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Abstract

The change in geographical distribution of Dengue Fever and the introduction of
new vector species in some areas are increasing the concerns of epidemiologist. It is
believed that second hand tire trade and its transportation has been a factor in dengue
spread as it is a mobile egg reservoir. Understanding the underlying dynamics of eggs
transportation due to tire trade can help prevent or reduce dengue expansion and give
alternative explanations to unexpected dengue outbreaks where vertical transmission
plays an important role. In this paper, we assess the impact of transportation of tires
that act as hatcheries from rural areas with dengue disease to urban areas without
the disease. A mathematical model capturing dynamics of Dengue in the two distinct
patches, representing rural and urban areas, is introduced and analyzed. The model
takes into account the explicit movement and storage time of tires. The model was
able to capture four possible situations in the field under different geographical cir-
cumstances. In the first, a new mosquito species is introduced in a naive mosquitoes
species region, in the second a Dengue outbreak is generated, in the third scenario an
endemic state is enhanced or induced whether urban conditions for an outbreak are
met of not, in the last scenario we asses the possibility of using the second hand tire
trade as a dengue control measure.
Keyword: Dengue, vertical transmission, diapause, reservoirs, tires

1 Introduction

Dengue fever is one of the most important vector-borne disease with approximately 2.5
billions people at risk of infection and 50 million dengue infections annually [18]. More
than 100 tropical and subtropical countries live under endemic dengue virus conditions
[11]. It is the fastest reemerging disease; which imposes an economic burden and health
in affected individuals.

There are two mosquito species that can transmit the virus: Ae. aegypti and Ae.
albopictus. There are four virus serotype antigenically related: DENV-1, DENV-2, DENV-
3 and DENV-4 [10]. The virus is transmitted by the bite of an infected mosquito and once
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an individual has been infected by one serotype they are permanently immune to that
serotype but only temporarily immune to the others [10, 9].

Ae. aegypti is the most common vector that transmit the disease but Ae. albopictus,
also called Asian Tiger mosquito, is becoming an increasingly important vector because of
its rapidly changing global distribution [3, 20]. The local and worldwide trade of second
hand tires which often contain standing rain water and vector eggs [20] is an important
dispersion cause of the mosquito species and the virus. The Ae. albopictus was dissemi-
nated from Asia to tropical regions worldwide and was first introduced to the Americas
in the 1980s in used tires and bamboo plants shipped from Asia [3, 11]. Since then, Ae.
albopictus has been identified in 20 countries in the Americas. Also ecologists have studied
the factors that led the introduction of Ae. albopictus in Europe, and the conclusion was
that international trade in used tires and lucky bamboo may have been main means of it
introduction [16].

This conclusion is not surprising as discarded tires are considered one of the most
productive containers for the mosquitoes and are frequently infected with both species [2].

Because the trade of tire abundance near human populations, the local movement of
tires has become an important mobile reservoirs [22], where the spatial distribution of
Ae. aegypti and Ae. albopictus in geographical zones urban-rural was studied. Moreover,
larval collection from used tires may be suitable to asses rapidly the current distribution
of dengue mosquitoes [14]. However, the role of movement of tires on dynamics of Dengue
has been limited.

Aedes was eliminated in 1960 in almost all America. However, subsequent social and
economic changes in the Americas have permitted the rapid re-infestation of the vector
and the Dengue virus throughout the region. From 1960 to 1990, the annual production of
tires increased from 2 to 17 million [5], suggesting that the management of their disposal
and its recycling can be an important cause of dengue dispersion in the region. Another
interesting case was Cuba that between 1981 and 1996 there was not dengue transmission.
However, re-infestation has occurred in some areas; the municipality of Santiago de Cuba
was reinfested in 1992 by Ae. aegypti transported in tires [15].

Diapause in the life cycle of aedes, is the phenomena that allows mosquito eggs sur-
vive during unfavorable conditions of development such as extreme winters, environmental
disturbance and transportation to new geographic area could be by tire transportation.
Diapause is the delay in development of eggs in response to adverse environmental con-
ditions, i.e., when the hatcheries (tires) are left without water the eggs interrupt their
development. During diapause, desiccation resistance in eggs increases due to higher con-
centrations of hydrocarbons at the egg surface [21].

