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Abstract

Obesity has become one of the most pervasive epidemics facing North America
today. According to the Centers for Disease Control and Prevention (CDC), more than
one-third (34.9%) of adults in the United States are obese, and approximately 17% of
children and adolescents aged 2 - 19 years are obese. Obesity is correlated with other
serious health threats such as diabetes and cardiovascular diseases that increase an
individual’s mortality risk. Previous studies show that a particular SNP (rs9939609 )
in the fat mass and obesity associated FTO gene is associated with the expression of
obesity. A poor choice of diet and nutrition may lead to obesity. In this study, we build
a system of non-linear ordinary differential equations that considers both genetic and
environmental effects on populations with three distinct genotypes (AA, Aa and aa).
The autosomal dominant allele is A, therefore individuals who have the genotypes AA
and Aa express the FTO gene. Equilibria analysis and simulation results show that
over a long period of time, when the birth frequency of each genotype is dependent
on current allele frequencies, the proportion of populations with the dominant allele
goes to 0, or the dominant allele A is outbred by the recessive gene allele. Simulation
results further show that having the allele A has a stronger impact on obesity than the
diet environment. Thus the effect of environmental factors on the dynamics of obesity
are negligible at best. Fitness and genetic selection trumps any environmental bias.
This study provides a significantly new insight into the synergic impact that genetics
and diet play on obesity, which is rarely studied by traditional biological tools, such as
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GWAS. Note that with genetic inheritance, environment makes no significant impact
on the prevalence of obesity in the long term.

1 Introduction

Obesity is a complex disease involving an elevated accumulation of body fat which can
increase the risk of many health problems. According to the Centers for Disease Control
and Prevention (CDC), an individual having a body mass index (BMI) greater than or
equal to 30 is classified as obese. Currently, 64% of the population of the United States is
estimated to be overweight or obese [9]. It is prevalent among individuals of both genders,
all levels of socio-economic status, and all ethnic groups [11]. No country has recorded any
attenuation or reversal of the epidemic [14]. In the United States, obesity prevalence in
2013 varied across states and territories; the South had the highest prevalence of obesity
(30.2%), followed by the Midwest (30.1%), the Northeast (26.5%) and the West (24.9%) [5].

Obesity has several major comorbid health effects, including diabetes, cardiovascular heart
diseases, various cancers, and arthritis, which are expensive to treat and may decrease an
individual’s life expectancy [14]. Infectious diseases and nutrient deficiency diseases are thus
being replaced by new threats such as obesity, diabetes and cardiovascular diseases [14]. In
fact, diabetes is rapidly emerging as a global health threat that may reach a pandemic level
by 2030 [8]. Hence it is clear that obesity could lead to a high risk of all-cause mortality [1].

Emerging studies indicate that genetic factors may alter the magnitude of weight loss and
lipid change in response to behavioral treatment [9]. The effect of genetics on the pathogen-
esis of obesity can be intuitively explained as an intrinsic resistance to the positive changes
typically generated by a healthy lifestyle [9]. Genetic factors play a critical role in explain-
ing how some patients’ metabolisms prevent them from responding to lifestyle changes in
an environment that is effective for other people [9]. Therefore, genetics is an important
factor to consider when studying an obesity model [9, 10,12].

In addition to genetics, poor diet and nutrition choices are strongly associated with obe-
sity [14]. The increasing urbanization and westernization occurring in most countries around
the world is associated with changes in the diet towards one of high fat, high energy-density
foods and a sedentary lifestyle [14]. This shift is also associated with the current rapid
changes in childhood and adult obesity [4, 14]. Previous studies have shown that the main
food-related vector that promotes passive over-consumption of calories is a high intake of
energy dense food such as many processed foods [14]. On the other hand, a healthy diet to
fight and avoid obesity is one with high dietary non-starch polysacchrides (NSP) or fiber
intake.
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The FTO (fat mass and obesity associated) gene was first discovered in a genome-wide as-
sociation study (GWAS) in 2007 [11]. Studies have shown a significant association between
five FTO polymorphisms and obesity risk across different ethnic groups [11]. Among them,
the single-nucleotide polymorphism (SNP) rs9939609 has been of particular interest as it
displays a relatively consistent association with obesity across multiple ethnic groups [11].
However, the mechanisms that trigger obesity by the FTO gene are unclear. In this work,
we will only consider this single SNP (rs9939609 ) as a potential trigger of obesity. We
include this in our model by using a single pair of alleles.

Multiple studies have confirmed the positive correlation between having the particular SNP
in the FTO gene. Longitudinal measurements were assessed in one study of twenty-six in-
dividuals, from 1976-2002 [2]. A follow up study was conducted on the cohorts – 26 years
for the women and 16 years for the men – to confirm if there was an association between
having the particular SNP, rs9939609, and adiposity [2]. It was found that the dominant
AA genotype (those with the SNP) was associated with greater obesity risk during the
follow-up in women and men [2]. Another study confirmed that high-fat diets and low
physical activity levels may accentuate the susceptibility to obesity in those with the FTO
variant [12]. After each of the cohorts were genotyped and their BMI was collected [12],
it was discovered that the individuals with the dominant AA had a higher BMI than the
individuals who had the recessive aa genotype [12]. Since a high intake of fat was correlated
with a low level of leisure-time physical activity in this study, the BMI differences across
FTO genotypes with different fat intakes and physical activity levels were examined [12].

Ejima et al. (2015) used a susceptible-infected-recovered (SIR) model framework to study
the social contagion dynamics of obesity [7]. The epidemiological process of becoming and
recovering from obesity were functions of time. To capture the population dynamics, or-
dinary differential equations were used to describe the time dependence obesity risk [7].
On the other hand, Thomas et al. (2014) used an SIR model with six ordinary differential
equations describing the interaction and transitions between populations [15]. The indi-
viduals were divided into infected and non-infected classes where individuals with a BMI
below 25 were classified as susceptible [15]. Both works studied obesity solely as a social
dynamics process without taking into consideration genetic factors.

In their book, Brauer and Kribs (2015) examined a model with slow selection in population
genetics under the Hardy-Weinberg principle [3]. Assuming equally fit genotypes, density-
dependent population dynamics and a genotype-dependent death rate, the book chapter
developed genotype frequencies, and proportions of homozygous dominant, heterozygous
dominant and homozygous recessive in terms of state variables, expressions that we will
adapt for our model. However, in our proposed model, selection happens as a result of obese
and non-obese individuals in the whole population mixing homogeneously and randomly.
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In Section 2 we look at the complete ideal model. Section 2.1 outlines our assumptions for
a simplified model that is analyzed and studied in this work. Section 3 is our first scenario
where we consider a linear transmission of people moving into the obese class without
recovery. This is divided into two cases depending on the allele frequencies. Section 4 is
our second scenario with a nonlinear transfer rate that incorporates diet and environmental
factors to and from the obese class. We also divide this section depending on the allele
frequencies. We then compare the results of the model (Section 5), discuss the biological
relevance in our conclusion (Section 6), and discuss future work (Section 7).

