of the endemic equilibria as a
function of δ1 with all other parameters fixed.

While there is not an explicit closed form solution, it is possible to determine existence and stability
numerically given some parameter space.
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5.3 RC and Vaccination Heterogeneity

We found that RC in the case of two patches with heterogeneous vaccination coverage is greater
than or equal to RC with homogeneous vaccination coverage. Using the previously defined substitu-
tions, RC given D1 6= D2 is greater than or equal to RC for two patches with the same vaccination
coverage, D∗ := D1+D2

2 . This means that for a given average vaccination proportion for an entire
population, having heterogeneous vaccination coverage increases RC . It is now necessary to demon-
strate the following inequality:

RC (D1, D2|D1 6= D2) ≥ RC
(
D1 +D2

2
,
D1 +D2

2

)
.

For RC (D1, D2|D1 6= D2) , we have

RC =
βφ(D1 +D2 +

√
(D1 −D2)2 + 4α2D1D2)

2AB
,

and for the case RC
(
D1 +D2

2
,
D1 +D2

2

)
RC reduces to

RC =
βφ(D1 +D2)(1 + α)

2AB
.

Therefore it is sufficient to show that
√

(D1 −D2)2 + 4α2D1D2) ≥ α(D1 +D2).

By definition, we have 0 ≤ α ≤ 1 and (D1 − D2)2 ≥ 0, so then (1 − α2)(D1 − D2)2 ≥ 0. By
expanding the term completely and moving all α2 terms to one side, we have:

D2
1 − 2D1D2 +D2

2 ≥ α2D2
1 − 2α2D1D2 + α2D2

2.

Adding 4α2D1D2 to both sides gives:

D2
1 − 2D1D2 +D2

2 + 4α2D1D2 ≥ α2D2
1 + 2α2D1D2 + α2D2

2,

or
(D1 −D2)2 + 4α2D1D2 ≥ α2(D1 +D2)2.

The inequality is preserved if we take the square root of both sides. Then we have:√
(D1 −D2)2 + 4α2D1D2 ≥ α(D1 +D2).
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Figure 3: Comparing two-patch RC values in a homogenous case and two heterogeneous cases. The
deflection is such that for an average of 1, both patches must be 1 due to the constraints on δ; all
values converge along that line.

This completes the proof and shows that given an average vaccination coverage for a population,
heterogeneous coverage causesRC to be greater than or equal to homogeneous coverage. By common
definition, RC is a control reproductive number given some intervention. As such, it is worthwhile
to determine what level of intervention is required in order to drive RC < 1. It was previously shown

in the endemic equilibria analysis that if D1 = D2 ≡ D then D < AB
βφ(1+α) =

(
1
RC

)
⇒ RC < 1.

Recalling that D = 1− δ this gives:

If D1 = D2 ≡ D then δ > 1− AB
βφ(1+α) = 1− 1

R0
⇒ RC < 1.

This gives necessary vaccination coverage to achieve stability of the disease free equilibrium. How-
ever, it is more often the case the vaccine coverage is heterogeneous, therefore it is also useful to
solve on vaccination proportion as a function of the other. Given:

RC =
βφ
(

(1− δ1) + (1− δ2) +
√

4α2(1− δ1)(1− δ2) + (δ1 − δ2)2
)

2(µ+ φ)(µ+ γ)
,

we set:

βφ
(

(1− δ1) + (1− δ2) +
√

4α2(1− δ1)(1− δ2) + (δ1 − δ2)2
)

2(µ+ φ)(µ+ γ)
< 1.
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Now solve for some Di with the simplified form of RC :

RC =
βφ
(
D1 +D2 +

√
(D2 −D1)2 + 4α2D1D2

)
2AB

,

βφ
(
D1 +D2 +

√
(D2 −D1)2 + 4α2D1D2

)
2AB

< 1,

βφ(D1 +D2) + βφ
√

(D2 −D1)2 + 4α2D1D2 < 2AB,

βφ
√

(D2 −D1)2 + 4α2D1D2 < 2AB − βφ(D1 +D2).