Vertical or also called transovarial transmission is when virus is transmitted from the
infected female mosquito to its eggs [8, 13, 19]. In recent studies, vertical transmission has
been found in DENV-2, DENV-3 in American [13, 19] and DENV-2 from Asia [17]. This
allows the mosquitoes to transmit the disease without interacting with an infected host
[12, 6]. Thus vertical transmission can be responsible in some situations of the introduction
of the Dengue virus to new regions due to the second hand tire commerce.

33



In this paper, we asses the impact of the infected tire transportation from regions
with dengue virus to free vector and free dengue regions on the emergence of Dengue and
possibility of an outbreak. We take into account the waiting time before processing the
tires. This waiting time is important because we expect that in a well managed recycling
process second hand tires immediately processed reducing the possibility of eggs eclosion.
Even more, with the right regulations, this market can act as a mechanical control measure.

The mathematical model that includes a two patches (one patch representing the rural
areas with presence of dengue virus and the other patch representing an urban area initially
without vectors) is described in section 2. The model incorporates vertical transmission
among vectors, diapause states during transportation and the waiting time before tire
processing. In section 3, the details of the mathematical analysis are provided. The
conditions for the following situations to occur as a consequence of tire transportation is
derived: a) Introduction of a new mosquito species but no outbreak of dengue occurs,
b) Introduction of a new mosquito species and possibility of a Dengue outbreak, c) An
induced endemic state is generated due to the continues introduction of infected tires, and
d) An enhancement of an endemicity infection due to the continuously introduction of
infected tires. In section 4, a discussion of the results and explanation of the scenarios are
carried out.

2 Methods

We explore the dynamics of dengue fever between humans and female mosquitoes. The
modeled population is divided in rural and urban populations, where movement occurs
only in the reservoirs containing eggs. We assume same the entomological parameters for
both rural and urban areas. Although the similarity, the systems differ by the loss and
gain of eggs from rural to urban areas. The total human population in rural area NR and
urban area NU are constant. Table 1 describes the meaning of the population classes.

The human susceptible class has a per-capita birth rate η, and a per-capita death rate
η. Individuals in this class become infectious accordingly with the bite rate α due to
infectious vectors. The vectors become infected by biting infectious hosts with a contact
rate β. The rate at which humans recover from infection is γ and are permanently immune.

On the other hand, mosquitoes never recover from the disease and we only take into
account the fraction κ of female mosquitoes, as they are the only ones that transmit the
decease. Mosquitoes are increased due to the egg eclosion according to the development
rate ω and die with a rate ε. Female mosquitoes oviposit eggs at a rate φ and the eggs die
at a rate π. If the female mosquito was already infected, a fraction ν of its oviposited eggs
are infected (vertical transmission). The hatcheries have a carrying capacity Ca where
a ∈ {r, u}, and r is rural and u urban area.

The number of tires transported from rural area to urban area per unit of time is r
and θ is the mean number of tires that is considered constant. Thus r/θ is the rate of
eggs movement and during transportation just a fraction χ of eggs survive. ψ(τs/τd) is
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Population Description

SR Number of susceptible human in rural area.
IR Number of infectious human in rural area.
RR Number of recovered human in rural area.
SU Number of susceptible human in urban area.
IU Number of infectious human in urban area.
RU Number of recovered human in urban area.
MSR Density of susceptible mosquitoes in rural area.
MIR Density of infectious mosquitoes in rural area.
ESR Density of susceptible eggs in rural area.
EIR Density of infectious eggs in rural area.
MSU Density of susceptible mosquitoes in urban area.
MIU Density of infectious mosquitoes in urban area.
ESU Density of susceptible eggs in urban area.
EIU Density of infectious eggs in urban area.

Table 1: State variables.

the fraction of eggs in the tires that were able to continue with their life cycle before being
killed by the recycling process of the tire. Thus it is a function of the storage time τs
before tire processing and when τs = 0 then ψ = 0, while when τs is greater than the
development time τs of the eggs we expect ψ be near one from below. A flow diagram of
the model system is shown in Figure 1 and also Table 2 shows a summary of parameters.