2 Full Model

In order to fill the gap between the aforementioned population and biological studies on the
genetics of obesity and the interaction between genetic factors and environmental stimuli,
we build a deterministic model that considers vertical transmission of alleles and differential
fitness between obese and non-obese people to study changes in allele frequencies.
Many population genetic models assume a deterministic process to changes in allele fre-
quencies [6]. Our deterministic model only considers vertical transmission of genes, and
neglect the possible mutation or migration of genes, which may cause horizontal transfer
of genotypes at one generation. The Hardy-Weinberg Principle of genetics states that the
frequencies of genes and alleles tend to remain fairly constant from one generation to the
next if individuals in a large population mix homogeneously and have equal fitness [3].
We predict that the proportion of obesity among the total population would change with
time, and the gene frequency of obesity-inducing allele (A) would decrease and reach an
equilibrium in the long run. Our model considers a population with density-dependent
and genotype-independent birth and death rates respectively, whose dynamics shift in a
continuous-time frame [3]. Based on the Hardy-Weinberg Principle of genetics, we define p
to be the frequency of the dominant A allele (those with SNP rs9939609) and that q is the
frequency of the recessive allele a (those without SNP rs9939609) ; thus p+ q = 1.

We formulate a general model that incorporates both the genetics and environmental effects
on obesity. This model consists of a system of 9 non-linear ordinary differential equations.
The total population is divided into three categories: people who eat a healthy diet and
are not obese (H), those who eat an unhealthy diet and are not yet obese (U), and people
who are obese (O). The healthy diet is defined as a high fiber intake, low fat cholesterol
sugar diet; while the unhealthy diet is referred to a high intake of fat protein energy-dense
foods, and a low fiber intake. Each of these categories is divided into three sub categories
based on individual’s genotype: AA, Aa and aa. The dominant allele (A) represents the
FTO gene variant with the rs9939609 SNP, meaning that the allele can be inherited if the
parent genotype is either AA or Aa (Table 1 for further explanation of the state variables).
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We make a variety of assumptions to construct our general model. Individuals are either
born into a healthy or unhealthy environment at the rate α, with a proportion r of healthy
individuals in the population and a proportion (1 − r) of unhealthy individuals in the
population. The transfer function ξi

1 from healthy to unhealthy eaters, the obesity rate
βij

2 from healthy eaters to obese people, and the transfer function ρi from unhealthy to
healthy eaters are different for people with genotypes AA and Aa than for those with
genotype aa. That is, we assume people who have the SNP variant within the FTO gene
care more about their diet than those without the gene. To recover from obesity, one has
to adopt a heathy diet, and people with or without the FTO gene variant have different
innate resistance to recover. Hence the recovery rate γi from obese people to healthy eaters
is also different for people with the genotype AA and Aa than for those with genotype aa.
Similarly, the progression rate φi from unhealthy eaters to obesity is different. In addition,
people have different death rates μj

3 depending on their genotype and diet. Since obesity
may lead to a higher mortality rate, death rates for those in the obese class are greater
than those in healthy and unhealthy classes.

1i ∈ {1, 2}, where 1 refers to genotype AA, and 2 refers to genotype aa.
2i ∈ {1, 2} referring to genotype AA/Aa and aa respectively, and j ∈ {1, 2} referring to linear and

nonlinear function respectively.
3j ∈ {1, 2, 3, ..., 9}
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Figure 1: Flow chart of full model.
If we let,

X̄ = [HAA, HAa, Haa, UAA, UAa, Uaa, OAA, OAa, Oaa],

then the full model (see Figure 1) is given by the following system of non-linear differential
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equations:

H ′
AA = bAArαN − ξ1

(
X̄
)
HAA + ρ1

(
X̄
)
UAA − β1

(
X̄
)
HAA + γ1

(
X̄
)
OAA − μ1HAA, (1a)

H ′
Aa = bAarαN − ξ1

(
X̄
)
HAa + ρ1

(
X̄
)
UAa − β1

(
X̄
)
HAa + γ1

(
X̄
)
OAa − μ2HAa, (1b)

H ′
aa = baarαN − ξ2

(
X̄
)
Haa + ρ2

(
X̄
)
Uaa − β2

(
X̄
)
Haa + γ2

(
X̄
)
Oaa − μ3Haa, (1c)

U ′
AA = bAA (1− r)αN + ξ1

(
X̄
)
HAA − ρ1

(
X̄
)
UAA − φ1

(
X̄
)
UAA − μ4UAA, (1d)

U ′
Aa = bAa (1− r)αN + ξ1

(
X̄
)
HAa − ρ1

(
X̄
)
UAa − φ1

(
X̄
)
UAa − μ5UAa, (1e)

U ′
aa = baa (1− r)αN + ξ2

(
X̄
)
Haa − ρ2

(
X̄
)
Uaa − φ2

(
X̄
)
Uaa − μ6Uaa, (1f)

O′
AA = β1

(
X̄
)
HAA − γ1

(
X̄
)
OAA + φ1

(
X̄
)
UAA − μ7OAA, (1g)

O′
Aa = β1

(
X̄
)
HAa − γ1

(
X̄
)
OAa + φ1

(
X̄
)
UAa − μ8OAa, (1h)

O′
aa = β2

(
X̄
)
Haa − γ2

(
X̄
)
Oaa + φ2

(
X̄
)
Uaa − μ9Oaa, (1i)

where
dX

dT
≡ X ′, and N = HAA+HAa+Haa+UAA+UAa+Uaa+OAA+OAa+Oaa is the

total population. Table 1 provides the explanation of state variables while Table 2 provides
a definition for each of the parameters in our model.

Table 1. Explanation of state variables
State Variable Meaning
HAA population of healthy eaters with genotype AA

HAa population of healthy eaters with genotype Aa

Haa population of healthy eaters with genotype aa

UAA population of unhealthy eaters with genotype AA

UAa population of unhealthy eaters with genotype Aa

Uaa population of unhealthy eaters with genotype aa

OAA population of obese people with genotype AA

OAa population of obese people with genotype Aa

Oaa population of obese people with genotype aa
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Table 2. Explanation of parameter functions.
Parameter Meaning
r proportion of people who are born into a healthy environment
α natural birth rate

(
years−1

)
β1(X̄) obesity function transfer from the healthy to obesity with the FTO gene

(
years−1

)
β2(X̄) obesity function transfer from the healthy to obesity without the FTO gene

(
years−1

)
φ1(X̄) obesity function transfer from the unhealthy to obesity with the FTO gene

(
years−1

)
φ2(X̄) obesity function transfer from the healthy to obesity without the FTO gene

(
years−1

)
ρ1(X̄) conversion function from the unhealthy to the healthy with the FTO gene

(
years−1

)
ρ2(X̄) conversion function from the healthy to the unhealthy without the FTO gene

(
years−1

)
γ1(X̄) recovery function from obesity to the healthy with genotypes AA andAa

(
years−1

)
γ2(X̄) recovery function from obesity to the healthy with genotypes aa

(
years−1

)
μj per capita death rate

(
years−1

)
; j = 1, . . . , 9

bAA(X̄) proportion of individuals born with genotype AA

bAa(X̄) proportion of individuals born with genotype Aa

baa(X̄) proportion of individuals born with genotype aa

ξ1(X̄) transfer function from the healthy eaters to unhealthy eaters
with the FTO gene variant (genotype AA or Aa)

(
years−1

)
ξ2(X̄) transfer function from the healthy eaters to unhealthy eaters

without the FTO gene variant (genotype aa)
(
years−1

)

We define the genotype frequencies as SAA = HAA+UAA+OAA
N for homozygous dominant

genotype; SAa =
HAa+UAa+OAa

N for heterozygous genotype; and Saa =
Haa+Uaa+Oaa

N for
homozygous recessive genotype, so that SAA + SAa + Saa = 1.

