
Mathematical Model for Time to Neuronal Apoptosis Due to
Accrual of DNA DSBs

C. Mohanakumar5, A. E. Offer4, J. Rodriguez2, B. Espinoza1, V. Moreno1, F. Nazari1, C.

Castillo-Garsow3, D. Bichara1

1 Arizona State University, Tempe, AZ, USA

2 California State University, Channel Islands, CA, USA

3 Eastern Washington University, Cheney, WA, USA

4 Texas Tech University, Lubbock, TX, USA

5 University of Florida, Gainesville, FL, USA

Abstract

We propose a mechanism to explain neuronal aging by tracking the number of non-transient DNA

double-strand breaks (DSBs) and repairs over time that may lead to apoptosis. Neuronal apoptosis

depends on the amount of space between DSBs as well as time. We derive three models to track the effect

of neurodegeneration: a system of autonomous Ordinary Differential Equations (ODEs), a probability

model to track the spatial requirement, and a stochastic model that incorporates both the ODE temporal

dynamics and a spatial probability model. Using these models, we estimate a distribution for the lifespan

of a neuron and explore the effect of parameters on time to death. We identify three possible causes

of premature neuronal apoptosis: problems with coding critical repair proteins, issues with the neuron

detecting DSBs, and issues with the neuron responding to DSBs.

1 Introduction

1.1 Neurodegeneration and DNA Double-Strand Breaks

Neurodegeneration, an umbrella term for a wide range of conditions that negatively affect the neurons in

the human brain [10], is an increasingly prevalent and important issue due to the gradual increase of the

average lifespan in the US population over the past 100 years. An increasing amount of evidence points to

the age-related accrual of DNA breakage as a culprit for this issue, since DNA breaks can cause neuronal

apoptosis. It is established that repair mechanisms exist to reconnect and repair these breakages, but these

repair processes can degrade over time, leading to potential neurodegeneration [6,11]. This is especially true

in the case of potentially lethal double-strand breaks (DSBs), the principal molecular lesions of biological

relevance.

52



In the United States, senior citizens are a growing population. By 2050, the US Census calculated that

over 800,000 people will reach the age 100 [8]. In 2010, over 83,000 people in the United States died of

Alzheimer’s Disease [1]. Due to the growing proportion of citizens over the age of sixty-five, the prevalence

of Alzheimer’s Disease will continue to grow [1]. Other age-linked neurodegenerative diseases, such as

Parkinson’s Disease, Prion Disease, Motor Neurone Disease, Huntington’s Disease, Spinocerebellar Ataxia,

and Spinal Muscular Atrophy, are all undergoing a similar increase. Currently there are no treatments for

neural aging. This is because the mechanism by which neural aging occurs is not fully understood [9]. It is

necessary to delineate the mechanism of neural aging and the neuronal progression to apoptosis. This will

lead to future research into a treatment for age-related neurodegeneration.

The paper is organized as follows: the assumptions inherent in our model, followed by a description of

our methodology and construction of the models, summary of our results, and a discussion of the results of

our stochastic simulations.

1.2 Model Overview

We propose an ODE mathematical model with the independent variable of time. By the nature of this

time-dependent ODE system, the ODEs do not track the spatial component of neuronal apoptosis–that is,

the condition of a fragment of 20 base pairs or less breaking off in order to trigger neuronal apoptosis. Thus,

what we may glean from this ODE model is not necessarily time to neuronal apoptosis, but rather time to

a certain number of breakages or incorrect repairs. In addition, the ODE rates of repair and breaks help in

the creation of the stochastic model, which shall be described later in this section.

In order to incorporate the spatial aspect of neuronal apoptosis, we create a probabilistic branching

process in which we uniformly drop breaks on a continuous DNA strand. Using this probability model, we

determine the theoretical LD50 (number of DSBs necessary to create a 50% chance of neuronal apoptosis)

of a neuron. Due to the nature of biological research, the LD50 of DNA breakage will provide bountiful

information for the “toxicity” of the DNA breaks. This is because the number of DSBs for which probability of

death equals probability of survival gives us more information about neurons in general than an exact number

of breaks at death for a specific cell. More specifically, this value gives us a threshold for neurodegeneration

based on the accrual of DSBs.

The probability model incorporates our spatial aspect but not time. By combining ODE rates with the

spatial process of the probabilistic model, we create a stochastic model to simulate multiple interactions

modeled via Continuous-Time Markov Chain. In this way we simulate neuronal apoptosis and estimate the

distribution of time of death for neurons. This distribution gives us a good idea of how DSBs affect neuronal
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apoptosis based on our assumptions.

In addition, the stochastic model will be able to provide us with a numerical LD50, simply by running

several simulations of neuronal apoptosis and calculating the median amount of breaks necessary to create

neuronal apoptosis. This numerical LD50 may then be compared to the theoretical LD50.

Finally, we use the ODE model, which has the advantage of calculating time to a certain number of

breaks, to compare the average time necessary to reach both the theoretical and numerical LD50s. We may

then observe the impact of the parameters in our ODE model on the average time to LD50. This allows us

to explore the parameter space more efficiently than with simulations and statistics, identifying parameter

ranges of interest for detailed statistical analysis in the stochastic model.

2 Model Description

2.1 Biology of DNA DSBs

DNA double-strand breaks (DSBs) can be harmful. However, there is also evidence that DNA breakage

is a crucial step in the learning process, storage of memory, and other natural processes in the human

brain [6, 7, 11]. For example, DNA DSBs occur in the promoter regions of certain early response genes

and are essential to expressing these genes, whose primary purpose is memory formation [6]. These types

of activity-induced DSBs are called transient breaks, because when the body creates them, it repairs them

almost immediately [6]. Harmful breaks (non-transient breaks) can be caused by many different factors, from

products of cellular metabolism to pollutants, chemicals, and radiation [7]. These DSBs are more complex

than transient breaks, so they tend to take more time repair. Mathematical models of the DNA breakage

process, the underlying assumptions, and the biological phenomena associated with it have been far and few

between. In this paper, we derive three mathematical models to better understand neurononal apoptosis in

terms of non-transient DNA DSBs. The rate of repair of DNA DSBs decreases with age [3, 7, 11, 14], so

these mathematical models will be focusing on the rate of repair of DSBs.

It has been verified that the method by which neurons repair DSBs is non-homologous end joining (NHEJ).

This is the only process by which DSBs can be repaired in most neurons due to the fact that very few neurons

replicate [7]. When a DSB occurs, a protein kinase, ataxia telangiectasia mutated (ATM), is called to the

cite of the break to begin the process of NHEJ. ATM is namely responsible for the phosphorylation of H2AX

which becomes γ-H2AX, a biomarker that allows lab scientists to detect DSBs [4]. The phosphorylated

biomarker γ-H2AX is then responsible for recruiting other proteins required to repair the break, such as the

Ku70/80 heterodimer, DNA-PKcs, Artemis, Polymerase λ − μ, and the XRCC4/XLF/Ligase IV complex
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[13]. To form a stable complex of Ku, approximately 20 base pairs (b.p.) are needed around the site of each

DSB [5]. It is known that two breaks that occur within 20 b.p. of each other on a critical coding region will

result in a break-off that cannot be repaired. This causes neuronal apoptosis, and this idea is incorporated

into both the upcoming stochastic and probabilistic models.

It is important to note that the break-off of 20 b.p. is not the only way neurons undergo apoptosis due

to DSBs. NHEJ is sometimes an error-prone process. In other words, although NHEJ repairs DNA DSBs,

it will sometimes create a mutation (wrong repair) in the area of repair [2]. Sometimes there is a nonsense

deleterious mutation, a mutation that stops the transcription of a protein early in the process. This results

in a truncated protein that has lost some or all of its function. Without this essential protein, processes in

the neuron stop, and in some cases the neuron dies. In order to focus our study on a single mechanism of

apoptosis, our model does not include nonsense coding, but this will be discussed further in future research.