Parameter Description Value Reference
η Per-capita birth and natural mortality rates in humans
γ Per-capita recovery rate 1/7 [1]

α, β Effective biting rate, per day 0.2− 0.67 [1]
Ca Capacity carrying of hatcheries, where a ∈ {r, u}, and r is rural and u urban area
φ Number of eggs laid per day for every female mosquito 10 [7]
ε Per-capita mortality rate of adult mosquitoes .07 [7]
π Per-capita mortality rate of immature stage mosquitoes 0.05 [7]
ν Proportion of eggs that are infected by vertical transmission 0− 1
ω Development rate of immature to mature stages 0.05 [7]
κ Fraction of mosquitoes that are female 0.5
r
θ Number of eggs per tire that are transported
χ Fraction of eggs that survive the transportation

ψ(τs/τd) Fraction of eggs in tires that were able to continue their development before tire processing.
τs,τd Tires storage time and egg development time, respectively.

Table 2: Model parameters

According to the assumptions and parameters, the system differential equations that
model the dynamics of dengue disease in rural area are given by:
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Figure 1: Flowchart from rural dengue fever model.

ṠR = ηNR − α
SR
NR

MIR − ηSR,

˙IR = α
SR
NR

MIR − (η + γ)IR,

ṘR = γIR − ηRR,

˙MSR = κωESR − β
IR
NR

MSR − εMSR,

˙MIR = κωEIR + β
IR
NR

MSR − εMIR,

˙ESR = φMSR

(
1− ER

Cr

)
+ (1− ν)φMIR

(
1− ER

Cr

)
− (π + ω +

r

θ
)ESR,

˙EIR = νφMIR

(
1− ER

Cr

)
− (π + ω +

r

θ
)EIR.

The differential equations that model the dynamics of dengue disease in urban area
are given by:
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Figure 2: Flowchart from urban dengue fever model.

ṠU = ηNU − α
SU
NU

MIU − ηSU ,

˙IU = α
SU
NU

MIU − (η + γ)IU ,

ṘU = γIU − ηRU ,

˙MSU = κωESU − β
IU
NU

MSU − εMSU ,

˙MIU = κωEIU + β
IU
NU

MSU − εMIU ,

˙ESU = φMSU

(
1− EU

Cu

)
+ (1− ν)φMIU

(
1− EU

Cu

)
− (π + ω)ESU +

r

θ
χψ

(
τs
τd

)
ESR,

˙EIU = νφMIU

(
1− EU

Cu

)
− (π + ω)EIU +

r

θ
χψ

(
τs
τd

)
EIR.

Where NR = SR+IR+RR, NU = SU +IU +RU , MR = MSR+MIR, ER = ESR+EIR,
MU = MSU + MIU , EU = ESU + EIU .

3 Analysis

The model explicitly takes into account the movement and storage time of tires. Our
study focuses on four possible scenarios. The scenario I: The introduction of a mosquito
species, the scenario II: A dengue outbreak emerges, the scenario III: Induced and
enhance endemic states, the scenario IV : Second hand tires market as a dengue control
measure and finally we present a special case: An emergence of infection in Dengue naive
region by the movement of tires. In the next part we introduce each one.
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3.1 The introduction of a mosquito species

The transportation of a one time batch of tires can led to the introduction of a mosquito
species.

In order to obtain the conditions when this can happen, we determine the urban
offspring reproduction number (see Appendix VI) RuM by means of the next generation
matrix [4]. If RuM > 1, then the population of mosquitoes is able to establish itself from
few eggs, while if the environment conditions make RuM < 1 the mosquito population will
eventually become extinct. On the other hand, in a batch of NT tires, the number of eggs
that arrive alive to the urban area is given by

ω

π + ω

NT
θ

χψ

(
τs
τd

)
E∗
R =

NT
θ

χψ

(
τs
τd

)
RrM − 1

RrM
Cr

where ω
π+ω is the probability of an egg hatching into a mosquito before dying of natural

causes and E∗
R is the stationary number of eggs in the rural area, RrM is the rural offspring

reproduction number (see Appendix V) and χψ( τsτd ) is the fraction of eggs that survive
before the tire processing cycle is made. Thus the introduction of a mosquito species will
occur when the following conditions are meet,

RuM =
κωφ

ε(π + ω)
> 1

(1)

and
ω

π + ω

NT
θ

χψ

(
τs
τd

)
RrM − 1

RrM
Cr > 1

If the tire recycling becomes an established market with a constant flux of tires from
a rural to an urban area, then the expected waiting time TM before the introduction of
a mosquito species from the rural to the urban population is given by the inverse of the
rate of eggs introduction

TM =

[
r

θ
χψ

(
τs
τd

)
RrM − 1

RrM
Cr

]−1

for RrM > 1 (2)