Inheritance law in genetics states that the dominant allele frequency is calculated from
the frequency of dominant genotype plus the half frequency of heterozygous genotype [3].
Therefore, we define allele frequencies p = 2SAA+SAa

2 = SAA +
SAa
2 and q = SAa+2Saa

2 =

Saa +
SAa
2 (both non-constant), where p is the frequency of allele A, q is the frequency

of allele a, p + q = 1, and p2 + 2pq + q2 = 1. Due to the complicated nature of the full
model, we build a simplified model with only the structure we need to answer our research
question.

2.1 Simplified Model

For simplification, we use the following assumptions on the full model (Model 1): individ-
uals who have the FTO gene variant and consume an unhealthy diet immediately become
obese; therefore UAA = UAa = 0. The only population can become obese are those with the
FTO gene variant (AA or Aa) and only if they eat unhealthy food; that is, Oaa = 0. We
also assume people without the gene variant eat unhealthy because they are not concerned

192



with their diet; hence Haa = 0. We assume the death rate of non-obese is μ1 and the death
rate for obese people is μ2. Since obesity can cause a higher mortality rate, we further
assume that μ2 > μ1.

We will examine four cases that consider environment and birth ratios (See Table 3):
Table 3. Explanation of Birth and Transition Functions.

No Environment Environment
β(X̂) = β̂ β(X̂) = β̂(OAA +OAa + Uaa)/N

γ(X̂) = 0 γ(X̂) = γ̂(HAA +HAa)/N

Constant Birth Ratio Non-Constant Birth Ratio
p = (2HAA + 2OAA +HAa +OAa) /2N

bAA = p̂2 q = (2Uaa +HAa +OAa) /2N
bAa = 2p̂q̂ bAA = p2

baa = q̂2 bAa = 2pq
bAA = q2

• Case 1: None Environmental Effect, Constant Birth Ratio

• Case 2: None Environmental Effect, Non-Constant Birth Ratio (State Variable De-
pendent)

• Case 3: Environmental Effect, Constant Birth Ratio

• Case 4: Environmental Effect, Non-Constant Birth Ratio (State Variable Dependent)

Using these assumptions, our simplified model becomes:

U ′
aa = baaαN − μ1Uaa, (2a)

H ′
AA = bAAαN − β1

(
X̂
)
HAA + γ1

(
X̂
)
OAA − μ1HAA, (2b)

H ′
AA = bAaαN − β1

(
X̂
)
HAa + γ1

(
X̂
)
OAa − μ1HAa, (2c)

O′
AA = β1

(
X̂
)
HAA − γ1

(
X̂
)
OAA − μ2OAA, (2d)

O′
Aa = β1

(
X̂
)
HAa − γ1

(
X̂
)
OAa − μ2OAa, (2e)

where N = Uaa +HAA +HAa +OAA +OAa.

2.2 Parameter Values

The parameters in this model include α, μ1, β̂, and μ2 (Table 3).
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Values for allele frequencies, p̂ and q̂ were taken from the Genome Wide Associated Study
(GWAS) [13]. We obtain numerical values for α and μ1 from the CDC [5]. We calculate μ2

using the CDC data that shows in extreme cases, people who are obese die up to fourteen
years earlier than people who are not. We use simulations, knowing the obese population
was 30% in 2015 to calculate our β̂ and γ̂.
Initial values are estimated based on data provided by a study on the FTO gene in cohorts
of Danish men [16]. We assume the total population to start with is 100000. The proportion
of obesity individuals among the total population of each genotype gives OAA=12410 and
OAa=21990, respectively. Proportions of HAA=9030 and HAa=27210 can be estimated
usingNAA−OAA andNAa−OAa respectively. The rest of the population goes to Uaa=29360.

Table 3: Calculated parameters for genetics only model with constant bAA, bAa, baa, and β1

(
X̂
)

Parameter Meaning Calculated Value
p̂ allele frequency of A 0.46
q̂ allele frequency of a 0.54
α per capita birth rate (years−1) 0.0124
μ1 per capita death rate (years−1) of non-obese people 0.0082
μ2 per capita death rate (years−1) of obese people 0.0156
β̂ linear transfer function from healthy eaters to obesity with genotype AA or Aa Varies
γ̂ linear transfer function from obesity to healthy eaters with genotype AA or Aa Varies

3 Scenario 1: Only Gene Factor

We simplified Model 2 to consider only the genetics factor on obesity (Figure 2). That is,
the transfer function β becomes β1 = β̂. Since under this scenario genetics makes people
obese, obese people cannot recover from obesity; thus γ1 = 0. Here, the transfer rate β1
from eating a healthy diet to becoming obese is the same for both AA and Aa genotype.
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Uaa

HAA HAa

OAaOAA

bAA N bAa N

baa N

1HAA 1HAa

1Uaa

2OAa2OAA

ˆHAA
ˆHAa

Figure 2: Flow chart of the reduced model with gene factor only.

3.1 Case 1: Analysis for Constant Birth Ratios

We first consider bAA = p̂2, bAa = 2p̂q̂, and baa = q̂2; that is, the birth proportion of each
genotype is constant. Recall that Model 2 reduces to

U ′
aa = baaαN − μ1Uaa, (3a)

H ′
AA = bAAαN − β̂HAA − μ1HAA, (3b)

H ′
Aa = bAaαN − β̂HAa − μ1HAa, (3c)

O′
AA = β̂HAA − μ2OAA, (3d)

O′
Aa = β̂HAa − μ2OAa. (3e)

Note that N = Uaa +HAA +HAa + OAA + OAa is not constant, since N ′ = (α− μ1)N −
(μ2 − μ1) (OAA +OAa). Model 3 is clearly linear, so we can analyze the single equilibrium.
We proceed to analyze Model 3 by setting the birth ratios to be constant, thus bAA = p̂2,
bAa = 2p̂q̂, baa = q̂2. This means that the allele frequency does not update with the current
population. Under this strong assumption, Model 3 becomes:
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U ′
aa = q̂2αN − μ1Uaa, (4a)

H ′
AA = p̂2αN − β̂HAA − μ1HAA, (4b)

H ′
Aa = 2p̂q̂αN − β̂HAa − μ1HAa, (4c)

O′
AA = β̂HAA − μ2OAA, (4d)

O′
Aa = β̂HAa − μ2OAa, (4e)

where N = Uaa +HAA +HAa +OAA +OAa.
Here, the change in population is given by the equation N ′ = (α− μ1)N − (μ2 − μ1)O,
where O is the total obese population. Notice that in the case we have μ1 = μ2, N ′ =
(α− μ1)N , that is N(t) = N0e

(α−μ1)t where N0 is the total population at time zero.

Before proceeding to find equilibrium and determine stability of the Model 3, we first show
positive invariance that proves that all state variables stay in the first quadrant.

3.1.1 Positive Invariance

We begin by showing that the Case 1 system is positively invariant. That is, if the initial
conditions for all of the state variables are contained in the positive quadrant, then the
forward time dynamics of every variable remains in the positive quadrant for all t > 0. We
show this by contradiction.

Assume that t0 = 0, X̂(0) ≡ X̂0 ≥ 0, α, β̂, p̂, q̂ > 0, and that one of the variables is the
first to become negative at some point on its trajectory. In order for this to occur, there
must be:
i) a first time, tc, that it leaves the positive quadrant,
ii) it must cross 0, and
iii) it must cross 0 with a negative derivative.

Suppose that Uaa(tc) = 0, then

U ′
aa(tc) = U ′

aa|Uaa=0 = q̂2αN.