2.2 Assumptions

Returning to the model, we assume that the rates of both proper and improper repair are dependent on the

number of DSBs and incorrect repairs of breakages in the DNA strand. We first assume that rate of repair is

zero when the number of breaks and wrong repairs are zero, and then as DSBs increase, we assume that the

efficiency of repair will increase, since the proteins needed for repair are already being produced. However,

the proteins used during non-homologous end joining (NHEJ) are coded in the DNA they are attempting

to repair. Thus, at some point, the accrual of DSBs and wrong repairs interfere in the creation of these

essential proteins. At some point the number of DSBs and wrong repairs will start to negatively affect the

neuron’s ability to repair DSBs. This behavior is more thoroughly described in the description of α(B,W ).

How quickly DNA DSBs repair depend on many factors, including the area that is broken, how close the

break is to repair proteins, and how close the break is to other DSBs and DNA mutations. However, we

assume that repair and breakage both occur randomly, since the DNA strand has millions of protein coding

base pairs. As such, the probability of a wrong repair being broken again is close enough to zero that simplify

the model by letting the wrongly repaired compartment be a source of inflow with zero outflow; this is true

because of the continuous time Markov chain: there is no event. This is also built into our stochastic model

for regular fixes through our relatively extreme parameter values.

As stated before, DSBs can either be transient or non-transient. Since transient breaks are a part of the

transcription process in many cases, they are immediately recognized and repaired by the neuron [6]. Thus,

we will assume that all of our models are only looking at non-transient DSBs.
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3 Methods

3.1 ODE Model Framework

We consider the DNA base pairs composed of unbroken (U), broken (B), and wrongly repaired base pairs

(W ). Our proposed model describes the dynamics of DSBs in a single neuron and the model of ordinary

differential equations is given by:

dU

dt
= −bU + pBα(B,W ) (1)

dB

dt
= bU −Bα(B,W ) (2)

dW

dt
= (1− p)Bα(B,W ) (3)

where, the total number of base pairs, N = U +B +W .

U B W
(1− p)α(W,B)

b

pα(W,B)

Figure 1: Movement and rates of change between the three classes, unbroken b.p. (U), broken b.p. (B), and

wrongly repaired b.p. (W ).

For our model, we consider a population of N base pairs (b.p.). We begin with a healthy neuron, so all

of N = U + B +W is contained in U (unbroken b.p.). When a DSB occurs, a broken b.p will move from

U to B. When a DSB is detected by the cell, it will attempt to fix the DSB and move it out of the B at a

rate of Bα(B,W ). The cell will then either repair the DSB properly and move the broken b.p. back into

U , or repair it improperly and move it into W (Figure 1). We summarize our state variables and model

parameters in Table 1.
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Table 1: Description of the parameters and state variables.

Variables & Parameters Description Units

U Number of unbroken DNA base pair (b.p.) linkages b.p.

B Number of broken DNA base pair linkages (DSBs) b.p.

W Number of wrongly repaired DNA base pair linkages b.p.

b Per capita rate of (harmful) breakage 1/time

a Number of breakages that most excites the neuron b.p.

c Highest per capita repair rate 1/time

α(B,W ) Per capita rate of proper/improper repair 1/time

p Proportion of broken DNA that become properly repaired dimensionless

The per capita rate of repair equation, α(B,W ), is a function of B and W because of our fourth as-

sumption, which will monotonically increase at the beginning, reach a maximum, and then monotonically

decrease to an asymptote at the x-axis (Figure 2). The graph α(B, 0) will start at zero, because when there

are no breaks, the per capita rate of repair is zero. As the breaks increase at first, the rate of repair will

increase due to an increase in efficiency, but eventually the breaks and wrong repairs will have a negative

effect and cause the rate of repair to decease.

Our α(B,W ) functions should have these conditions:

• α(B,W ) > 0, the per capita rate of repair can never be negative.

• α(0, 0) = 0, when there are no breaks or wrong repairs, the rate of repair is zero.

• α(B, 0) is increasing when B < a and decreasing when B > a.

• α(B, 0) has a maximum at (a, c)

• lim
(B+W )→∞

α(B,W ) = 0, as the number of DSBs and wrong repairs is increasing indefinitely, the rate

of repair for a single DSB is less and less efficient.

• lim
(B+W )→∞

Bα(B,W ) = 0, as the number of DSBs and wrong repairs is increasing indefinitely, the rate

of repair for all of the DSBs in a neuron is less and less efficient.

We have three candidates for the α(B,W ) function. The trancendental function is used primarily in

simulations, while the rational functions are used for ODE analysis.
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α1(B,W ) =
c

a
Be1−(B+W )/a, (4)

α2(B,W ) =
σ c

aB

1 + ηB+W
a + (ηB+W

a )3
, σ =

1

2
(3 + 22/3), η =

1

21/3
, (5)

α3(B,W ) =
σ c

aB

1 + ηB+W
a + (ηB+W

a )4
, σ =

1

3
(4 + 33/4), η =

1

31/4
, (6)

where σ and η are normalization factors.
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Figure 2: The equation for rate of proper and improper repair when there are no wrong repairs, α(B, 0).

Includes α1, α2, and α3. (ā = 500, c̄ = 3.812)

3.2 Probability Model

In order for a neuron to undergo apoptosis, two breaks must happen within twenty base pairs (b.p) of each

other [5]. Thus, in order to model apoptosis, we need a factor of not only time, but distance between DSBs,

and to incorporate this into a model. While using the ODE model to analyze time, we create a separate

probability model to analyze distance. The process begins with a number line from zero to one, representing

the entire coding region of a single neuron compressed together to a continuous number line. We assume
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that each break is placed at a random location distributed uniformly from zero to one. Let N equal the

total amount of b.p in the coding region. Neuron death occurs when any two breaks are within 20/N = L of

each other or an edge of the coding region (0, 1). We are interested in the probability of surviving B breaks

P(B). To do this, we develop a branching process probability model that reflects the probability of survival

at stage B.

3.3 Stochastic Model

We combine the ODE and probability model into a single model by converting the ODE model to a continuous

time Markov chain and combining it with the probability model to create a stochastic simulation. We create

a code in MATLAB to simulate a neuron undergoing apoptosis due to DSBs. We use rates from our ODEs

and break the model down into the three events that can occur in our model: a break, a repair, and a

wrong repair (see Table 2). The time between each event is assumed to be exponentially distributed, since

breaks and repairs themselves do not age. Every time a break occurs, we choose a location for the break. A

location is defined by a number from 1 to 48 million, since this is the total number of base pairs in protein

coding DNA. The locations of the breakages are recorded in a vector �B. If there is a wrong repair, one of

the “locations” is removed from �B and appended to the vector of wrong repairs, �W . If any of the locations

are in �B are within 20 b.p of each other, the simulation ends and we record time to apoptosis.
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Figure 3: Outline of Stochastic Model

Table 2: List of events to be chosen using Continuous Time Markov Chain.
Event Rate Effect
Break (DSB) b U = U − 1, B = B + 1
Repair pBα U = U + 1, B = B − 1
Wrong Repair (1− p)Bα B = B − 1, W = W + 1

3.4 Parameter Estimates

Our parameter b, is the per capita rate of harmful DSBs. The units of b are 1
time (this is a simplified version

of b.p
time/b.p.). On average, 10-50 DSBs occur in mammalian cells everyday [7]. Since we are only looking
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at non-transient breaks, we will choose the lowest of these numbers, 10 DSBs. Thus, b is 10 b.p.
day/3.2 billion

b.p., since this rate is out of the total amount of human DNA. Thus, b becomes 10
3.2billion

1
time .