3.2 A dengue outbreak emerges

If there is continuous introduction of tires to the urban area from a rural area where
Dengue is endemic, then there might be possibility of a dengue outbreak via transported
infected eggs. In order for this to happen the conditions (2) must be met, but also the
basic reproductive number without vertical transmission in the urban area Ru0 > 1. Its

value is given by Ru0 =
√
α
ε

βN
(η+γ)M∗ (see Appendix III), where we have neglected vertical

transmission as its effect very small at the beginning of an outbreak. Thus√
α

ε

βN

(η + γ)M∗ > 1 (3)
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in addition to (2) should be meet.
In a continuous importation practices from an endemic region, the waiting time before

an outbreak To is given by the inverse of the effective infected female mosquito introduction
and is given by

To =

[
κω

π + ω

r

θ
χψ

(
τs
τd

)
E∗
IR

]−1

(4)

where r
θχψ

(
τs
τd

)
is the fraction of successful imported eggs, κω

π+ω is the probability of an

egg hatching into a female mosquito before dying of natural causes, and E∗
IR is the number

of infected eggs in the rural area where dengue is endemic.
In case of the introduction of just one batch of NT tires, in addition to (2) and (3) the

following condition
κω

π + ω

NT
θ

χψ

(
τs
τd

)
E∗
IR > 1 (5)

should meet, i.e. effectively more than 1 infected female mosquito should be introduced.

3.3 Induced and enhance endemic states

There could be a situation when Ru0 < 1 but the continuous introduction of infected eggs
in tires coming from a dengue endemic rural area can induce a dengue endemic state in the
urban area. This endemic state is not maintained by the intrinsic dynamics of the disease
in the urban area and should cease if the introduction of infected eggs is interrupted see
Figures 3 and 4. In this situation, the expected number of dengue cases at any given time
is

I∗U =
M∗
IU

M∗
IU −NU

η
α

(6)

where M∗
IU is the stationary population of infected mosquitoes and its value can be found

as the solution of the following quadratic equation for it,

(Ruo )2(η + γ)(
η + γ

β
+ Nu)(M∗

IU )2

−(η + γ)

(
(Ruo )2(

κω

β
E∗
IU + NUMU )− ηNU

)
M∗
IU (7)

− κω

ε
ηNUE

∗
IU = 0

where E∗
IU is the stationary number of infected eggs in the urban area and is given by

E∗
IU =

rχψ( τsτd )

θ(ω + π)
E∗
IR (8)

In cases where dengue is already endemic in the urban area, the continuous importation
of tires can enhance the number of infected people see Figures 3 and 4. The number of
infections at any given time is given by (6) when Ru0 > 1 in (7).
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Figure 3: It is possible induce an endemic state even though Ru0 < 1 (Region I) if there
is a continuous flow of tires from endemic rural area. On the other hand, if the disease
already exists, tires transport with eggs only enhance the endemic state (Region II).

3.4 Second hand tire market as a dengue control measure

If tires are processed immediately or at least soon after arrival to urban area, i.e. τs << τd
the introduction of dengue fever it is not possible. This is because the eggs die during tire
processing before hatching. On the other hand in the rural area the diminishing of eggs
reduce rural reproduction number (see Appendix I) Rr0 and thus the number of dengue
cases get reduced. In order for this happen, the withdrawal of eggs in the rural area
should change offspring number from RrM > 1 to RrM < 1. If this does not happen there
will be always the risk of introducing infected eggs into the urban area unless the tires
were processed immediately τs/τd << 1. We can estimate the maximum storage time
τs to minimize the risk of dengue dispersion with the following condition. The waiting
time before an effective introduction of an infected female mosquito (4) should be larger
than the extinction time of the vectors in the rural area. We can use the Jacobian matrix
when RrM < 1 of the vector demography (10), to obtain an estimation of its extinction
time. The inverse of the smallest absolute value from its eigenvalues is an estimator of its
extinction time. Thus, the following condition should meet to reduce the risk of dengue
dispersion in an established marked where tires are continuously imported

To >

∣∣∣∣12(γ +
√

ξ)

∣∣∣∣
−1

and RrM =
κωφ

ε(π + ω + r/θ)
< 1 (9)

where γ = −(ε+π+ω+r/θ), ξ = γ2−4Ξ and Ξ = ε(π+ω+r/θ)(1−RrM ) (see appendix V),
and at the same time this works as a control measure in the rural area.
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Figure 4: Dengue cases as the number of introduced infected eggs per unit time H are
increased. Red line Ru0 > 1 and blue line Ru0 < 1.