Since Uaa is the first variable to cross outside of the positive quadrant we know N ≥ 0.
Thus we have U ′

aa(tc) ≥ 0 which contradicts (iii).
Further, the same analysis can be applied to show that HAA and HAa cannot be the first
variable to cross outside of the positive quadrant. Then by extension, if we assume that
OAA is the first variable to leave the positive quadrant, OAA(tc) = 0 and we have

O′
AA(tc) = O′

AA|OAA=0 = βHAA.
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By our previous assertion that HAA ≥ 0 for all time, t > 0, we know that O′
AA(tc) ≥ 0

which contradicts (iii). The same analysis holds true for OAa given that HAa ≥ 0. None of
the five variables are the first to leave the positive quadrant, therefore none of the variables
ever leave the positive quadrant for all t > 0, and our system is positively invariant.

3.1.2 Equilibrium

The only equilibrium for this linear model is (0, 0, 0, 0, 0). Biologically, this means the
population can either go extinct or grow exponentially when p and q are constant. The
population will go extinct (the point will be stable) if the birth rate α is less than the death
rate μ1.

Theorem 1 If α < μ1 and μ2 > μ1, then our zero equilibrium in System 4 is globally
asymptotically stable.

Prove: Stability of the zero-equilibrium. The Jacobian matrix for Model 4 at the zero
equilibrium is given by:

J =

⎛
⎜⎜⎜⎜⎝

q2α− μ1 q2α q2α q2α q2α
p2α p2α− β − μ1 p2α p2α p2α
2pqα 2pqα 2pqα− β − μ1 2pqα 2pqα
0 β 0 −μ2 0
0 0 β 0 −μ2

⎞
⎟⎟⎟⎟⎠ ,

where its characteristic equation is provided by taking its determinant, that is

det (J− λI) = (β + μ1 + λ) (μ2 + λ)[
(μ1 + λ)

2
(α− β − μ1 − λ) + (μ1 + λ) ((μ2 − μ1) (α− β − μ1 − λ) + βα) + βq2α (μ2 − μ1)

]
= 0. (5)

Two of the eigenvalues of Equation 5, λ1 = −β − μ1 and λ2 = −μ2 are clearly negative. In
order to analyze the stability of the zero equilibrium further we need to know whether the
other three eigenvalues are negative. In that case we have to look for the solutions of the
cubic equation

0 = λ3 (−1) + λ2 (−3μ1 + α− β − (μ2 − μ1))

+λ
(−3μ2

1 + 2μ1 (α− β − (μ2 − μ1)) + (μ2 − μ1) (α− β) + βα
)

+
[−μ3

1 + μ2
1 (α− β − (μ2 − μ1)) + μ1 ((μ2 − μ1) (α− β) + βα− 2) + βq2α (μ2 − μ1)

]
= λ3 (−1) + λ2 (a1) + λ (a2) + a3. (6)

Calculations for this are found in the Appendix under Section ??. Setting a1, a2, a3 < 0,
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α < μ1 + μ1 + μ2 + β,

α < μ1 +

(
μ1 (μ2 + β) + (μ2 − μ1)β

(μ1 + μ2 + β)

)
,

α < μ1 +

(
(μ2 − μ1)β

(
p2 + 2pq

)
+ 2

μ2
1 + μ1 ((μ2 − μ1) + β) + βq2 (μ2 − μ1)

)
μ1.

By Descartes’ Rule of Signs, the equation does not have positive roots, and we know λ �= 0
since there is a constant term in our equation. That is, all of the coefficients of Equation
6 are negative, provided α < μ1 and μ1 < μ2. Thus the three remaining eigenvalues are
negative. Therefore, our zero equilibrium is stable if α < μ1 and μ1 < μ2. Biologically, this
means our populations will approach zero, or go extinct, if the natural birth rate is less
than the natural death rate.

3.1.3 Simulations

In this case, we calculated through simulations a β̂ value that makes the obesity population
reaches equilibrium at approximately 30% of the total population, the proportion suggested
by the CDC data [5]. Using the values provided in Table 3 with β̂ estimated to be 0.015,
the simulation plots for Case 1 are in Figure 3. Notice that here α > μ1, thus the extinction
equilibrium is unstable.
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Figure 3: Simulation plots for Case 1.
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Plot (A) on the upper left corner shows linear changes of log population with time (years).
The population increases exponentially (when α > μ1), so we use the logarithmic function
to see the dynamics of the populations. The unhealthy population with genotype Uaa starts
off at a large initial size because it has the largest initial population (Table 3). Plot (B)
in the upper right corner shows changes of allele frequencies p and q with time. The real
p and q are compared to theoretical values predicted by Hardy-Weinberg Principle, and
suggest that gene/alleles frequencies converge to an equilibrium quickly. Our estimates of
p and q match the theoretical values well. Within a short period of time, the recessive
allele a (one without the FTO gene) has a greater proportion than the dominant allele A.
Plot (C) shows changes of proportions of populations over time. Plot (D) shows changes
of total obese population over time. The obese population decreases gradually and reaches
constant level in about 200 years to about 30% of the total population.

3.2 Case 2: Analysis for Non-Constant Birth Ratios

For this case, birth proportions bXX are not constant; that is, they depend on the state
variables. This is important because in real life, gene proportions change depending on the
current population. These assumptions give rise to Model 4 below,

U ′
aa = baaαN − μ1UAA, (7a)

H ′
AA = bAAαN − β1HAA − μ1HAA, (7b)

H ′
Aa = bAaαN − β1HAa − μ1HAa, (7c)

O′
AA = β1HAA − μ2OAA, (7d)

O′
Aa = β1HAa − μ2OAa, (7e)

where N = Uaa +HAA +HAa +OAA +OAa.
Since the genotype frequencies are not constant, they are now changed to SAA =

HAA+OAA
N ,

SAa =
HAa+OAa

N , and Saa =
Uaa
N .

Therefore, our gene/allele frequencies now become:
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bAA = p2 =

(
SAA +

SAa

2

)2

=

(
HAA +OAA

N
+

HAa +OAa

2N

)2

, (8a)

bAa = 2pq = 2

(
SAA +

SAa

2

)(
Saa +

SAa

2

)

= 2

(
HAA +OAA

N
+

HAa +OAa

2N

)(
Uaa

N
+

HAa +OAa

2N

)
, (8b)

baa = q2 =

(
Saa +

SAa

2

)2

=

(
Uaa

N
+

HAa +OAa

2N

)2

. (8c)

Plugging the Expressions 8 into Model 4, the genetics factor model becomes

U ′
aa =

(
Uaa

N
+

HAa +OAa

2N

)2

αN − μ1Uaa, (9a)

H ′
AA =

(
HAA +OAA

N
+

HAa +OAa

2N

)2

αN − β1HAA − μ1HAA, (9b)

H ′
Aa = 2

(
HAA +OAA

N
+

HAa +OAa

2N

)(
Uaa

N
+

HAa +OAa

2N

)
αN − β1HAa − μ1HAa, (9c)

O′
AA = β1HAA − μ2OAA, (9d)

O′
Aa = β1HAa − μ2OAa. (9e)

with N = Uaa +HAA +HAa +OAA +OAa.