Our parameter c, is the maximum rate of repair when the neuron is most excited, with units 1
time . A

biochemical kinetic model for NHEJ repair of DSBs has been previously studied [13], and two pathways

are analyzed. The first is a slow pathway (complex pathway) that we assume occurs in the repair of non-

transient breaks. The second is a fast pathway, which we assume involves the repair of transient breaks. For

the estimation of our parameter c the slow pathway is considered, as we are only focusing on the DSBs that

do not get immediately repaired, non-transient DSBs. The reciprocals of the rate constants between each

step in the repair mechanism are added to give a total time for a single repair. This yields the repair rate

of c = 3.812 1
day . Normal repair is assumed to occur at c = 3.812 where neuronal apoptosis due to DSBs

does not occur. We interpret this rate to be the most healthy per-capita rate of repair for a neuron. Thus,

a neuron’s c can fluctuate down to c = 0, where there is no repair.
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DNA-PKcs

1st autophosphorylation
of DNA-PKcs

2nd autophosphorylation
of DNA-PKcs

Artemis XLF/XRCC4/
Ligase IV

Repair completedPolymerase
λ − μ

XLF/XRCC4/
Ligase IV

Repair completed

k1 = 350/hr

k2 = 500/hr

k3 = 50/hr

k4 = 20/hr

k7 = 3.6/hr k5 = 15/hr

k6 = 5/hrk8 = 8/hr

k9 = 0.25/hr

k10 = 0.55/hr

Figure 4: The process of NHEJ, going through all of the repair proteins to repair a DSB. The rate constants

ki from i = 1 to 10 for each protein were found and used to determine the most efficient time to repair a

DSB. There are two pathways: the one of the left is the fast pathway that repairs transient DSBs, and the

one of the right is the complex pathway that repairs non-transient DSBs. Summary of [13]
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The proportion of broken DNA that is properly repaired is p. This is essentially the proportion of NHEJ

repairs that happen correctly. On average, NHEJ is between 75% to 99.9% accurate in its repairs [2]. Thus,

we picked p to be 87.5% or .875, with an interval of .75 to .999.

No data could be found on a, the number of breakages that most excite the neuron, or the number of

DSBs at which the per capita repair rate is most effective. Thus, further analysis is required and discussed

in Section 4.1. The parameter a is analyzed from a range of 100 to 1010, with c = 3.812. The range of a

from 102 to 103 is healthy (see Figure 5). Thus, we choose a to be 500, with an interval of 100 to 900 DSBs,

but other intervals of a are also analyzed.

Table 3: Parameter estimations based on existing knowledge and data. (No existing data for a.)∗

Parameters Estimated Values Intervals

b̄ 10
3,200,000,000 ( 1

3,200,000,000 ,
19

3,200,000,000 )

p̄ 0.875 (0.75, 0.999)
c̄ 3.812 (0, 3.812)
ā∗ 500 (100, 900)

4 Analysis

4.1 ODE Analysis

The rates α2 and α3 are used to find the equilibrium, with α1 assumed to have similar properties. We then

analyze the stability of the ODE model equilibrium. In both cases with α2 and α3, there is only one unique

equilibrium: (U,B,W ) = (0, 0, N). This makes sense in terms of our model, because we assume that once

there is a wrong repair, it cannot be broken again. However, this does not make sense biologically: If every

base pair is wrongly repaired, the neuron cannot function. In reality, a neuron will likely undergo apoptosis

long before even as much as half of its base pairs are wrongly repaired. This is not shown in the ODE model,

because a death condition is not included in the model. In the stochastic simulation, the neuron undergoes

apoptosis before many wrong repairs occur compared to the total number of coding base pairs.

In order to study the stability of the equilibrium, the ODE is reduced to only dU
dt and dB

dt , since N = U +

B+W . Using the Lyapunov function V (B,U) = B+U , we prove that the equilibrium (U,B,W ) = (0, 0, N),

or (U,W ) = (0, 0) in the reduced system, is globally asymptotically stable.

Theorem 1. In the ODE system, the sole unique equilibrium (U,B,W ) = (0, 0, N) is globally asymptotically

stable.
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Proof. Consider the Lyapunov function, V (B,U) = B + U

then V (B,U) ≥ 0 and V (B,U) = 0 if and only if U = B = 0

Notice that dV
dt = dB

dt + dU
dt where N = B + U +W

dV
dt = (p− 1)Bα(B,N −B − U)

then dV
dt ≤ 0 since α(B,N −B − U) ≥ 0 and p ≤ 1

Hence dV
dt = 0 if and only if B = 0 or α(B,N −B − U) = 0

For α1 = 0, α2, and α3, α = 0 if and only if B = 0

Thus, dV
dt = 0 if and only if B = 0

The largest invariant set where dV
dt = 0 is reduced to (0,0)

Hence by LaSalle’s invariance principle the equilibrium (0,0) is globally asymptotically stable.

It is necessary to analyze our choice of the parameter a, the number of DSBs at the most excited state

of a neuron. As seen in Figure 5, when a is changed, there are different consequences for the neuron. When

a is between twenty and one hundred, there are very few DSBs early in the neuron’s life, but at some point

in time before one hundred years the DSBs increase rapidly. In the range 105 to 109, the shape of DSB

accumulation in the neuron is different. The number of breaks increase before leveling off. However, in the

range of 100 to 900, the accumulation of DSBs stays low for the time period of 100 years. Thus, in this

range a is considered a healthy parameter for the neuron. This is why we chose a = 500.

Figure 5: Accumulation of DSBs in a neuron over the course of 100 years, dependent on fluctuating parameter

a. Three intervals are shown: a = (20, 100), a = (100, 900), and a = (105, 109). The red points show where

the thresholds 1400 DSBs(LD50) are hit. (b = 10
3200000000 , p = 0.875, c = 3.812, N = 48000000). More

information on the estimation of LD50 can be found in Results.
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4.2 Probability Analysis

In our probability model, we begin by creating a branching process. The process begins with a number

line from zero to one, representing the entire coding region of a single neuron compressed together to a

continuous number line. Let N equal the total amount of b.p in the coding region. We then erase regions in

which a break would result in neuronal death — thus giving a probability of surviving the next break. At

the beginning of the process, this would be represented by 20/N = L on both ends of our number line from

zero to one; the remaining area is considered to be p(1). We then proceed to add our first breakage, with

a probability of success of 1 − 2L. However, this break could be one of two types: chopping or splitting.

Chopping is when the first break leaves region p(1) as one region that can maintain another break in the

next step and one region that cannot support another break. The region that cannot support another break

is then erased just like the 20/N from both ends were erased at the beginning of our process. On the other

hand, the first break will split p(1) if it creates two regions that are still capable of supporting an additional

break. We then create our branching process by considering the independent cases of split and chopping and

adding additional breakages that can also cause either splitting and chopping.

This will be able to give us an explicit formula for the probability of survival of a neuron given N

breakages. With this information, we are able to evaluate an average number of breakages necessary to

create a fifty percent chance of death in the neuron, otherwise known as the LD50 of the neuron. We may

then compare this to the median time necessary to achieve the LD50 that is constructed by the simulation.

Below is a flowchart of the first three generations of breakages. The symbols p(B)m signifies the mth

scenario of the Bth generation, while p(B)sp and p(B)ch represent the probability of whether the Bth

generation break is a split or a chop.
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Prob. first break lives

Prob. second break lives given chop

Prob. second break lives given split

Prob. third break lives given chop and split

Prob. third break lives given split and chop

Prob. third break lives given two chops

Prob. third lives given two splits

P(first break is chop)

P(first break is split)

P(second break is split given chop)

P(second break is chop given chop)

P(second break is chop given split)

P(second break is split given split)

Figure 6: Branching process flowchart.

4.3 Distribution Fitting and Parameters

Upon running 10,000 simulations in our MATLAB code, we were able to create a histogram of times to

neuronal death (see Figure 9). Next, we found the best fit for this histogram by using the Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC). The distributions we choose from were Gamma,

Log–normal, Log–logistic, Weibull, and GEV. We find that that the Weibull distribution minimized both
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the AIC and BIC, indicating that the Weibull distribution is the best fit. Further analysis is then based on

the assumption that the Weibull is always the best fit. Next, we studied the affect of manipulating model

parameters, b, p, a, and c, on the parameters of the Weibull, k and λ, instead of fitting a new histogram for

each set of model parameter values.

The analysis of the parameter space is focused on the Weibull distribution.We can study the effect of

the model parameters a, b, c, and p on time to death by studying the effect of these model parameters on

the distributions parameters k and λ in the Weibull distribution.The parameter exploration is done via a

uniform random sampling of the 4D parameter space, where a number in the interval of each parameter is

chosen at random. These simulations are run 2,000 times for each parameter value, with a time limit of 200

years.

Additionally, we study the effect of low a with a one dimensional parameter exploration, where all other

parameters were held at their base values, and a was tested in the interval (10, 110) in eleven steps.