3.5 An emergence of infection in Dengue naive region by the movement
of tires.

Finally we can calculate the secondary human infections in the urban disease free area
caused by the human infections in the rural area at the beginning of an outbreak Rr→u
(see appendix IV) to asses the impact of second hand tire market in an outbreak. There
will be one initial case of dengue virus in the urban area related with tire transportation
for each 1/Rr→u cases in the rural area, where

Rr→u =
ακωrχ

ε(ω + π)(θ(ω + π) + r)
ψ

(
τs
τd

)
νφ

ε

β

(η + γ)
.

4 Discussion

The trade of second-hand tires in tropical and subtropical areas, influence the spread of
dengue disease because the discarded tires are considered one of the most productive Aedes
hatcheries [2]. For this reason, tires containing infected eggs that may enter a diapause
state are a possible mechanism in the spread of dengue. The introduction of Aedes to a
naive region is even more probable because it adapts well to a wide range of environmental
conditions.

As a result of vertical transmission, the Aedes mosquito can transmit the disease to
their offspring and therefore a new generation of infected vectors will transmit the disease
without the need to interact with infected individuals.

The analysis of the presented model explicitly takes into account the movement and
storage time of tires. Our study focuses on four possible scenarios. In the first one, the
transport of a batch of tires to a zone free of the disease led to the introduction of the
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mosquito species. This happens when the environmental conditions are appropriate, thus
RuM > 1. The expected waiting time before the successful introduction of the species is
inversely proportional to the rate of tire transportation. Further more, vertical transmis-
sion led to infected eggs and thus the dengue virus can be introduced to regions free of the
disease. If the geographical conditions of an urban area where tires are being imported
are so that Ru0 > 1, an outbreak can be generated in the urban area or an already endemic
state enhance. In the case of a naive dengue region, the storage time before the processing
of tires plays an important role in the waiting time before an outbreak

If it happens that Ru0 < 1 then there can not be an outbreak but some infections are
constantly expected while the introduction of infected eggs continues. This is what we
called an induced endemic state and it should cease if the importation of tires is stopped
or better regulated.

It is possible to reduce the likelihood of a dengue outbreak if the appropriate author-
ities regulate the processing time of the tires. This is because if the tires are processed
immediately upon reaching the urban area τs << τd the introduction of dengue fever it
is not possible. On the other hand, in the rural area the movement of tires works like a
measure of control. The movement of tires reduces the density of eggs in the rural area
RrM and then the number of dengue cases get reduced Rr0. Finally, our model allows the
estimation of the number of secondary human infections in the urban area caused by the
human infections in the rural area, allowing the quantification of the impact of tire market
in dengue dispersal.

The introduction of a new species is independent of vertical transmission, on the other
hand the spread of the disease is closely related to vertical transmission, diapause and
hatcheries movement (tires).
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Appendix I: Basic reproduction number in rural area

We calculated the basic reproductive number using the next generation matrix method
Ẋ = F − V [4]. The infected classes on rural model are: IR, EIR and MIR, then, the
information is separated into two matrices, the first one corresponds to new infection and
the second one corresponds to disease progression, that is

Ẋ =

⎛
⎜⎜⎜⎝

İ

˙EIR

˙MIR

⎞
⎟⎟⎟⎠

F =

⎛
⎜⎜⎜⎜⎝

α SRNR
MIR

νφMIR

(
1− ER

Cr

)
β IR
NR

MSR

⎞
⎟⎟⎟⎟⎠ V =

⎛
⎜⎜⎜⎝

(η + γ)IIR

(π + ω + r
θ )EIR

εMIR − κωEIR

⎞
⎟⎟⎟⎠

The Jacobian matrices are:

F =

⎛
⎜⎜⎜⎜⎝

0 0 α SRNR

0 −νφMIR
Cr

νφ
(

1− ER
Cr

)
βMSR
NR

0 0

⎞
⎟⎟⎟⎟⎠ V =

⎛
⎜⎜⎜⎝

(η + γ) 0 0

0 (π + ω) + r
θ 0

0 −κω ε

⎞
⎟⎟⎟⎠

V −1 =

⎛
⎜⎜⎜⎝

1
(η+γ) 0 0

0 θ
θ(π+ω)+r 0

0 θκω
ε(θ(π+ω)+r)

1
ε

⎞
⎟⎟⎟⎠
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Then we evaluated the Jacobian matrices at the disease free equilibrium SR = NR,MSR =
MR, ESR = ER, IR = MIR = EIR = 0. Then we found the eigenvalues of K = FV −1

since the basic reproductive number is the spectral radius, then we need the maximum of
the eigenvalues of K, this will be the basic reproductive number.