3.3 Positive Invariance

We can show that the system for Case 2 is positively invariant using the same methods as
in Case 1, except we must further show that bAA, bAa, baa ≥ 0.
Again, assume that t0 = 0, X̂(0) ≡ X̂0 ≥ 0, α, β, p̂, q̂ > 0, and that one of the variables
is the first to become negative at some point on its trajectory. In order for this to occur,
there must be:
i) a first time, tc, that it leaves the positive quadrant,
ii) it must cross 0, and
iii) it must cross 0 with a negative derivative.
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Suppose that Uaa(tc) = 0, then

U ′
aa(tc) = U ′

aa|Uaa=0 = baaαN =

(
HAa +OAa

2N

)2

αN.

Notice that
(

Uaa+OAa
2N

)2 ≥ 0 for any value of HAa and since Uaa is the first variable to
cross outside of the positive quadrant we know N ≥ 0. Thus we have U ′

aa(tc) ≥ 0 which
contradicts (iii).
Further, the same analysis can be applied to show that HAA cannot be the first variable to
cross outside of the positive quadrant.
If HAa is the first variable to become negative, then HAa(tc) = 0 and

H ′
Aa(tc) = H ′

Aa|HAa=0 = bAaαN = 2

(
HAA +OAA

N
+

OAa

2N

)(
Uaa

N
+

OAa

2N

)
αN.

Since HAa is the first variable to cross 0, we know that all other variables are still non-
negative, and

(
HAA+OAA

N + OAa
2N

)(
Uaa
N + OAa

2N

)
≥ 0. Then, H ′

Aa(tc) ≥ 0 which contradicts
(iii). Showing positivity of OAA and OAa follow exactly as in Case 1. Therefore, the Case
2 system is positively invariant.

3.4 Rescaling Case 2

To simplify and further analyze Model 9, we rescale the state variables so that they become
proportions of the total population. That is, we define x1 =

Uaa
N , x2 =

HAA
N , x3 =

HAa
N , x4 =

OAA
N , x5 =

OAa
N , and let a = α

μ2−μ1
, b = β

μ2−μ1
. Notice that a and b are both positive since

we assume that obese individuals die at a faster rate than non-obese individuals (μ2 > μ1).

In this case, the genotype frequencies are changed (after scaling) from Expression (8) into:

bAA = p2 =
(
x2 + x4 +

x3

2
+

x5

2

)2
,

bAa = 2pq = 2
(
x2 + x4 +

x3

2
+

x5

2

)(
x1 +

x3

2
+

x5

2

)
,

baa = q2 =
(
x1 +

x3

2
+

x5

2

)2

=
(
1−

(
x2 + x4 +

x3

2
+

x5

2

))2
.
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This leads to our new rescaled model:

ẋ1 = x1 (x4 + x5 − a) +
(
x1 +

x3

2
+

x5

2

)2
a, (10a)

ẋ2 = x2 (x4 + x5 − (b+ a)) +
(
x2 + x4 +

x3

2
+

x5

2

)2
a, (10b)

ẋ3 = x3(x4 + x5 − (b+ a)) + 2
(
x2 + x4 +

x3

2
+

x5

2

)(
x1 +

x3

2
+

x5

2

)
a, (10c)

ẋ4 = x4(x4 + x5 − (1 + a)) + bx2, (10d)
ẋ5 = x5(x4 + x5 − (1 + a)) + bx3, (10e)

where x1+x2+x3+x4+x5 = 1. Since we used proportions, we let x1 = 1−(x2+x3+x4+x5).
Therefore Model 10 becomes:

ẋ2 = x2(x4 + x5 − (b+ a)) +
(
x2 + x4 +

x3
2
+

x5
2

)2
a, (11a)

ẋ3 = x3(x4 + x5 − (b+ a)) + 2
(
x2 + x4 +

x3
2
+

x5
2

)(
1− x2 − x4 − x3

2
− x5
2

)
a, (11b)

ẋ4 = x4(x4 + x5 − (1 + a)) + bx2, (11c)
ẋ5 = x5(x4 + x5 − (1 + a)) + bx3. (11d)

3.4.1 Equilibrium Points

We analyze System 11 by first finding all the equilibrium points (x∗2, x∗3, x∗4, x∗5). That is,
we set the equations on System 11 equal to zero. This yields two equilibria:

Equilibrium Value Existence and Stability
Only Unhealthy Homozygous Recessive E1 Always locally asymptotically stable

if μ2 > μ1

Only Homozygous Dominant E2 Have to use Central Manifold Theorem

E∗
2 suggests only the dominant genotype AA for healthy and obese individuals exists. This

would mean that over time, the recessive gene breeds out of the population. In order for
this point to be biologically reasonable, all of the variables have to be positive and our
discriminant ((1+ a+ b)2− 4b) has to be nonnegative. Proving the discriminant is nonneg-
ative, we ended up with (1− a− b)2 + 4a ≥ 0. This inequality always holds.

Also, we have to check that Φ = 1
2

(
1− a− b+

√
(1 + a+ b)2 − 4b

)
≥ 0.

Case 1: a+ b < 1

If a+ b < 1, then 1− a− b > 0 and thus Φ > 0.
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Case 2: a+ b > 1

Let a+ b > 1, then is always true that

1− a− b+
√
(1 + a+ b)2 − 4b = 1− a− b+

√
(1− a− b)2 + 4a,

= 1− a− b+
√
(−1 + a+ b)2 + 4a.

Now it is true that

(−1 + a+ b)2 + 4a > (a+ b− 1)2,√
(−1 + a+ b)2 + 4a > a+ b− 1 (since a+b -1>0),

1− a− b+
√
(−1 + a+ b)2 + 4a > 0.

Case 3: a+ b = 1

If a+ b = 1, then

1− a− b+
√
(1− a− b)2 + 4a = 0 +

√
02 + 4a,

2
√
a > 0.

Thus Φ is always positive.

Lastly, we have to prove 1
2

(
1 + a+ b−√

(1 + a+ b)2 − 4b
)

> 0. However, it is always
true that:

(1 + a+ b)2 > (1 + a+ b)2 − 4b,
1 + a+ b >

√
(1 + a+ b)2 − 4b,

Therefore, 1 + a+ b−
√
(1 + a+ b)2 − 4b > 0.

Thus, E∗
2 is a feasible equilibrium point. In order to analyze the stability of the equilibrium

points we calculated the Jacobian matrix at each equilibrium.

Theorem 2 If μ2 > μ1, then the only homozygous recessive equilibrium is locally asymp-
totically stable.
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Prove: Stability of E1. The Jacobian matrix of System 11 at the zero equilibrium is pro-
vided by:

J =

⎛
⎜⎜⎝
−b− a 0 0 0
2a −b 2a a
b 0 −1− a 0
0 b 0 −1− a

⎞
⎟⎟⎠ ,

The eigenvalues for E∗
1 are provided by:

λ1 = −1− a < 0,

λ2 = −a− b < 0,

λ3 =
−1
2

(
1 + a+ b+

√
(1 + a+ b)2 − 4b

)
< 0,

λ4 =
−1
2

(
1 + a+ b−

√
(1 + a+ b)2 − 4b

)
< 0.

In order for the point to be stable, all of the eigenvalues should have negative real parts.
The first three eigenvalues λ1, λ2, λ3 are all negative. While λ4 is negative if 1 + a + b >√
(1 + a+ b)2 − 4b. This was proven in the Equation 12. Therefore, the equilibrium point

(1,0,0,0,0) is locally asymptotically stable.