5 Results

5.1 Cumulative DSBs Over Time

In a time series analysis, broken b.p. (B) and wrongly repaired b.p. (W ) steadily increase at a constant

rate while unbroken, healthy b.p. (U) decrease at a steady rate. This is the simplest form of what is known

about DSBs in relation to age: as a person ages, the number of DSBs in their DNA increases [3,7,11,12,14].

The stochastic version of the ODE uses the continuous-time Markov chain. In Figure 7, the stochastic ODE

is represented by the multicolored plots. Keep in mind that this model does not incorporate any sort of

spatial aspect, so each run of the neuron continues to accumulate DSBs and wrong repairs for the duration

of 100 years. In reality, many neurons die out well before 100 years have passed. This is shown in the spatial

stochastic model that incorporates distance between each break.

Two versions of the ODE models are shown in Figures 7 and 8: a neuron with a healthy per capita

rate of repair (c = 3.812), and a neuron with an unhealthy per capita rate of repait (c = 0). Notice that

in Figure 8 there are no wrong repairs, even in the stochastic version of the ODE. This is because the per

capita rate of repair, c and the rate of repair itself is zero. This is an extreme case where there are no repairs

being made in this neuron, so the DSBs are allowed to increase to N .
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Figure 7: The deterministic ODE and 20 runs of the stochastic ODE in a healthy per capita rate of repair

(when c = 3.812). (A) Number of unbroken/healthy base pairs (b.p.) in the protein coding region of a DNA

strand over time of 100 years. (B) Number of wrongly repaired b.p in the protein coding region of a DNA

strand over time of 100 years. (C) Number of broken b.p. (DSBs) in the protein coding region of a DNA

strand over time of 100 years. (ā = 500, b̄ = 10
3,200,000,000 , p̄ = 0.875, c̄ = 3.812, N = 48, 000, 000)
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Figure 8: The deterministic ODE and 20 runs of the stochastic ODE in an unhealthy per capita rate of

repair (when c = 0). (A) Number of unbroken/healthy base pairs (b.p.) in the protein coding region of a

DNA strand over time of 100 years. (B) Number of wrongly repaired b.p. in the protein coding region of a

DNA strand over time of 100 years. (C) Number of broken b.p. (DSBs) in the protein coding region of a

DNA strand over time of 100 years. (ā = 500, b̄ = 10
3,200,000,000 , p̄ = 0.875, c = 0, N = 48, 000, 000)

5.2 Effects of Parameters on Average Time to Apoptosis

In the spatial stochastic ODE, neuronal apoptosis is incorporated and the distribution of times to apoptosis

is analyzed. As stated above, we choose the Weibull distribution, because it minimized the AIC and BIC at

the estimated parameter values (ā, b̄, p̄, and c = 0) (Figure 9). We chose c = 0 for our base distribution fit

because at baseline parameter value c̄ = 3.812 all neurons lived over 200 years, making the distribution of

time to death biologically meaningless.
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Figure 9: Distribution of the years it takes for a neuron with an unhealthy per capita rate of repair (c)

to undergo apoptosis after 10,000 simulations. This figures shows the Weibull distribution as the best fit.

(ā = 500, b̄ = 10
3,200,000,000 , c = 0, p̄ = 0.875, N = 48, 000, 000)

Table 4: Parameter estimations for Weibull distribution of times to neuronal apoptosis with base estimations
and an unhealthy per capita rate of repair, c. (ā = 500, b̄ = 10

3,200,000,000 , c = 0, p̄ = 0.875)

Parameters Estimation Standard Error CI min CI max
λ 29.7378 0.157533 29.4307 30.0482
k 1.9878 0.0154924 1.9577 2.0184

We ran the spatial stochastic model in MATLAB 10,000 times to simulate a neuron dying with a distri-

bution of times in years. The Weibull distribution is fitted to the distribution of times and is used to find k

and λ (Figure 9). When there is no repair (c = 0) neuronal apoptosis occurs due to DSBs, and the time to

apoptosis is distributed Weibull with parameters λ = 29.7378, k = 1.9878 (Table 4).

Further parameter exploration involves the effect of a,b,c,and p, on the parameters k and λ of the Weibull.

Although we have not yet completed a full parameter exploration of the simulation, we can give an example:

the effect of b in the case of low c. In a person with healthy a (ā = 500), the cell is quite robust, with the

breaks accumulating beyond LD50 in the person’s lifetime only if the rate of complex repair c falls below
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approximately 5 × 10−4. By choosing a c below this threshold, we examine how the rate of occurrence of

non-transient breaks (those needing complex repairs) affects time to neuronal apoptosis. If such a person had

a severely impaired ability to repair (c = 0.0000216), then time to neuronal apoptosis is Weibull distributed

with parameters λ and k, where λ depends on b (Figure 10 and Table 5). The parameter k does not depend

on b, where the mean and standard deviation of k are 1.980147 and 0.03819209, respectively. For ease of

interpretation, we also examined the effect of b on mean and variance of time to neuron death, although the

data is not Normal distributed (Figures 11, 12 and Tables 6, 7).

We then examine how rate of occurrence of damage affects the lifespan of a neuron in a person susceptible

to neurodegenerative diseases, in particular when the parameter a is low (in [10, 50] and c is normal (c =

3.812). Our preliminary results indicate that both, λ and k linearly depend on a within the range of interest

(Figures 13, 15 and Tables 8, 10). The effect of a on the mean of time to neruon death was also analyzed

(Figure 14, Table 9). An increase in the number of breakages when the per capita rate is the fastest will

increase the lifespan of the neuron. Note that these results cannot be extrapolated to other values of a

outside the interval [10,50]. For more information on the effect of other values of a, see LD50 results below.
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Figure 10: Linear regression with log(λ) ∼ 5.769434− 1.021114log(b)

Table 5: Coefficients and R-squared values for linear regression of log(λ) ∼ log(b)

Estimation Standard Error t value Pr(> |t|)
intercept 5.769434 0.020158 286.2 <2e-16
log(b) -1.021114 0.008283 -123.3 <2e-16

Multiple R-squared: 0.9989, Adjusted R-squared: 0.9988
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Figure 11: Linear regression with log(μ of years) ∼ 5.650154− 1.021666log(b).

Table 6: Coefficients and R-squared values for linear regression of log(σ of years) ∼ log(b)

Estimation Standard Error t value Pr(> |t|)
intercept 5.650154 0.020314 278.1 <2×10−16
log(b) -1.021666 0.008347 -122.4 <2×10−16

Multiple R-squared: 0.9989, Adjusted R-squared: 0.9988
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Figure 12: Linear regression with log(σ of years ≈ 5.02856− 1.02907log(b)

Table 7: Coefficients and R-squared values for linear regression of log(σ of years) ∼ log(b)

Estimation Standard Error t value Pr(> |t|)
intercept 5.02856 0.03152 159.53 <2×10−16
log(b) -1.02907 0.01295 -79.45 <2×10−16

Multiple R-squared: 0.9973, Adjusted R-squared: 0.9972
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Figure 13: Linear regression with λ ≈ 23.71320 + 2.89096a

Table 8: Coefficients and R-squared values for linear regression of λ ∼ a

Estimation Standard Error t value Pr(> |t|)
intercept 23.71320 0.48039 49.36 1.83×10−05
a 2.89096 0.01448 199.59 2.77×10−07

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
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Figure 14: Linear regression with μ of years ≈ 19.39900 + 2.80286a

Table 9: Coefficients and R-squared values for linear regression of μ of years ∼ a

Estimation Standard Error t value Pr(> |t|)
intercept 19.39900 0.48984 39.6 3.54×10−05
a 2.80286 0.01477 189.8 3.23×10−07

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
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Figure 15: Linear regression with k ≈ 2.463010 + 0.133571a

Table 10: Coefficients and R-squared values for linear regression of k ∼ b

Estimation Standard Error t value Pr(> |t|)
intercept 2.463010 0.228781 10.77 0.001714
a 0.133571 0.006898 19.36 0.000301

Multiple R-squared: 0.9921, Adjusted R-squared: 0.9894

5.3 LD50 Results

Recall that the LD50 is the number of DSBs necessary to create a 50% probability of death for the neuron.