It was previously shown that if Djβφ > AB then RC > 1, therefore we know that the right side of
the inequality must be positive given the assumption RC < 1. Continuing we have:

(D2 −D1)2 + 4α2D1D2 <

(
2AB

βφ
− (D1 +D2)

)2

,

(D2 −D1)2 + 4α2D1D2 <

(
2AB

βφ

)2

−
(

2AB

βφ

)
(D1 +D2) + (D1 +D2)2,

(D2 −D1)2 + 4α2D1D2 <

(
2AB

βφ

)2

−
(

2AB

βφ

)
(D1 +D2) + (D1 −D2)2 + 4D1D2,

4α2D1D2 − 4D1D2 <

(
2AB

βφ

)2

−
(

2AB

βφ

)
D1 −

(
2AB

βφ

)
D2.

At this point it becomes more useful to solve for some Di as solving D1, D2 gives symmetric
expressions in terms of the other. Continuing gives:

4α2DiDj − 4DiDj <

(
2AB

βφ

)2

−
(

2AB

βφ

)
Di −

(
2AB

βφ

)
Dj ,

Di

(
4α2Dj − 4Dj +

(
2AB

βφ

))
<

(
2AB

βφ

)2

−
(

2AB

βφ

)
Dj ,

Di <

(
2AB
βφ

)2
−
(

2AB
βφ

)
Dj(

4α2Dj − 4Dj +
(

2AB
βφ

)) ,
Di <

AB(2AB −Djβφ)

βφ(AB + 2βφDj(α2 − 1))
.

Substituting Di = 1− δi and Dj = 1− δj allows us to solve for δi:

δi > 1− AB(2AB − βφ(1− δj))
βφ(AB + 2βφ(α2 − 1)(1− δj))

As a result we have now derived the condition on δi to achieve RC < 1 with δj and the other
parameters fixed. So long as this condition holds, the DFE is stable.
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Sensitivity Analysis

We want to study fixed point behaviour, i.e. disease-free and endemic equilibria with respect
to parameter variations and R0. Considering that we will be working with time independent
expressions, a forward sensitivity analysis will be sufficient. The system of equations that represent
the equilibria is shown below.

−βs∗1(i∗1 + αi∗2)− µs∗1 + (1− δ1)µ = 0

βs∗1(i∗1 + αi∗2)− (µ+ φ)e∗1 = 0

φe∗1 − (µ+ γ)i∗1 = 0

−βs∗2(i∗2 + αi∗1)− µs∗2 + (1− δ2)µ = 0

βs∗2(i∗2 + αi∗1)− (µ+ φ)e∗2 = 0

φe∗2 − (µ+ γ)i∗2 = 0

(1)

The forward sensitivity problem is defined by

Du∗ ·
∂u∗

∂p
= −∇pF (2)

Which can be solved multiplying both sides by D−1u∗ , given a nice enough Jacobian, thus giv-
ing

∂u∗

∂p
= −D−1u∗ · ∇pF (3)

Where,

Du∗ =


−β(i∗1 + αi∗2)− µ 0 −βs∗1 0 0 −βαs∗1
β(i∗1 + αi∗2) −(µ+ φ) βs∗1 0 0 βαs∗1

0 φ −(µ+ γ) 0 0 0
0 0 −βαs∗2 −β(i∗1α+ i∗2)− µ 0 −βs∗2
0 0 βαs∗2 β(i∗1α+ i∗2) −(µ+ φ) βs∗2
0 0 0 0 φ −(µ+ γ)

 (4)

∂u∗

∂p
=

(
∂s∗1
∂p

,
∂e∗1
∂p

,
∂i∗1
∂p

,
∂s∗2
∂p

,
∂e∗2
∂p

,
∂i∗2
∂p

)T
(5)
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∇βF = (−s∗1(i∗1 + αi∗2) , s∗1(i∗1 + αi∗2) , 0 , −s∗2(i∗2 + αi∗1) , s∗2(i∗2 + αi∗1) , 0)
T

∇αF = (−s∗1αi∗2 , s∗1αi∗2 , 0 , −s∗2αi∗1 , s∗2αi∗1 , 0)
T

∇µF = (−s∗1 + 1− δ1 , −e∗1 , −i∗1 , −s∗2 + 1− δ2 , −e∗2 , −i∗2)
T

∇φF = (0 , −e∗1 , e∗1 , 0 , −e∗2 , e∗2)
T

∇γF = (0 , 0 , −i∗1 , 0 , 0 , −i∗2)
T

∇δ1F = (−µ , 0 , 0 , 0 , 0 , 0)
T

∇δ2F = (0 , 0 , 0 , −µ , 0 , 0)
T

(6)