3.4.2 Stability Analysis for E∗
2

In order to calculate the eigenvalues to study the stability of the equilibrium point E∗
2 , we

use the program Mathematica and obtain:

λ1 = −
√
(1 + a+ b)2 − 4b,

λ2 =
1

2
(1− a+ b−

√
(1 + a+ b)2 − 4b),

λ3 =
1

2

(
−
√
(1 + a+ b)2 − 4b−

√
(1 + a+ b)2 − 4b

)
= −

√
(1 + a+ b)2 − 4b,

λ4 =
1

2

(
−
√
(1 + a+ b)2 − 4b+

√
(1 + a+ b)2 − 4b

)
= 0.

λ1 and λ3 have negative coefficients, therefore they are both negative and λ4 = 0.

For λ2, we need 1−a+b−√
(1 + a+ b)2 − 4b < 0. Since we know that

√
(1 + a+ b)2 − 4b >

0, we need 1 − a + b < 0, then a − b > 1, and we will need to use the Center Manifold
Theorem to analyze its stability in full.
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3.5 Simulations

Simulations for the case if gene factor only with non-constant birth proportions are shown
in Figure 4. For these simulations we used the values provided in Table 3.
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Figure 4: Simulation plots for Case 2.

For Case 2, plot (A) shows that people with homozygous recessive genotype who eat un-
healthy increases exponentially, while other populations stay the same or decreases expo-
nentially. Plot (B) shows that the allele frequencies differ from the values predicted by
Hardy-Weinberg priciple. Plot (C) shows based on the analysis the homozygous recessive
aa goes to one and the rest of the population decreases towards zero. Plot (D) shows that
the dominant allele A gets purged out and obese population bred out over more than 1400
years.

4 Scenario 2: Gene and Environment

Under this scenario, we will consider the impact of environmental effect on obesity with
genetic factors. We use the same assumptions to simplify the full model (Model 1) as
provided in Section 2. Here, by adding the diet factor and comparing this model with the
previous model (Model 3), we can have a better understanding of the environmental impact
on obesity.
We first study the case (Case 3) where bAA = p̂2, bAa = 2p̂q̂, and baa = q̂2; that is, the
birth proportion of each genotype are constant.
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With these assumptions, recall our full model (Model 1) was reduced to Model 2:

U ′
aa = baaαN − μ1Uaa,

H ′
AA = bAAαN − β1

(
X̂
)
HAA + γ1

(
X̂
)
OAA − μ1HAA,

H ′
AA = bAaαN − β1

(
X̂
)
HAa + γ1

(
X̂
)
OAa − μ1HAa,

O′
AA = β1

(
X̂
)
HAA − γ1

(
X̂
)
OAA − μ2OAA,

O′
Aa = β1

(
X̂
)
HAa − γ1

(
X̂
)
OAa − μ2OAa,

where N = Uaa +HAA +HAa +OAA +OAa and X̂ = [Uaa, HAA, HAa, OAA, OAa].

For Cases 3 and 4 we define β1

(
X̂
)
= β̂

(
Uaa+OAA+OAa

N

)
and γ1

(
X̂
)
= γ̂

(
HAA+HAa

N

)
.
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Figure 5: Flow chart of reduced model with gene and environment factors (nonlinear β).

We consider healthy individuals to be recruited into obesity by the effect of the environment,
specifically by interactions with unhealthy and obese individuals (Figure 5). We consider
obese individuals to be recruited into the healthy class by the effect of the environment as
well, but by interacting with healthy individuals.

4.1 Simulations for Constant Birth Ratios

The purpose of this case (Case 3) is to find values for β̂ and γ̂ to have the Obese proportion
be 30% to match the current data. Here we calculated β̂ and γ̂ as provided in Table 4 based
on the graph below.
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Figure 6: Different combinations of β and γ that make the final obese population 30%.

Figure 6 shows the possible β and γ values that make the final obese proportion 30%. This
is to match data from the CDC [5]. We ran a combination of different β and γ values that
would yield the final population to match the data.

Table 4. β̂ and γ̂ for Case 3 Simulation
Parameter Meaning Calculated Value
β̂ linear transfer function from healthy eaters to obesity with genotype AA or Aa 0.0603
γ̂ recovery function from obesity to healthy genotypes AA andAa

(
time−1

)
0.0804
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Figure 7: Simulation plots for Case 3.

In this case, plots in Figure 7 show that while the total population increases, obese popula-
tion decreases at first and levels off at approximately 30% in about 250 years. The recessive
allele a outcompetes the dominant allele A.

4.2 Analysis for Non-Constant Birth Ratios

For Case 4, the birth proportions, that is bAA, bAa, and baa, are defined in Equations 8 from
Section 3.2. Thus, plugging these equations into Model 2, the simplified model becomes

U ′
aa =

(
Uaa

N
+

HAa +OAa

2N

)2

αN − μ1Uaa, (4a)

H ′
AA =

(
HAA +OAA

N
+

HAa +OAa

2N

)2

αN − β1

(
X̂
)
HAA + γ1

(
X̂
)
OAA

−μ1HAA, (4a)

H ′
Aa = 2

(
HAA +OAA

N
+

HAa +OAa

2N

)(
Uaa

N
+

HAa +OAa

2N

)
αN − β1

(
X̂
)
HAa

+γ1

(
X̂
)
OAa − μ1HAa, (4a)

O′
AA = β1

(
X̂
)
HAA − γ1

(
X̂
)
OAA − μ2OAA, (4b)

O′
Aa = β1

(
X̂
)
HAa − γ1

(
X̂
)
OAa − μ2OAa, (4c)

where N = Uaa +HAA +HAa +OAA +OAa is non-constant, since the population changes

209



over time.

Substitution of our variables that are scaled to proportions into Model 4 and remembering
x1 = 1− (x2 + x3 + x4 + x5), we get the rescaled system

ẋ2 =

(
x2 (x2 + 2x4 + x3 + x5) + x4 (x4 + x3 + x5) +

(
x3 + x5

2

)2
)

a (5a)

+c(x2 + x3)x4 + (−b+ b(x2 + x3)− a+ x4 + x5)x2, (5b)

ẋ3 =

(
2

(
x2 + x4 +

x3 + x5

2

)(
1−

(
x2 + x4 +

x3 + x5

2

)))
a (5c)

+c(x2 + x3)x5 + (−b+ b(x2 + x3)− a+ x4 + x5)x3, (5d)
ẋ4 = b(1− x2 − x3)x2 + (−c(x2 + x3)− a− 1 + x4 + x5)x4, (5e)
ẋ5 = b(1− x2 − x3)x3 + (−c(x2 + x3)− a− 1 + x4 + x5)x5, (5f)

where c =
γ

μ2 − μ1
> 0.

4.2.1 Equilibria

Setting the Equations of System 5 equal to zero provided the equilibrium points of the
system (x∗1, x∗2, x∗3, x∗4, x∗5).

Equilibrium Value Existence and Stability
Only Unhealthy Homozygous Recessive E1 Always locally asymptotically stable

if μ2 > μ1

Only Healthy Homozygous Dominant E2 Unstable if E3 exists
Only Homozygous Dominant E3 Exists if b > 1 + a+ c

Biologically, E1 is only the homozygous recessive population Uaa. E2 is only the ho-
mozygous dominant healthy population HAA. E3 is the homozygous dominant populations
HAA and OAA. E3 only exists if b > 1 + a+ c.