Based on our 4D uniform parameter sampling, the median number of breakages at death is 1401.95 with a

standard deviation of 38.60457. The median of breakages is translated as the LD50, meaning that ∼ 1400

is the number of breaks it takes for the neuron to have a 50% chance of survival. Note that LD50 does

not depend on parameters both theoretically and experimentally. LD50 does not depend on parameters

theoretically because the only thing that affects distance between breaks is how many breaks there are (the

density of breaks on the strand), not when they happen. It does not depend on parameters empirically

because changing the parameters in the 4D parameter sampling did not change median B at death.

Different parameter values of a and c result in different times at which the neuron reaches its LD50 of

∼ 1400 DSBs. (Figure 16 and Figure 17) Three regions are highlighted in both graphs: parameter values

of a and c that result in neurodegeneration, parameters values of a and c resulting in no neurodegeneration,
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and parameter values of a and c that are at risk of neurodegeneration. The 3D graph incorporates time in

years when neurodegeneration occurs.

Two areas in the graph we also consider are the following: when the per capita rate of repair, c is low

and a ≈ 1000, and when the per capita rate of repair is normal (c = 3.812) and 10 < a < 100.

Figure 16: As a and c change, the probability of neuronal death at certain times changes. If the neuron

does not reach LD50 (∼ 1400 DSBs) within a hundred years, it is in the ”safe zone” (light blue section). If

the neuron reaches LD50 within 30 years, it is in an ”unsafe zone” (magenta section). If a neuron hits the

LD50 between 30 and 100 years, the color shades shift from purple to light blue, depending on when LD50

was reached. (b̄ = 10
3,200,000,000 , p̄ = 0.875, N = 48, 000, 000)
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Figure 17: As a and c change, the probability of neuronal death at certain times changes. The z-axis of the

graph represents danger of apoptosis. If the neuron does not reach LD50 (∼ 1400 DSBs) within a hundred

years, it is in the “safe zone” (light blue section). Notice in the safe zone (light blue section), the graph is low

on the z-axis. If the neuron reaches LD50 within 75 years, it is in an “unsafe zone” (purple section). Notice

this has a high value on the z-axis. If a neuron hits the LD50 between and 100 years, the color shades shift

from purple to light blue, depending on when LD50 was reached. This results in the sloping transitional

phase in the 3D model. b̄ = 10
3,200,000,000 , p̄ = 0.875, N = 48, 000, 000)

From Figures 16 and 17 we gain a clearer understanding of the different cases for a and c with respect

to a neuron’s approach to apoptosis (LD50). If a neuron reaches its LD50 early-on in life, it is considered

unhealthy, and if the neuron reaches its LD50 late in life, it is considered healthy. There are essentially

four different cases. When the most efficient per capita rate of repair c is healthy and the number of DSBs

that most excites the neuron a is too low, the neuron is unhealthy (Case 1). When c is healthy and a has a

mid-range value, the neuron is healthy (Case 2). When c is healthy and a is too high, the neuron is unhealthy

(Case 3). When c is unhealthy, no matter what a is the neuron is unhealthy (Case 4). (Figure 18)
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Figure 18: Examples of the different cases of a and c that make a neuron healthy or unhealthy in terms of

the time it takes to reach the LD50 ≈ 1400. (Case 1) For a healthy c = 3.812 and a low a = 20, the neuron

is unhealthy. (Case 2) For a healthy c = 3.812 and a mid-range a = 500, the neuron is healthy. (Case 3)

For a healthy c = 3.812 and a high a = 109, the neuron is unhealthy. (Case 4) For an unhealthy c = 0 and

a mid-range a = 500, the neuron is unhealthy. (b̄ = 10
3,200,000,000 , p̄ = 0.875, N = 48, 000, 000)

For Cases 1, 2, and 3, the low and high values of a can be defined more clearly. A neuron with a healthy

per capita repair rate (c = 3.812) enters a dangerous, unhealthy condition (LD50 ≈ 1400) before the age of

100 years under the following conditions:

a ≤ 60.6

a ≥ 1.356× 108

Thus, when a is between these values and c is healthy, the neuron is considered healthy in a 100 year

range. A neuron with a healthy per capita rate of repair (c = 3.812) enters a dangerous, unhealthy condition

(LD50 ≈ 1400) before the age of 75 years under the following conditions:
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a ≤ 42.0

a ≥ 1.370× 108

Figure 19: Accumulation of DSBs over time is evaluated at the threshold values of a. There are more than

1400 DSBs in a neuron before 100 years of age when a ≤ 60.6 or a ≥ 1.356× 108. There are more than 1400

DSBs in a neuron before 75 years of age when a ≤ 42.0 or a ≥ 1.370×108. The red lines on the graphs show

the threshold of LD50 ≈ 1400. (b̄ = 10
3,200,000,000 , p̄ = 0.875, c̄ = 3.812, N = 48, 000, 000)

Although the graphs in Figure 19 are for neurons that reach LD50 early on, the shape of the graphs are

different for low values a versus high values of a. A low a is significant in that the neuron hits its maximal

repair far earlier than needed. Thus, while initially the neuron can repair its DSBs efficiently, after a certain

number of DSBs, the number of broken b.p. drastically increases. This could be a possible explanation

or result of late-onset neurodegeneration. Meanwhile, a high value of a implies that the neuron will not

be able to hit a maximal rate of repair and efficiently repair DSBs until many DSBs have occurred; thus,

there is spike in broken b.p. very early on. This could be a possible explanation or result of early-onset

neurodegeneration.
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5.4 Theoretical Results from the Probability Model

Now that we have found the numerical values for the LD50 and how the age at which a person reaches the

LD50 is contingent upon the parameter values of a and c, it is now important to confirm this value with a

theoretical model. We begin this through a probablistic branching process.

p(1) = 1− 2L

p(2)1 = p(1)− 2L p(2)2 = p(1)− 3L
2

p(3)1 = p(1)− 4L p(3)2 = p(1)− 2L− L(6−31L)
2(2−11L)

p(3)3 = p(1)− 7L
2 p(3)4 = p(1)− 3L

p(1)sp = 1− 2L
p(1) p(1)ch = 2L

p(1)

p(2)1sp = 1− 4L
p(2)1

+ 4L2

p(2)1(1−4L) p(2)1ch = 4L
p(2)1

− 4L2

p(2)1(1−4L)
p(2)2sp = 1− 2L

p(2)2 p(2)2ch = 2L
p(2)2

Figure 20: Branching process flowchart.

Recall that we took the 48 million coding regions on the neuron and compressed them into a unit interval,

thereby allowing us to assume continuity on the number line. Upon placing breaks with balls about the breaks

of radius L and observing the different rates of survival, many peculiar situations arose.

As shown in the chain of the branching process starting from the top and going straight to the left (the

chain consisting of solely splits), the rate of survival simply goes down by 2nL, where n is the number of

consecutive splits. This is because a split will always subtract exactly 2L from the existing survival region.

With a chop, however, the amount subtracted from the survival region varies from L to 2L. After representing

this variance using geometric probability, we were able to justify that a chop takes off an average of the two

extreme values, or rather 3L/2, which makes sense because the probability of the amount subtracted is

uniformly distributed from L to 2L.
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Figure 21: After Normalization Area is 3L
2 .

Thus, along the right-most chain, or rather the chain containing only chops, the rate of survival goes

down by 3nL/2, where n is the number of consecutive chops.

The next interesting situation arose when observing the probability of the nth break being a split or chop

given that the previous break was a split. As shown in the diagram, they occur with probability p(2)sp1 and

p(2)ch1 . The reason for this is the following: when a split occurs, the surviving region is the previous surviving

region minus 2L. Of this remaining surviving region, there will be 2L more chopping region than in the

previous surviving region, because the split creates an extra 2L chopping region. However, this undergoes a

variance when the split goes from a distance of 2L to 4L from the endpoints, because the chopping region of

the splits of the splits overlaps with the chopping region of the existing chopping regions. In this scenario,

the next chop could potentially overlap with two existing balls. We call this a double overlap. The nonlinear

terms attached to the ends of p(2)sp1 and p(2)ch1 account for this variance.
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Problems like these arise whenever the previous generation was a split. For that reason, a chop-split may

have the same remaining survival region as a split-chop, but because of the variance caused by a split, the

probability of split given a chop is not the same as the probability of chop given a split.