K =

⎛
⎜⎜⎜⎜⎝

0 αθκω
ε(θ(π+ω)+r)

α
ε

0 νφθκω
ε(θ(π+ω)+r)

(
1− E

Cr

)
νφ
ε

(
1− E

Cr

)
βN

M∗η+γ 0 0

⎞
⎟⎟⎟⎟⎠

There are three eigenvalues, one of them is zero, the other is smaller, so the maximum
is

Rr
0 =

1

2

νφκωθ

ε(θ(π + ω) + r)

(
1− E∗

R

Cr

)
+

1

2

√(
νφκωθ

ε(θ(π + ω) + r)

(
1− E∗

R

Cr

))2

+
4α

ε

βN

(η + γ)M∗

Appendix II: Basic reproduction number in urban area

Following the above idea, we calculate the urban reproductive number. The infected
classes on urban model are: IU , EIU and MIU , so the matrices F and V take the following
shape.

F =

⎛
⎜⎜⎜⎜⎝

α SUNU
MIU

νφMIU

(
1− EU

Cu

)
β IU
NU

MSU

⎞
⎟⎟⎟⎟⎠ V =

⎛
⎜⎜⎜⎝

(η + γ)IIU

(π + ω)EIU − r
θχψ(τs/τd)EIR

εMIU − κωEIU

⎞
⎟⎟⎟⎠

The Jacobian matrices are:

F =

⎛
⎜⎜⎜⎜⎝

0 0 α SUNU

0 −νφMIU
Cu

νφ
(

1− EU
Cu

)
βMSU
NU

0 0

⎞
⎟⎟⎟⎟⎠ V =

⎛
⎜⎜⎜⎝

(η + γ) 0 0

0 (π + ω) 0

0 −κω ε

⎞
⎟⎟⎟⎠

V −1 =

⎛
⎜⎜⎜⎝

1
(η+γ) 0 0

0 1
π+ω 0

0 κω
ε(π+ω)

1
ε

⎞
⎟⎟⎟⎠
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Then we evaluated the Jacobian matrices at the disease free equilibrium SU = NU ,MSU =
MU , ESU = EU , IU = MIU = EIU = 0. Then we found the eigenvalues of K = FV −1

since the basic reproductive number is the spectral radius, then we need the maximum of
the eigenvalues of K, this will be the basic reproductive number.

K =

⎛
⎜⎜⎜⎜⎝

0 ακω
ε(π+ω)

α
ε

0 νφκω
ε(π+ω)

(
1− EU

Cu

)
νφ
ε

(
1− EU

Cu

)
βN

(η+γ)M∗ 0 0

⎞
⎟⎟⎟⎟⎠

There are three eigenvalues, one of them is zero, the other is smaller, so the maximum
is

Ru0 =
1

2

νφκω

ε(π + ω)

(
1− E∗

U

Cu

)
+

1

2

√(
νφκω

ε(π + ω)

(
1− E∗

U

Cu

))2

+
4α

ε

βN

(η + γ)M∗

The basic reproductive number of the complete model is the maximum of the two
reproductive numbers, rural reproduction number and urban reproduction number.

R0 = max {Rr0, Ru0}

Appendix III: Basic reproduction number without vertical
transmission in urban area

Following the same idea, we calculate the urban reproductive number. The infected classes
on urban model are: IU , EIU and MIU , so the matrices F and V take the following shape.