4.2.2 Stability of Equilibria

From Mathematica, the eigenvalues of the homozygous recessive equilibrium (E1) are

λ1 = −(1+a), λ2 = −(a+b), λ3 =
−(1+a+b)−

√
(1+a+b)2−4b

2 , λ4 =
−(1+a+b)+

√
(1+a+b)2−4b

2 .
From Section 3.4.1, the only homozygous recessive equilibrium is locally stable only if
μ2 > μ1.
The eigenvalues from Mathematica for E2 are

λ1 = 0, λ2 = −a, λ3 = −(1 + a+ c), λ4 = b− (1 + a+ c).
The eigenvalues for E3 are
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λ1 = 0, λ2 = 1 + a+ c− b, λ3 = 1 +
a

1+c−b , λ4 = 1 +
a

1+c−b − b.
If E3 exists then, E2 is unstable. Assuming μ2 > μ1 and b > 1 + a+ c > 1 + c, we want to
show that the non-zero eigenvalues of E3 are negative, then

1 +
a

1 + c− b
< 0⇒ a

b− (1 + c)
> 1⇒ a > b− (1 + g)⇒ b < 1 + a+ g,

which contradicts the existence of E3, so E3 is unstable.

If E3 does not exist, E2 has three negative eigenvalues and one eigenvalue that is zero. The
Central Manifold Theorem is needed to further analyze for stability.

4.2.3 Simulations for Case 4: Non-Fixed Birth Proportions, Non-Constant β1

The simulations for Case 4 are shown in Figure 8. For these simulations we use the param-
eters provided in Table 3.

0 200 400 600 800 1000 1200
0

2

4

6

8

Time (years)

P
op

ul
at

io
n 

Lo
g 

(P
eo

pl
e) (A)          Forward Time Solution of System. Case: 4

 

 
Uaa HAA HAa OAA OAa

0 200 400 600 800 1000 1200
0

0.5

1

Time (years)

P
ro

po
rt

io
n

(B)          Allele Frequencies Case: 4

 

 

p q HW p HW q

0 200 400 600 800 1000 1200
0

0.5

1

Time (years)

P
op

ul
at

io
n 

(P
ro

po
rt

io
n)

(C)          Proportion of Population. Case: 4

 

 

Uaa HAA HAa OAA OAa

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

Time (years)

P
op

ul
at

io
n 

(P
ro

po
rt

io
n)

(D)          Proportion of Obese Population. Case: 4

 

 
Obese(OAA+OAa)

Figure 8: Simulation plots for Case 4.

Plot (A) shows that proportions of populations are decreasing except for the homozygous
recessive alleles. People who have the homozygous recessive genotype and eat unhealthy
totally outbreed obese populations after 1000 years.
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5 Results

In this section, we discuss and further compare the scenarios presented in this work.

5.1 Constant vs non-constant genotype frequencies

In this section we study the impact of the genotype frequencies on obesity. We compare
the two cases, with constant vs non-constant genotype frequencies, in each of the scenarios
to understand what impact genetic inheritance plays in the dynamics of obesity progres-
sion. Comparing case 1 (where we only consider genetics factor and the birth ratios are
constant) versus case 2 (where the birth ratios are not constant), we noticed that the allele
frequencies under case 1 stabilize faster than that of case 2. Additionally, the population
with the homozygous recessive genotype aa has the largest population size at equilibrium.
The proportion of each allele differs very slightly from proportions predicted by Hardy-
Weinberg Principle. In contrast, for case 2, when the genotype frequencies depends on
the state variable, the proportion of the obese population goes to zero and the proportion
of the population with the homozygous recessive genotype asymptotically approaches one.
Computationally, that is it approaches the (1,0,0,0,0) equilibria.

For scenario 2, the differences in behavior, for the cases with environmental factors,
between case 3 (where the birth proportions are constant) and 4 (where the birth propor-
tions are not constant) are essentially similar as in scenario 1. This means that when the
genotype frequencies are constant, the proportion of each class reaches a coexistence equi-
librium quickly; but, when the genotype frequency is birth dependent, the proportion of the
population without the obesity allele variant will grow asymptotically to 1. Also, in case 3,
the proportion of unhealthy people without the gene variant will surpass the proportion of
obese population faster in the short term than in case 4. The population of the unhealthy
eaters without the gene.

5.2 Genetics factor vs genetics and environment factor

To see if the environment factor plays a significant role in obesity, we compared the cases
with and without environmental factors, that is case 1 to case 3, and case 2 to case 4. In
case 1, we chose birth and death rates according to data and selected the rate of transfer
(β) to the obese class to give us a final proportion of obese individuals that roughly matches
the CDC data on obesity in the United States (34.9%). We also chose a combination of
β and γ for case 3 that gave us the same final proportion (approximately 30%) of obese
individuals for the year 2015. The inclusion of environmental effects and the capacity for
people to recover from obesity means that the social-influenced transfer to obesity requires
a higher transfer rate (β) than in case 1, which only considered the genetics factor.

While comparing cases 1 and 3, we chose different β values to analyze how this parameter
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impacts the model. We assumed β is between 0 and 1 and we arbitrarily choose β = 0.2
and β = 0.8. The reason that we decided on these two values was to see the impact of β
in the extremes cases (i.e. an average of 5 years waiting time to become obese versus an
average 1.25 year waiting time). Simulations on Figures 3 and 7 shows that β increases the
proportion of obese people but does not change the qualitative dynamics of the model. Ad-
ditionally, we noticed that in case 1 (see Figure 3), the heterozygous dominant obese class is
initially greater than the homozygous recessive unhealthy population, but the homozygous
recessive genotype surpasses it after approximately 150 years. In contrast, the heterozygous
obese class always surpasses the homozygous recessive genotype. So, the obese population
is higher than the population of non-obese unhealthy eaters.
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Figure 9: Simulation plots of case 2 with genetics factor, and non-constant birth propor-
tions. β = 0.01, γ = 0.
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Figure 10: Simulation plots of case 2 with genetics factor, and non-constant birth propor-
tions. β = 0.8, γ = 0.
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Figure 11: Simulation plots of case 4 with both genetics and environment factors, and
non-constant birth proportions. β = 0.01, γ = 0.8.
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Figure 12: Simulation plots of case 4 with both genetics and environment factors, and
non-constant birth proportions. β = 0.8, γ = 0.8.

When we compare case 2 and case 4 (case 4 adds an environment factor to the case 2, and
both have non-constant birth proportions), we noticed that the graphs are qualitatively
identical see Figures (9-12). The transient dynamics vary slightly, but it seems very clear
that the environmental factor does not play a large role in the long term dynamics of obesity.

The obesity transfer rate (β) strongly affects the proportion of people in the obese popu-
lation, especially when birth proportions are fixed. As β increases, the obese population
naturally increases. Finally, environmental factors only seem to play a roll in obesity when
the genotype frequency dependent birth proportions are constant, but when they depend
on the state variables, the environment factor does not affect obesity.

6 Conclusion

From these results, we conclude that when the birth proportions are forced constant, it
allows the proportions of populations to reach a coexistence equilibrium. Under case 3,
the proportion of obese populations reach equilibrium faster than under case 1. With the
same constant birth proportions, the difference suggests that environment factor actually
plays a role in our model. However, because case 1 and 3 are biological infeasible in the real
world (birth proportions cannot be constant), we further compare the results of case 2 and 4,
where we consider non-constant birth proportions, and case 4 adds an environment factor to
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case 2). Results from stability analysis and simulations for these two cases match. The only
feasible equilibrium for case 2 and 4 is when the homozygous recessive population outbreeds
the populations with the dominant allele, including the obese populations. Therefore, the
effect of environmental factors, especially diet, on the dynamics of obesity are negliglble at
best. Fitness and genetic selection trumps any environmental bias in the long term. But
in the short term, unhealthy diet still greatly increases obesity populations.