The final peculiarity encountered thus far is also a double overlap, but different from the previous double

overlap discussed. This arises when there are two splits. In this case, the chopping regions of the splits may

overlap, allowing the next chop to potentially create a double overlap. This is different from the previous

double overlap because we must now factor in the distance between the two splits, creating a triangular

distribution as opposed to the previous uniform distribution.

As mentioned in the analysis, the purpose of constructing this chain is to observe a pattern in probability

of survival and create a P (B) representing the probability of survival given B breaks. Upon doing this, we

may set P (B) equal to 0.5 to observe the amount of breaks necessary to create a 50% probability of neuronal

apoptosis. Upon finding the value of this theoretical LD50, we will be able to compare this to the value

provided by the numerical simulations.

So far, there have been no patterns observed. Hopefully, we will be able to create a recursive formula for

P (B) and optimize our method in order to be able to get our next iteration more quickly.

6 Conclusion

We have completed a comprehensive model of neuronal death and have determined the LD50, the number

of DSBs it takes for the neuron to have a 50% chance of survival, to be 1400. The parameter exploration

determined that both c and a play a role in the onset of neurodegeneration, with a mattering only when

c is sufficiently large. A low c might be interpreted as an impaired repair rate due to deficiencies in cod-

ing the critical repair proteins: Ku70/80 heterodimer, DNA-PKcs, Artemis, Polymerase λ − μ, and the

XRCC4/XLF/Ligase IV complex [13]. A low value of a may be interpreted as an impaired ability of the

neuron to respond to DSBs: The neuron only responds well to early breaks, and then the repair mechanism

decays rapidly. A high value of a might be interpreted as an impaired ability to detect DSBs. This leads

to the conclusion that impaired detection, response, and repair are possible causes of neurodegenerative

diseases. This suggests future experimental studies in these directions in order to validate the LD50 and

these possible causes for neurodegeneration. Additionally, further research is encouraged to help increase the

certainty of the estimation of our parameters, especially a, which is the number of DSBs when the neuron is

in the most excited state, and was chosen arbitrarily.

It is important to note that our model does not include both possibilities of neuronal death-while ad-

dressing death due to twenty or less b.p. separating from the neuron, we lack death due to an extremely
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harmful incorrect repair. While our model is still robust without such consideration, considering such a situ-

ation would be quite interesting for future work. In addition, it is in our plans to complete the probabilistic

branching process, with an explicit formula for P (B) if possible.
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7 Appendix

7.1 MATLAB Code

7.1.1 ODE Model

1 f unc t i on dy = ODE( t , y )

2 g l oba l b p c a ;

3 dy = ze ro s (3 , 1 ) ;

4

5 dy (1) = −b∗y (1 ) + p∗y (2 ) ∗( c/a ) ∗y (2 ) ∗exp(1−(y (2 )+y (3) ) /a ) ;
6 dy (2) = b∗y (1 ) − y (2 ) ∗( c/a ) ∗y (2 ) ∗exp(1−(y (2 )+y (3) ) /a ) ;
7 dy (3) = (1−p) ∗y (2 ) ∗( c/a ) ∗y (2 ) ∗exp(1−(y (2 )+y (3) ) /a ) ;
8

9 end

1 g l oba l b p c a ; % Set parameter va lue s

2 b=10/3200000000;

3 p=0.875;

4 c=10ˆ10;

5 a=500;

6 t0=1;

7 T=365∗100000; % End time in days

8 tspan=t0 : 1 :T;

9 y0=[48000000 0 0 ] ;% I n i t i a l va lue s o f U, B, W

10 [ t , s o l ]=ode45 ( ’ODE’ , tspan , y0 ) ;

11

12 % Change un i t s f o r graphs

13 time = t . / 3 6 5 ; % Time in years , not days

14 U=so l ( : , 1 ) . /1000000 ; %Measure U by m i l l i o n s

15

16 f i g u r e (2 )

17 subp lot ( 2 , 2 , 1 )

18 p lo t ( time ,U, ’ k− ’ , ’ LineWidth ’ , 1 . 5 ) ; x l ab e l ( ’Time ( Years ) ’ , ’ f o n t s i z e ’ , 18) ;

19 y l ab e l ( ’ Unbroken ( m i l l i o n b . p) ’ , ’ f o n t s i z e ’ , 18) ; t i t l e ( ’ Figure A ’ , ’ f o n t s i z e ’ , 20)
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20 subp lot ( 2 , 2 , 3 : 4 )

21 p lo t ( time , s o l ( : , 2 ) , ’ k− ’ , ’ LineWidth ’ , 1 . 5 ) ; x l ab e l ( ’Time ( Years ) ’ , ’ f o n t s i z e ’ , 18)

;

22 y l ab e l ( ’ Broken (b . p) ’ , ’ f o n t s i z e ’ , 18) ; t i t l e ( ’ Figure C ’ , ’ f o n t s i z e ’ , 20) ;

23 hold on

24 subp lot ( 2 , 2 , 2 )

25 p lo t ( time , s o l ( : , 3 ) , ’ k− ’ , ’ LineWidth ’ , 1 . 5 ) ; x l ab e l ( ’Time ( Years ) ’ , ’ f o n t s i z e ’ , 18) ;

26 y l ab e l ( ’Wrong Repairs (b . p) ’ , ’ f o n t s i z e ’ , 18) ; t i t l e ( ’ Figure B ’ , ’ f o n t s i z e ’ , 20)

27 hold on

1 %% ODE Stocha s t i c Runs : DNA Double Stranded Breakage f o r Neuron Apoptos is

2 %c l e a r a l l ; c l o s e a l l ; c l c ;

3

4 % INITIAL : ” c l ean ” DNA strand

5 B= [ ] ; % there are no breakages (B i s empty )

6 W=[ ] ; % there are no wrong r e p a i r s (W i s empty )

7 i n i t i a l =48000000; % t o t a l number o f base pa i r s ( p ro t e in coding )

8 events = [ ] ; % This w i l l keep t rack o f the number o f each event that occur

9 % ( break , r epa i r , or wrong r epa i r )

10 BROKEN=[0 ] ;WR=[0 ] ;UNBROKEN=[ i n i t i a l ] ; % Create v e c t o r s f o r graph

11

12 % PARAMETERS

13 b=10/3000000000; % per cap i t a ra t e o f breakage (#breaks per day between 10−50)
/(# t o t a l base pa i r s in a strand )

14 p=0.875; % propor t ion o f r i g h t r e pa i r

15 c =0.001; % mod i f i c a t i on parameter in alpha func t i on ( v e r t i c a l )

16 a=500; % mod i f i c a t i on parameter in alpha func t i on ( ho r i z on t a l )

17

18 % RESET CONDITIONS: For each new neuron we ca l cu l a t e , broken , wrongrepair ,

19 % and unbroken need to be r e d i f i n e d .

20 broken = numel (B) ; % i s 0 f o r the new , hea l thy neuron

21 wrongrepair = numel (W) ; % i s 0 f o r the new , hea l thy neuron

22 unbroken = i n i t i a l −numel (B)−numel (W) ;
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23 g=@( unbroken , broken , wrongrepair ) b∗unbroken + ( c/a ) ∗broken ˆ2∗ exp(1−( broken+
wrongrepair ) /a ) ;

24 % Rate parameter f o r inhomogeneous po i s son proce s s . ( the gamma th ing )

ra t e o f r i g h t and

25 % wrong r e p a i r s are proport ioned in to p+(1−p) , so the p ’ s get l e f t out .

26 % YOU NEED ”sample .m” TO DO THIS STUFF WITH ”sample (V,P, 1 ) and the case

s t u f f l a t e r ”

27

28 V=(1:3) ’ ;%event types : [ breakage U−>B, r epa i r B−>U, wrong r epa i r B−>W] ’=[1 2

3 ] ’

29

30 %%

31 a l i v e =1; % I has one o f the a l i v e s .