At the DFE,

Du∗ =


−β − µ 0 −β(1− δ1) 0 0 −βα(1− δ1)

0 −(µ+ φ) β(1− δ1) 0 0 βα(1− δ1)
0 φ −(µ+ γ) 0 0 0
0 0 −βα(1− δ2) −β − µ 0 −β(1− δ2)
0 0 βα(1− δ2) 0 −(µ+ φ) β(1− δ2)
0 0 0 0 φ −(µ+ γ)

 (7)

The matrix shown above correspond to the Jacobian of the system (1) at the DFE. Its inverse,
which in this case can be computed without having a considerable error, substituted on expression
(3), give the vector of partial derivatives of the states respect to the parameters.

Sensitivity Indices of DFE

The expressions below are obtained by SI formula considering the solution of the FSP (3) for the
DFE:

Sδ1 =
δ1

δ1 − 1
,

Sδ2 =
δ2

δ2 − 1
.

(8)

These equations represent the effect of a change in vaccination coverage on the DFE system state.
Which means that if we increase or decrease the vaccination coverage δi by 1%, then the state value
s∗i will be modified by a factor of Sδi . To represent this numerically we substitute δ1 = 0.85 , δ2 =
0.87, (estimated from [? ]), into the above expressions, giving:

Sδ1 = −5.7,

Sδ2 = −6.7.
(9)
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If we analyze the relation between the modulus of each sensitivity index, we can conclude that this
state is slightly more sensitive to δ2-variations. |Sδ2 | is 17% greater than |Sδ1 |. This result tells us
that a variation of 1% on the value of δ2 will affect the DFE system state 1.17 times more than a
1% variation of δ1. Thus the DFE is more sensitive to δ2 perturbations.

Sensitivities Indices on EE

The endemic equilibrium state is obtained solving system (1), for the condition i∗1 , i
∗
2 6= 0. The

solution is composed of two states, neglecting complex conjugates, where only one of them has
biological meaning. Explicit forms of the sensitivity indices for the endemic will not be included,
due to the length and complexity of the algebra. In future work, a numerical simulation for this
result would endow the analysis with more meaningful interpretation.

Sensitivity for R0

We consider the importance of an accurate estimation of R0 (threshold for diseases outbreaks).
We have proceeded to find the SI (Sensitivity Indices) for the basic reproductive number and have
studied the dependence on the parameters. The general results are shown below.

Sφ =
µ

µ+ φ
Sβ = 1 Sγ = − γ

µ+ γ
Sµ = − µ(2µ+ φ+ γ)

(γ + µ)(µ+ φ)

Sδ1 =

δ1

[
−1 + −2α2(1−δ2)+δ1−δ2√

4α2(1−δ1)(1−δ2)+(δ1−δ2)2

]
2− δ1 − δ2 +

√
4α2(1− δ1)(1− δ2) + (δ1 − δ2)2

Sδ2 = −
δ2

[
1 + −2α2(1−δ1)+δ1−δ2√

4α2(1−δ1)(1−δ2)+(δ1−δ2)2

]
2− δ1 − δ2 +

√
4α2(1− δ1)(1− δ2) + (δ1 − δ2)2

Sα =
4α2(1− δ1)(1− δ2)√

4α2(1− δ1)(1− δ2) + (δ1 − δ2)2
(

2− δ1 − δ2 +
√

4α2(1− δ1)(1− δ2) + (δ1 − δ2)2
)

(10)

Observing the SI expressions (10) we can state that a strong dependence is focused on δ1, δ2, and
α. A variation on these and other parameters will converge in a potential misestimation of R0,
depending on the perturbation direction. Because we estimated β using R0, β is in fact dependent
on all other parameter values. For this reason, although the β-index appears to be constant in the
above expression, in truth it has considerable dependence on the other parameters.