F =

⎛
⎜⎜⎜⎝

α SUNU
MIU

0

β IU
NU

MSU

⎞
⎟⎟⎟⎠ V =

⎛
⎜⎜⎜⎝

(η + γ)IIU

(π + ω)EIU − r
θχψ(τs/τd)EIR

εMIU − κωEIU

⎞
⎟⎟⎟⎠

The Jacobian matrices are:

F =

⎛
⎜⎜⎜⎝

0 0 α SUNU

0 0 0

βMSU
NU

0 0

⎞
⎟⎟⎟⎠ V =

⎛
⎜⎜⎜⎝

(η + γ) 0 0

0 (π + ω) 0

0 −κω ε

⎞
⎟⎟⎟⎠
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V −1 =

⎛
⎜⎜⎜⎝

1
(η+γ) 0 0

0 1
π+ω 0

0 κω
ε(π+ω)

1
ε

⎞
⎟⎟⎟⎠

Then we evaluated the Jacobian matrices at the disease free equilibrium SU = NU ,MSU =
MU , ESU = EU , IU = MIU = EIU = 0. Then we found the eigenvalues of K = FV −1

since the basic reproductive number is the spectral radius, then we need the maximum of
the eigenvalues of K, this will be the basic reproductive number.

K =

⎛
⎜⎜⎜⎝

0 ακω
ε(π+ω)

α
ε

0 0 0

βN
(η+γ)M∗ 0 0

⎞
⎟⎟⎟⎠

There are three eigenvalues, one of them is zero, the other is smaller, so the maximum
is

Ru0 =

√
βN

(μ + γ)M∗
α

ε

Appendix IV: Number of transmissions from rural to urban
area

To find transmission from rural to urban reproduction number, we following the same
idea to calculate the above basic reproduction numbers, so we want to know how many
infections could cause an individual of the rural population in the urban population by the
movement of infected tires, for that we are consider that in rural population the disease
is endemic. The infected classes on full model are: IR, EIR, MIR, IU , EIU , MIU . The
information is separated into two matrices, the first one corresponds to new infection F
and the second one corresponds to disease progression V, that is

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α SUNU
MIU

νφMIU

(
1− EU

Cu

)
β IU
NU

MSU

α SR
MR

MIR

νφMIR

(
1− ER

Cr

)
β IR
NR

MSR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(η + γ)IIU

(π + ω)EIU − r
θχψ(τs/τd)EIR

εMIU − κωEIU

(η + γ)IIR

(π + ω)EIR + r
θEIR

εMIR − κωEIR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The Jacobian matrices are:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α SUNU
0 0 0 0

βMSU
NU

0 0 0 0 0

0 νφ
(

1− EU
Cu

)
−νφMIU

Cu
0 0 0

0 0 0 0 α SRNR
0

0 0 0 βMSR
NR

0 0

0 0 0 0 νφ
(

1− ER
Cr

)
−νφMIR

Cr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(η + γ) 0 0 0 0 0

0 ε −κω 0 0 0

0 0 (π + ω) 0 0 − rθχψ(τs/τd)

0 0 0 (η + γ) 0 0

0 0 0 0 ε −κω
0 0 0 0 0 (π + ω + r

θ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V −1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(η+γ) 0 0 0 0 0

0 1
ε

κω
ε(π+ω) 0 0 κωrχ

ε(π+ω)(θ(π+ω)+r)ψ
(
τs
τd

)
0 0 1

(π+ω) 0 0 rχ
(π+ω)(θ(π+ω)+r)ψ

(
τs
τd

)
0 0 0 1

(η+γ) 0 0

0 0 0 0 1
ε

κωθ
ε(θ(π+ω)+r)

0 0 0 0 0 θ
θ(π+ω+r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then we evaluated the Jacobian matrices at the disease free equilibrium. Then we found
K = FV −1. To get the number of transmissions from rural to urban area we obtain K3

with this matrix in the column if infectious rural population we get the following.

Rr→u =
ακωrχ

ε(ω + π)(θ(ω + π) + r)
ψ

(
τs
τd

)
νφ

ε

β

(η + γ)
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Appendix V: Vector demography

Considering the last one four equation of rural model and doing ˙MSR+ ˙MIR and ˙ESR+ ˙EIR
it is obtained.

Ṁ = κωE − εM,

Ė = φM − (π + ω +
r

θ
)E. (10)

We calculate the basic offspring number of rural mosquitoes, using the method [4] we
write the system(10) as Ẋ = F−V.

ẋ =

⎛
⎝ Ṁ

Ė

⎞
⎠ , F =

⎛
⎝ κωE

0

⎞
⎠ , V =

⎛
⎝ εM

(π + ω + r
θ )E − φM

(
1− E

C

)
⎞
⎠ .