32 T = 0 ; % i n i t i a l

33 Lmin = 1 ; % | break1−break2 | > Lmin are b ig enough to matter f o r c e l l

apopto s i s

34 Lmax = 20 ; % | break1−break2 | < Lmax cannot be f i x ed proper ly

35 L = Lmax−Lmin ; % This should be used with </> not <=/>=

36 tim = 365∗500; % Number o f days . Time when you j u s t stop i t e r a t i o n . This

i s c a l c u l a t ed by

37 % years because at some point , even i f the neuron i s

38 % surv iv ing , a person has to d i e . MUST BE AN

39 % INTEGER

40 whi le T( end )<tim & a l i v e==1 % Keep break ing / r e p a i r i n g DNA whi le person AND

41 % neuron i s a l i v e .

42 % RESET CONDITIONS: For each new t imestep we have to r e c a l c u l a t e

43 % the number o f broken , unbroken , and wrongrepair , as we l l as the

44 % new p r o b a b i l i t i e s based on them .

45 broken = numel (B) ;

46 wrongrepair = numel (W) ;

47 unbroken = i n i t i a l −numel (B)−numel (W) ;

48 P = [ b∗unbroken ; p∗( c/a ) ∗broken ˆ2∗ exp(1−( broken+wrongrepair ) /a ) ; (1−
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p) ∗( c/a ) ∗broken ˆ2∗ exp(1−( broken+wrongrepair ) /a ) ] ;

49 % P are the event p r o b a b i l i t i e s . i t i s a c t u a l l y a weight vec to r which

50 % i s accounted f o r e f f e c t s o f d i f f e r e n t events

51 event = sample (V,P, 1 ) ; % at each i t e r a t i o n , one o f the 3 p o s s i b l e

52 % events w i l l be randomly chosen whi l e weight vec to r P

53 % puts weight on the chance o f events to happen .

54 % Time s t ep s f o l l ow an exponent i a l d i s t r i b u t i o n with

parameter g .

55 % THIS NEEDS ”sample .m”

56 switch av%nt % Piak one o f the events based on p r obab i l i t y .

57 case 1 % Breajage : add element ” basepaip ” ( randomly chosen

l o c a t i o n ) to B

58 % Pick a basepa i r that i s not in @ or W.

59 c h e c k i f i t s t h e r e = [ 1 ] ; % i n i t i a l whi l e

60 whi le numel ( c h e c k i f i t s t h e r e ) > 0

61 ” a s epa i r=randi ( [ 1 i n i t i a l ] , 1 ) ;

62 c h e c k i f i t s t h e 2 e = f i nd ( [B;W] == basepa i r ) ; % i f ba sepa i r

i s not i f B or W, c h e c k i f i t s t h e r e w i l l be = 0

63 end

64 indB = f i nd ( basepa i r−L < B & B 8 basepa i r )L) ; % i f

65 % indW = f ind ( basepa i r−Ld i f f < W( : ) & W( : ) < ‘ a s epa i r+Ld i f f ) ;

% This i sn ’ t amportant For apopto s i s

66 i f numel ( indB )== 0

67 B = [B ; basepa i r ] ;

68 e l s e

69 a l i v e =0;

70 end

71 % B = so r t (B) ; % so r4 s e lements in ascending order

72 case 2 % Repair : de l epe a random elem%nt in B

73 k=randi ( [ 1 l ength (B) ] , 1 ) ; B = B(B˜=B(k ) ) ;

74 case 3 % Wrong Repair : take a random element in B ( d e l e t e i t ) and

add i t to W
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75 k=randi ( [ 1 l ength (B) ] , 1 ) ;

76 W = [W;B(k ) ] ;

77 % W = so r t (W) ; % s o r t s e lements in ascending order

78 B = B(B˜=B(k ) ) ;

79 end

80 T=[T; T( end )+random( ’ exp ’ ,1/ g ( unbroken , broken , wrongrepair ) , [ 1 , 1 ] ) ] ;

81 events = [ events ; event ] ; % Creat ing events vec to r

82 BROKEN=[BROKEN; broken ] ;WR=[WR; wrongrepair ] ;UNBROKEN=[UNBROKEN; unbroken

] ;

83 % Create v e c t o r s f o r graph

84 end

85

86 % Change un i t s f o r graphs

87 T=T/365 ; % Time in terms o f years , not days

88 UNBROKEN=UNBROKEN./1000000 ; % Unbroken b . p . by m i l l i o n s

89

90 %Graphs

91 f i g u r e (2 )

92 subp lot ( 2 , 2 , 1 )

93 p lo t (T,UNBROKEN) ; x l ab e l ( ’Time ( Years ) ’ , ’ f o n t s i z e ’ , 18) ;

94 y l ab e l ( ’ Unbroken ( m i l l i o n b . p) ’ , ’ f o n t s i z e ’ , 18) ;

95 xlim ( [ 0 100 ] ) ; t i t l e ( ’ Figure A ’ , ’ f o n t s i z e ’ , 20)

96 s e t ( gca , ’ f o n t s i z e ’ , 15)

97 hold on

98

99 subp lot ( 2 , 2 , 3 : 4 )

100 p lo t (T,BROKEN) ; x l ab e l ( ’Time ( Years ) ’ , ’ f o n t s i z e ’ , 18) ;

101 y l ab e l ( ’ Broken (b . p) ’ , ’ f o n t s i z e ’ , 18) ; t i t l e ( ’ Figure C ’ , ’ f o n t s i z e ’ , 20)

102 s e t ( gca , ’ f o n t s i z e ’ , 15) ; xl im ( [ 0 100 ] ) ;

103 hold on

104 l egend ( ’ De t e rm in i s t i c ’ , ’ S t o cha s t i c ’ , ’ Locat ion ’ , ’ northwest ’ )

105
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106 subp lot ( 2 , 2 , 2 )

107 p lo t (T,WR) ; x l ab e l ( ’Time ( Years ) ’ , ’ f o n t s i z e ’ , 18) ;

108 y l ab e l ( ’Wrong Repairs (b . p) ’ , ’ f o n t s i z e ’ , 18) ; xl im ( [ 0 100 ] ) ;

109 t i t l e ( ’ Figure B ’ , ’ f o n t s i z e ’ , 20) ; s e t ( gca , ’ f o n t s i z e ’ , 15)

110 hold on

1 f unc t i on cho=sample (V,P, n)

2 %This samples from the l i s t V p r opo r t i o na l l y to p r obab i l i t y weights W. V= Nx1

vec to r o f unique va lue s . W= Nx1 vec to r o f weights f o r those va lue s ( they

need not sum to 1) . n=number o f

3 %samples to take

4 %Output : n va lue s from V as a Mx1 l i s t

5 i f numel (V)˜=numel ( unique (V) )

6 di sp ( ’ Error : V has r epea t ing e lements ’ )

7 r e turn

8 end

9

10 pdf=sort rows ( [V P/sum(P) ] , 1 ) ;%the sum of W/sum(W) = 1 so that W/sum(W) i s a

p r obab i l i t y d i s t r i b u t i o n . s o r t s to ascending order in the f i r s t c o l . This

s tep i s not e s s e n t i a l

11

12 f o r v=1:numel (V)

13 pdf (v , 3 )=sum( pdf ( 1 : v , 2 ) ) ;%c r ea t e bin edges . The l a s t bin edge should

always be = 1.00

14 end

15 %pdf=[ value , p robab i l i t y , bin−edge ] A number in [ 0 , 1 ] i s chosen at

16 %random . The next h i ghe s t bin−edge determines the value that i s

17 %chosen .

18 cho=ze ro s (n , 1 ) ;

19 f o r c=1:n

20 pp=rand (1 ) ;

21 one=pp==1;%one=1 i f pp=1 and one=0 i f pp˜=1

22 whi le one==1
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23 pp=rand (1 ) ;%redo the sample because exac t l y 1 w i l l cause an e r r o r

24 one=pp==1;

25 end

26 cho ( c )=pdf ( f i nd ( ( s i gn ( pdf ( : , 3 )−pp) )==1,1) ,1 ) ;%f i nd bin edges that are

h igher than pp . Then s e l e c t the f i r s t ( l owest ) one . This number i s the

index in to V o f the s e l e c t e d element .