6 Numerical Simulations

6.1 Two-Patch Simulation

For our two-patch numerical simulation, we assume the population in the Northern and Southern
regions are equal, and we scale by 0.35 (which was estimated from CIA data, [4]) to reflect that our
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model is concerned primarily with adolescents. We use the following numerical values for the pa-
rameters (See Appendix A for details on estimations): α = 0.02, β = 2.2, γ = 0.25, φ = 0.125, δ1 =
0.88, δ2 = 0.85, µ = 3× 10−5.
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Figure 4: Two Patches: Scaled Preferential Mixing (MATLAB Simulation)

For reference, we also run simulations in which δ1 = δ2 = 0.9 and α = 1. In these simulations, the
parameters in both patches are identical, and α = 1 means that individuals interact across patches
as often as they interact within their home patch. We see that the system behaves as one large
patch, which is as expected. In addition, one can observe that the final epidemic size is consistently
higher in the homogenous system: 1.5 million infected in the homogeneous system as opposed to 1
million in the heterogeneous two-patch system.

From the two-patch simulations it is apparent that there are substantial differences in the qualitative
dynamics of the disease outbreak between the heterogeneous and homogeneous cases.

6.2 Multi-Patch Simulation

For our numerical simulation of multiple patches, we divide France into six metropolitan regions,
based on regional demographics. We shall use the following parameter estimates:

Table 1: Parameters by Region
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Figure 5: Two Patches: parameters set to represent homogeneity (MATLAB Simulation)

Patch N × 106 δ π
Strasbourg 5.82 0.855 0.9715

Paris 6.13 0.874 0.9370
Toulouse 3.58 0.779 0.9628

Nantes 2.54 0.836 0.9602
Marseille 1.73 0.798 0.9613

Lyon 2.17 0.855 0.9577

Once again, we run simulations with six patches to represent homogeneity. We set all varying
parameters to the average: δi = 0.833, πi = 0, N = 3.6 million. One can see that the six patches
behave as one large patch, and the final epidemic size is larger than with separate heterogeneous
patches.

The six-patch simulation agrees with the two-patch in that qualitative dynamics are substantially
different between the heterogeneous and homogeneous cases.
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Figure 6: Six Patches: Preferential Mixing (MATLAB Simulation)
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Figure 7: Six Patches: parameters set to represent homogeneity (MATLAB Simulation)
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7 Results and Discussion

7.1 Results

In the analysis of RC for the two patch case, it was demonstrated that heterogeneous vaccine
coverage increases RC in relation to comparable homogeneous coverage. Because the disease-free
equilibrium is stable given RC < 1, one can see that heterogeneous coverage makes a stable disease-
free equilibrium less likely. Functionally this means that in addition to vaccination coverage within
each region, RC depends on the difference in vaccination coverage across regions. Expressions have
also been determined for when δ1 = δ2 and δ1 6= δ2 that allow the computation of necessary vac-
cination coverages to drive RC < 1. This essentially defines the necessary levels to achieve herd
immunity of the population as a whole in the model.

For the endemic case, the method of substitution was used to solve for the endemic equilibrium
(s∗1, e

∗
1, i
∗
1, s
∗
2, e
∗
2, i
∗
2) implicitly, such that all fixed points were expressions in e∗1 and e∗2. It was then

determined that e∗i <
µ(1−δi)
µ+φ , which follows directly from the requirement that the endemic equi-

librium be positive and finite. This condition is the greatest upper bound, because as e∗i approaches
this bound, e∗j → ∞. Numerical methods were also used to evaluate the existence and stability of
the endemic equilibria.

From a forward sensitivity analysis of RC in our scaled preferential mixing model, we found that
RC is most sensitive to perturbations in δ1 and δ2. Using our parameter estimates, (see Section
6. Numerical Simulations), we find that the sensitivity indices themselves are strongly influenced
by the δ parameters, and RC is inversely sensitive to both δ1 and δ2. The sensitivity indices Sδ1
and Sδ2 will be large and negative when δ1 and δ2 are large and similar, and Sδ1 and Sδ2 will be
small and negative when δ1 and δ2 are small and similar. For discrepancies between δ1 and δ2, we
generally find that Sδi is large and negative while Sδj is small and negative for δi < δj . So RC is
largely inversely sensitive to the lower vaccination rate, see Table 1.