The Jacobian matrices F and V , associated with F and V respectively, at the vector free
equilibrium M∗ = 0, E∗ = 0 are.

F =

⎛
⎝ 0 κω

0 0

⎞
⎠ , V =

⎛
⎝ ε 0

−φ (π + ω + r
θ )

⎞
⎠ , V −1 =

⎛
⎜⎝

1
ε 0

φ
ε(π+ω+ r

θ
)

1
π+ω+ r

θ

⎞
⎟⎠ ,

K = FV −1 =

⎛
⎜⎝

κωφ
ε(π+ω+ r

θ
)

κω
π+ω+ r

θ

0 0

⎞
⎟⎠ .

The eigenvalues of K are 0 and κωφ
ε(π+ω+ r

θ
) , so the rural offspring reproduction number is

given by:

RrM =
κωφ

ε(π + ω + r
θ )

The system has two stationary states E∗ = M∗ = 0 and M∗ = Cκω
ε

(
Rr

M−1
Rr

M

)
, E∗ =

C
(
Rr

M−1
Rr

M

)
.

The linearizing around the trivial stationary solutions is done. For this, we will calcu-
late the Jacobian matrix around the equilibrium point (0, 0).

DF(0,0) =

⎛
⎝ −ε κω

φ −(π + ω + r
θ )

⎞
⎠ .
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We get the following characteristic polynomial,

λ2 + (ε + π + ω +
r

θ
)λ + ε(π + ω +

r

θ
)(1−RM ) = 0 (11)

whose roots are of the shape

λ± =
1

2
(γ ±

√
ξ)

where γ = −(ε + π + ω + r
θ ), ξ = γ2 − 4Ξ and Ξ = ε(π + ω + r

θ )(1−RM ).

Appendix VI: Urban offspring reproduction number

Considering the last one four equation of urban model and doing ˙MSU + ˙MIU and ˙ESU +
˙EIU it is obtained.

Ṁ = κωE − εM,

Ė = φM − (π + ω)E +
rχ

θ
ψ

(
τs
τd

)
ER. (12)

We calculate the urban offspring number, using the method [4] we write the system(12)
as Ẋ = F−V.

ẋ =

⎛
⎝ Ṁ

Ė

⎞
⎠ , F =

⎛
⎝ κωE

0

⎞
⎠ , V =

⎛
⎜⎝

εM

(π + ω)E − φM
(
1− E

C

)− rχ
θ ψ

(
τs
τd

)
ER

⎞
⎟⎠ .

The Jacobian matrices F and V , associated with F and V respectively, at the vector free
equilibrium M∗ = 0, E∗ = 0 are.

F =

⎛
⎝ 0 κω

0 0

⎞
⎠ , V =

⎛
⎝ ε 0

−φ (π + ω)

⎞
⎠ , V −1 =

⎛
⎝

1
ε 0

φ
ε(π+ω)

1
π+ω

⎞
⎠ ,

K = FV −1 =

⎛
⎝

κωφ
ε(π+ω)

κω
π+ω

0 0

⎞
⎠ .

The eigenvalues of K are 0 and κωφ
ε(π+ω) , so the urban offspring reproduction number is

given by:

RuM =
κωφ

ε(π + ω)
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Appendix A: Summary of reproduction number

• Urban offspring reproduction number.

RuM =
κωφ

ε(π + ω)

• Rural offspring reproduction number.

RrM =
κωφ

ε(π + ω + r
θ )

• Basic reproduction number without vertical transmission in urban area.

Ru0 =

√
βN

(μ + γ)M∗
α

ε

• Basic reproduction number in urban area.

Ru0 =
1

2

νφκω

ε(π + ω)

(
1− E∗

U

Cu

)
+

1

2

√(
νφκω

ε(π + ω)

(
1− E∗

U

Cu

))2

+
4α

ε

βN

(η + γ)M∗

• Basic reproduction number in rural area.

Rr
0 =

1

2

νφκωθ

ε(θ(π + ω) + r)

(
1− E∗

R

Cr

)
+

1

2

√(
νφκωθ

ε(θ(π + ω) + r)

(
1− E∗

R

Cr

))2

+
4α

ε

βN

(η + γ)M∗

• Number of transmissions from rural to urban area.

Rr→u =
ακωrχ

ε(ω + π)(θ(ω + π) + r)
ψ

(
τs
τd

)
νφ

ε

β

(η + γ)
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