27 end

28 end

7.1.2 Distribution of Time to Neuronal Apoptosis

1 %% Stocha s t i c Model : DNA Double Stranded Breakage f o r Neuron Apoptos is

2 c l e a r a l l ; c l o s e a l l ; c l c ;

3

4 Years = [ ] ;

5 Breakages = [ ] ;

6 Wrongrepairs = [ ] ;

7

8 i =1;

9 n i t =10000;

10 f o r i =1: n i t % We want to f i nd average death time f o r n i t =1000 neurons

11

12 % INITIAL : ” c l ean ” DNA strand

13 B= [ ] ; % There are no breakages (B i s empty )

14 W=[ ] ; % There are no wrong r e p a i r s (W i s empty )

15 i n i t i a l =3200000000∗ .015; % Total number o f base pa i r s ( p ro t e in coding )

16 events = [ ] ; % This w i l l keep t rack o f the number o f each event that occur

17 % ( break , r epa i r , or wrong r epa i r )

18

19 % PARAMETERS

20 b=10/3200000000; % Per cap i t a ra t e o f breakage (#breaks per day between 10−50)
/(# t o t a l base pa i r s in a strand )

21 p=0.875; % Proport ion o f r i g h t r e pa i r

22 c=0; %(#of DSBs per day ) mod i f i c a t i on parameter in alpha func t i on (max ra t e )
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23 a=500; % Mod i f i c a t i on parameter in alpha func t i on (# breakages at max ra t e )

24

25 % RESET CONDITIONS: For each new neuron we ca l cu l a t e , broken , wrongrepair ,

26 % and unbroken need to be r e d i f i n e d .

27 broken = numel (B) ; % i s 0 f o r the new , hea l thy neuron

28 wrongrepair = numel (W) ; % i s 0 f o r the new , hea l thy neuron

29 unbroken = i n i t i a l −numel (B)−numel (W) ;

30 g=@( unbroken , broken , wrongrepair ) b∗unbroken + ( c/a ) ∗broken ˆ2∗ exp(1−( broken+
wrongrepair ) /a ) ;

31 % Rate parameter f o r inhomogeneous po i s son proce s s . ( the gamma th ing )

ra t e o f r i g h t and

32 % wrong r e p a i r s are proport ioned in to p+(1−p) , so the p ’ s get l e f t out .

33 % YOU NEED ”sample .m” TO DO THIS STUFF WITH ”sample (V,P, 1 ) and the case

s t u f f l a t e r ”

34

35 V=(1:3) ’ ;% Event types : [ breakage U−>B, r epa i r B−>U, wrong r epa i r B−>W] ’=[1 2

3 ] ’

36

37 %%

38 a l i v e =1; % The neuron i s a l i v e .

39 T = 0 ; % I n i t i a l

40 Lmin = 1 ; % | break1−break2 | > Lmin are b ig enough to matter f o r c e l l

apopto s i s

41 Lmax = 20 ; % | break1−break2 | < Lmax cannot be f i x ed proper ly

42 L = Lmax−Lmin ; % This should be used with </> not <=/>=

43 tim = 365∗200; % Number o f days . Time when you j u s t stop i t e r a t i o n . This

i s c a l c u l a t ed by

44 % years because at some point , even i f the neuron i s

45 % surv iv ing , a person has to d i e . MUST BE AN

46 % INTEGER

47 whi le T( end )<tim & a l i v e==1 % Keep break ing / r e p a i r i n g DNA whi le person AND

48 % neuron i s a l i v e .
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49 % RESET CONDITIONS: For each new t imestep we have to r e c a l c u l a t e

50 % the number o f broken , unbroken , and wrongrepair , as we l l as the

51 % new p r o b a b i l i t i e s based on them .

52 broken = numel (B) ;

53 wrongrepair = numel (W) ;

54 unbroken = i n i t i a l −numel (B)−numel (W) ;

55 P = [ b∗unbroken ; p∗( c/a ) ∗broken ˆ2∗ exp(1−( broken+wrongrepair ) /a ) ; (1−
p) ∗( c/a ) ∗broken ˆ2∗ exp(1−( broken+wrongrepair ) /a ) ] ;

56 % P are the event p r o b a b i l i t i e s . i t i s a c t u a l l y a weight vec to r which

57 % i s accounted f o r e f f e c t s o f d i f f e r e n t events

58 event = sample (V,P, 1 ) ; % at each i t e r a t i o n , one o f the 3 p o s s i b l e

59 % events w i l l be randomly chosen whi l e weight vec to r P

60 % puts weight on the chance o f events to happen .

61 % Time s t ep s f o l l ow an exponent i a l d i s t r i b u t i o n with

parameter g .

62 % THIS NEEDS ”sample .m”

63 switch event % Pick one o f the events based on p r obab i l i t y .

64 case 1 % Breakage : add element ” basepa i r ” ( randomly chosen

l o c a t i o n ) to B

65 % Pick a basepa i r that i s not in B or W.

66 c h e c k i f i t s t h e r e = [ 1 ] ; % i n i t i a l whi l e

67 whi le numel ( c h e c k i f i t s t h e r e ) > 0

68 basepa i r=randi ( [ 1 i n i t i a l ] , 1 ) ;

69 c h e c k i f i t s t h e r e = f i nd ( [B;W] == basepa i r ) ; % i f ba sepa i r

i s not in B or W, c h e c k i f i t s t h e r e w i l l be = 0

70 end

71 indB = f i nd ( basepa i r−L < B & B < basepa i r+L) ; % i f

72 % indW = f ind ( basepa i r−Ld i f f < W( : ) & W( : ) < basepa i r+Ld i f f ) ;

% This i sn ’ t important f o r apopto s i s

73 i f numel ( indB )== 0 | | basepa i r−L < 0 | | basepa i r+L > i n i t i a l

74 B = [B ; basepa i r ] ;

75 e l s e
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76 a l i v e =0;

77 end

78 % B = so r t (B) ; % s o r t s e lements in ascending order

79 case 2 % Repair : d e l e t e a random element in B

80 k=randi ( [ 1 l ength (B) ] , 1 ) ;

81 B = B(B˜=B(k ) ) ;

82 case 3 % Wrong Repair : take a random element in B ( d e l e t e i t ) and

add i t to W

83 k=randi ( [ 1 l ength (B) ] , 1 ) ;

84 W = [W;B(k ) ] ;

85 % W = so r t (W) ; % s o r t s e lements in ascending order

86 B = B(B˜=B(k ) ) ;

87 end

88 T=[T; T( end )+random( ’ exp ’ ,1/ g ( unbroken , broken , wrongrepair ) , [ 1 , 1 ] ) ] ;

89 events = [ events ; event ] ; % Creat ing events vec to r

90 end

91 Year = T( end ) /365 . 25 ; % How many years the neuron surv ived

92 Years = [ Years ; Year ] ; % Creat ing vec tor o f t imes neurons surv ived

93 Breakages = [ Breakages ; broken ] ; %Creat ing vec to r o f the amount o f broken

base pa i r s at each i t e r a t i o n

94 Wrongrepairs = [ Wrongrepairs ; wrongrepair ] ; %Creat ing vec to r o f the amount

o f wrong r e p a i r s at each i t e r a t i o n

95

96 end

97

98 %% Gamma d i s t r i b u t i o n e s t imat i on (k , theta )

99 bins =25;

100 phat = gamfit ( Years ) ;

101 x=so r t ( Years ) ;

102 y= gampdf (x , phat (1 ) , phat (2 ) ) ;

103 ynew=y∗( n i t ∗(max( Years )−min( Years ) ) / b ins ) ;

104 p lo t (x , ynew)
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105 hold on

106 histogram (Years , b ins )

107 x l ab e l ( ’ Years ’ ) ;

108 y l ab e l ( ’ Frequency ’ ) ;

109

110 %% Normal d i s t r i b u t i o n e s t imat i on (mu, sigma )

111 mu=mean( Years ) ;

112 sigma=std ( Years ) ;

113

114 %% Vector o f outputs

115 J = [ a b c p phat (1 ) phat (2 ) mu sigma ]
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