Table 2: Variations of δ1 and δ2

δ1 δ2 Sδ1 Sδ2
0.88 0.85 -0.05 -5.60 our estimated values
0.90 0.90 -4.50 -4.32 two high values
0.8. 0.8. -2.00 -1.92 two low values
0.87 0.86 -0.40 -5.72 small discrepancy, δ1 > δ2
0.86 0.87 -5.78 -0.34 small discrepancy, δ1 < δ2
0.90 0.83 -0.01 -4.87 large discrepancy, δ1 > δ2
0.83 0.9. -4.88 -0.00 large discrepancy, δ1 < δ2
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7.2 Discussion

Our findings suggest that heterogeneous MMR vaccination coverage within France does in fact
increase the transmissibility of measles and contribute to the likelihood of outbreaks. Our model
showed that RC increased to a larger value when the disparity in vaccination coverage between
regions widened, even when the average vaccination coverage between the two patches remained
the same. It thus follows that health policy officials should first focus their immunization efforts
primarily on districts with the lowest vaccination coverage rates when attempting to eradicate the
disease at a regional level. This will weaken the impact that the lowest covered districts have on
moderately covered regions and will also diminish the diseases communicability throughout sur-
rounding populations.

In addition, it is worth noting that while narrowing the gap between vaccination coverage per-
centages across regions will help decrease virus transmission, this should not be the sole strategy
implemented when considering national vaccination coverage. The optimal average immuniza-
tion coverage should still be achieved in order to eliminate the possibility of another measles epi-
demic.

7.3 Future Research

In this project many biological aspects of the model were neglected for the sake of simplicity. For
example, an age-structured model was not considered in this report, instead it was assumed that all
individuals were equally susceptible to the disease regardless of age. However, this type of model
would have represented the disease dynamics in a more accurate light since children under 1 year
of age are more likely to contract the measles virus than any other age group [7]. Additionally,
the epidemic in France from 2008-2011 showed a dramatic increase in the rate of young adults
contracting the disease; the median age during the third outbreak was 16 years [7]. In addition,
vaccine efficacy was considered at the outset by taking the product of estimated coverages and
efficacy as the effective vaccine rate rather than having efficacy degrade over time as in [31]. Both
of these modeling decision are likely to have a relevant impact on the dynamics of the disease and
would be important considerations in the future.
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Appendices

A Parameter Calculation

A.1 Ni - population size

The overall population for France is easily found from national demographics [4]. In mathemati-
cal analysis and numerical simulation of the two-patch model, the population sizes were assumed
equal. Therefore we simply scaled the total population to achieve an effective population given the
significantly higher prevalence in younger age groups and divided it in half. For the multi-patch
model, scaling was again done to achieve an effective population and regional demographic data
was used to divide the population among patches.

A.2 µ - birth and death rate

For the sake of simplicity, it was assumed that the population constant. The birth and death rate
were then necessarily equal. It was decided to use an estimation of the birth rate to represent µ.
(France has a birth rate > death rate which motivated this decision [4]). The dynamics of a non-
constant population are different than that of a constant, but in having the demographic modelling
rate be higher a closer approximation can be reached. From the World Factbook maintained by
the CIA we found that France has ≈ 12.5 births/1000 residents annually [4]. This implies that

µ = 12.5/1000
365 ≈ 0.00003.

A.3 φ - disease incubation rate

The duration of the exposed or incubation period is vital in modelling disease with such latent pe-
riods. With any disease though, exact time frames of all stages of the disease vary. The CDC lists
the incubation period to be between one and three weeks [1]. However they also state that the con-
tagious period begins 4 days prior to the characteristic rash with the rash generally appearing at 14
day post exposure [1]. This would suggest the latent period to be between 7 and 10 days. Research
literature that focuses on modelling measles [20, 21] suggests that 8 days is optimal for replicating
disease dynamics. Using these figures one can estimate φ by considering 1

φ = average latent period.

This approximates the range φ ≈ [0.1, 0.14].

A.4 γ - recovery rate

The infectious period is another critical parameters to determine. Epidemiological data suggests
the infectious period can range from 4 to 10 days, with the CDC stating the average is about 8 [1].
Again turning to modelling literature, the estimates are often on the low end of this range [21, 20].
This is due to the partial isolation that occurs from highly acute measles infection. Calculating γ
then proceeds as for φ with 1

γ = average infective period giving the range γ ≈ [0.17, 0.25].
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A.5 δi - vaccination coverage

Vaccination coverage and disparity coverage is the driving motivation of this project, it is therefore
important to ensure accurate estimations. France’s average vaccination coverages fluctuates around
90%, however it becomes necessary to consider both regional coverage and vaccine efficacy in cal-
culating δi accurately. Literature provides a good basis for regional vaccination approximation [7]
and the only thing to then consider is vaccine efficacy. It is know that any vaccination program fails
to be 100% effective, this can be represented differently. In our model the simplifying assumption
was made that if the vaccine proves to be effective ones transitions from natural immunity to vac-
cinated immunity with no interruption of protection, thus people are ”born” into either susceptible
or resistant classes. To continue maintaining the simplicity of the model, we decided to multiply
the vaccination coverage by the estimated vaccine efficacy and use this as δi. Literature estimates
of efficacy vary widely [11, 6], at times spanning from 80% to as high as 98%. The lower end of the
range generally occurs in third world countries where quality of health care is lower in in particular
cases when only a single dose of vaccine is administered and is given too early to be fully effective.
The high end of the range is in the case where two MMR doses are administered as recommended.
Most of the literature focusing on efficacy in Europe [11, 26, 16] suggest an accurate range to fall
between 92% and 96% nationwide. We opted to consider efficacy as 95% with coverage between
84% and 94%. This gives a reasonable range as δ = coverage ∗ efficacy = [0.798, 0.893].

A.6 π - inter-patch mixing proportions

A necessary parameter to consider for the preferential mixing is π. This parameter represents the
proportion of individuals from a given patch that mix with the entire population, and was a difficult
parameter to estimate. The people-days concept became important in its computation. Colloquially
we state that one people-day is the time, in days, spent by a person in some place. Therefore it can
be considered a measure of activity. It becomes spatially relevant when considering if a person is on
their home patch or traveling. Our application of this concept is defined by considering the mean
travel time and number of travelers. This allows the calculation of the proportion of people-days
that are spent elsewhere by the inhabitants of a given patch. While the model does not explicitly
represent this movement, we use it as an estimation of the proportion of a given patch that is mixing
with other patches, namely:

1 people-day = person ∗ day. (11)

Once defined thus, we are able to calculate the proportion of travellers in a patch. In terms of
people-days, this becomes equitable to the amount of activity or contact a patch can have with
other patches, as follows:

Proportion of patch travelling =
#Travellers ∗ Mean Travel Time

Total Patch Population ∗ 365 days
. (12)

This proportion of patch travelling became the foundation for the π parameter. It was adjusted
slightly to account for the lower likelihood of travel and thus between patch interaction of persons in
the birth - 20 year old age range which comprised the majority of measles cases. Our final range in
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the two-patch was π ≈ [0.96, 0.98] and in the multi-patch system was π ≈ [0.94, 0.99]. The following
table shows the necessary data for completing such calculations, it was found in [2].

Regions of France Capital # Travellers [millions] Mean Travel Time [Days] # Population [millions]
Alsace Strasbourg 3861 5 1856
Aquitaine Bordeaux 8798 4.5 3227
Auvergne Clermont-Ferran 3738 4.4 1345
Bourgogne Dijon 4680 4.8 1643
Bretagne Rennes 7820 4.8 3195
Centre Orleans 7118 4.7 2545
Champagne-Ardenne 3352 5.2 1334
Corse Ajaccio 624 5 311
Franche-Comté Besançon 2787 5.2 1173

Île-de-France Paris 43039 5.1 11798
Languedoc-Roussillon Montpellier 6392 6.3 2633
Limousin Limoges 2223 4.9 746
Lorraine Metz 5110 4.3 2350
Midi-Pyrénées Toulouse 8529 5.1 2893
Nord-Pas-de-Calais Lille 6796 4.6 4026
Basse-Normandie Caen 3767 6.8 1474
Haute-Normandie Rouen 3998 4.5 1833
Pays de la Loire Nantes 10993 5.8 3565
Picardie Amiens 4039 4.7 1914
Poitou-Charentes Poitiers 5601 4.9 1774
Provence-Alpes-Côte d’Azur Marseille 12697 5.5 4951
Rhône-Alpes Lyon 19967 4.8 6212

Table 1: Breakdown of annual travel and associated travel time originating from the regions of France. Note that
number of travellers is not individuals but rather the sum of all records showing a traveller originating from the given
region.

A.7 β - scaled successful contact rate

Being a scaled parameter, β does not have as precise a biological interpretation as normal contact
or transmission rates. However, it is not entirely incorrect to think of as successful contact rate
rescaled to account for the particulars of preferential mixing. Given its somewhat ambiguous nature
however, it is challenging to estimate it a priori from any data or literature. We were able to deduce
it from our expression for R0 however. Literature says that R0 can vary from 6 to 45 for measles.
However most previous modelling suggests 10 to 20 being a reasonable range. Starting from our R
we assume no vaccination and arrive at R0, as follows:

R0 =
βφ(1 + α)

(µ+ φ)(µ+ γ)
.

Solving for β one obtains

β =
R0(µ+ φ)(µ+ γ)

φ(1 + α)
.

Substitute in R0 = 10 and R0 = 20 gives the range β ≈ [1.1, 2.2].
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A.8 α - scaled mixing parameter

In the process of rescaling the two-patch preferential mixing model a new parameter α was gener-
ated. This parameter can be found analytically using the previously determined values for π and
the definitions of α and the intermediate rescaling parameter ρ. Given the ρ = 1− π and α = ρ

1−ρ ,

a reasonable paramter range can be calculated to α ≈ [0.01, 0.02].
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Médecine et maladies infectieuses, 42(4):161–166, 2012.

[12] Fred Brauer. Epidemic models with heterogeneous mixing and treatment. Bulletin of mathe-
matical biology, 70(7):1869–1885, 2008.

[13] Simon Cottrell and Richard John Roberts. Measles outbreak in europe. BMJ, 342, 2011.

[14] Melissa R Dardis. A review of measles. The Journal of School Nursing, 28(1):9–12, 2012.

[15] Rory D de Vries, Annelies W Mesman, Teunis BH Geijtenbeek, W Paul Duprex, and Rik L
de Swart. The pathogenesis of measles. Current Opinion in Virology, 2(3):248 – 255, 2012.
Viral pathogenesis/Vaccines.

[16] M Eichner, HH Diebner, C Schubert, HW Kreth, and K Dietz. Estimation of the time-
dependent vaccine efficacy from a measles epidemic. Statistics in medicine, 21(16):2355–2368,
2002.

[17] James Fargo Ennis, Lisa A. Balliett. Measles. Research and Discovery: Landmarks and Pio-
neers in American Science, 2008.

[18] F Freymuth and A Vabret. Measles, a re-emerging disease in france? Clinical Microbiology
and Infection, 17(6):793–793, 2011.

33



[19] David Green. Measles outbreak in france and other european countries. Journal of Infection
Prevention, 12(4):165, 2011.

[20] Giles Hooker, Stephen P Ellner, Laura De Vargas Roditi, and David JD Earn. Parameterizing
state–space models for infectious disease dynamics by generalized profiling: measles in ontario.
Journal of The Royal Society Interface, page rsif20100412, 2010.

[21] Matt J Keeling and Bryan T Grenfell. Understanding the persistence of measles: reconciling
theory, simulation and observation. Proceedings of the Royal Society of London. Series B:
Biological Sciences, 269(1489):335–343, 2002.

[22] Robert J. Kim-Farley. Measles. In Kenneth F. Kiple, editor, The Cambridge World History
of Human Disease, pages 871–875. Cambridge University Press, 1993. Cambridge Histories
Online.

[23] Aliene Linwood. Mmr vaccine. Gale Encyclopedia of Children’s Health: Infancy through Ado-
lescence, 3, 2006.

[24] William J Moss and Diane E Griffin. Global measles elimination. Nature Reviews Microbiology,
4(12):900–908, 2006.

[25] William J Moss and Diane E Griffin. Measles. The Lancet, 379(9811):153 – 164, 2012.
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