7 Future Work

In this work, we constructed simplified models to study the joint effects of genetics and
environment. In reality, birth proportions cannot be constant, and there is not just one
pathway that leads to obesity. Thus in the future, we will expand our simplified model to
consider more complicated and realistic cases. For example, we will incorporate the obesity
function ρ(X̄) and recover function ξ(X̄) into the model. Also, we will allow heterozygous
recessive genotype aa to become an obesity-inducing allele. In additon, we will construct a
stochastic model that considers mutations, random drifts and other random processes that
may greatly change allele frequencies under stochastic conditions. This would make our
model more realistic. Lastly, a sensitivity analysis on important parameters, such as β and
γ, should be conducted to show their effects on the equlibria, and determine their relative
importance over time.
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9 Appendix

Here we show the details of the calculation of stabilities for various equilibrium points.

9.1 Case 1

The Jacobian matrix of System 3.1.2 at the extinction equilibria (0, 0, 0, 0, 0) is provided
by:

det (J− λI) = det

⎛
⎜⎜⎜⎜⎝

q2α− μ1 − λ q2α q2α q2α q2α
p2α p2α− β − μ1 − λ p2α p2α p2α
2pqα 2pqα 2pqα− β − μ1 − λ 2pqα 2pqα
0 β 0 −μ2 − λ 0
0 0 β 0 −μ2 − λ

⎞
⎟⎟⎟⎟⎠ ,

Expanding this out yields
det (J− λI) = + (−β − μ1 − λ) (−β − μ1 − λ)

(
q2α

)
(−μ2 − λ) (−μ2 − λ)

+ (−μ1 − λ) (−β − μ1 − λ) (−μ2 − λ)
(
p2α

)
(−β − μ2 − λ)

+(−μ1 − λ) (−β − μ1 − λ) (−μ2 − λ) ((2pqα− β − μ1 − λ) (−μ2 − λ)− (2pqα) (β)) .
Factoring out (β + μ1 + λ) (μ2 + λ) and after simplification,

det (J− λI) = (β + μ1 + λ) (μ2 + λ)[
(β + μ1 + λ)

(
q2α

)
(μ2 + λ) + (μ1 + λ)

(
p2α

)
(β + μ2 + λ)

+ (μ1 + λ) (2pqα (μ2 + λ)− (β + μ1 + λ) (μ2 + λ) + 2pqαβ)
]
.

Factoring out alpha and after grouping,

det (J− λI) = (β + μ1 + λ) (μ2 + λ)[
(μ1 + λ)

(
α
(
q2 + p2 + 2pq

)− β − μ1 − λ
)
(μ2 + λ) + (μ1 + λ)α

(
p2 + 2pq

)
(β)

+βq2α (μ2 + λ)
]

Realizing p2 + 2pq + q2 = 1 since p+ q = 1,

det (J− λI) = (β + μ1 + λ) (μ2 + λ)[
(μ1 + λ) (α− β − μ1 − λ) (μ2 + λ) + β (μ1 + λ)α

(
p2 + 2pq

)
+ βq2α (μ2 + λ)

]
Since p2+2pq+ q2 = 1, p2+2pq = 1− q2, so we can get rid of p so our equations look like
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det (J− λI) = (β + μ1 + λ) (μ2 + λ)[
(μ1 + λ) (α− β − μ1 − λ) (μ2 + λ) + β (μ1 + λ)α

(
1− q2

)
+ βq2α (μ2 + λ)

]
But we know μ2 > μ1 and they are both constants, so let’s write μ2 in terms of μ1

μ2 = μ1 + ζ

plugging this in,

det (J− λI) = (β + μ1 + λ) (μ1 + ζ + λ)[
(μ1 + λ) (α− β − μ1 − λ) (μ1 + ζ + λ) + β (μ1 + λ)α

(
1− q2

)
+βq2α (μ1 + ζ + λ)

]
separating out the ζ terms from the body,

det (J− λI) = (β + μ1 + λ) (μ1 + ζ + λ)[
(μ1 + λ) (α− β − μ1 − λ) (μ1 + λ) + (μ1 + λ) (α− β − μ1 − λ) (ζ)

+β (μ1 + λ)α
(
1− q2

)
+ βq2α (μ1 + λ) + βq2α (ζ)

]
Grouping the μ1 + λ,

det (J− λI) = (β + μ1 + λ) (μ1 + ζ + λ)[
(μ1 + λ)2 (α− β − μ1 − λ) + (μ1 + λ) (α− β − μ1 − λ) (ζ) + β (μ1 + λ)α+ βq2α (ζ)

]
grouping again,

det (J− λI) = (β + μ1 + λ) (μ1 + ζ + λ)[
(μ1 + λ)2 (α− β − μ1 − λ) + (μ1 + λ) (ζ (α− β − μ1 − λ) + βα) + βq2αζ

]
= 0

This is our final determinant up to this point. Notice both

λ1 = −β − μ1,

λ2 = −μ1 − ζ = −μ2,

which are both negative.
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9.1.1 Finding the values of the other eigenvalues

Removing the two factored eigenvalues,

0 = (μ1 + λ)2 (α− β − μ1 − λ) + (μ1 + λ) (ζ (α− β − μ1 − λ) + βα) + βq2αζ

= (μ1 + λ)2 (α− β) + (μ1 + λ)2 (−μ1 − λ) + (μ1 + λ) ζ (α− β − μ1 − λ) + (μ1 + λ)βα

+βq2αζ

= (μ1 + λ)2 (α− β) + (−1) (μ1 + λ)3 + (μ1 + λ) ζ (α− β) + (μ1 + λ) ζ (−μ1 − λ)

+ (μ1 + λ)βα+ βq2αζ

= (μ1 + λ)2 (α− β) + (−1) (μ1 + λ)3 + (μ1 + λ) ζ (α− β) + (μ1 + λ)2 (−ζ)

+ (μ1 + λ)βα+ βq2αζ

= (−1) (μ1 + λ)3 + (μ1 + λ)2 (α− β − ζ) + (μ1 + λ) (ζ (α− β) + βα) + βq2αζ

= (−1) (μ3
1 + 3μ

2
1λ+ 3μ1λ

2 + λ3
)
+

(
μ2
1 + 2μ1λ+ λ2

)
(α− β − ζ) + (μ1 + λ) (ζ (α− β) + βα) + βq2αζ

= (−1)λ3 + λ2 (−3μ1 + α− β − ζ) + λ
(−3μ2

1 + 2μ1 (α− β − ζ) + (ζ (α− β) + βα)
)

−μ3
1 − 2μ1 + μ2

1 (α− β − ζ) + μ1 (ζ (α− β) + βα) + βq2αζ

= λ3 (−1) + λ2 (−3μ1 + α− β − ζ) + λ
(−3μ2

1 + 2μ1 (α− β − ζ) + ζ (α− β) + βα
)

+
(−μ3

1 + μ2
1 (α− β − ζ) + μ1 (ζ (α− β) + βα− 2) + βq2αζ

)
= λ3 (a1) + λ2 (a2) + λ (a3) + a4,

where

a1 = −1
a2 = −3μ1 + α− β − ζ

a3 = −3μ2
1 + 2μ1 (α− β − ζ) + ζ (α− β) + βα

a4 = −μ3
1 + μ2

1 (α− β − ζ) + μ1 (ζ (α− β) + βα− 2) + βq2αζ

Using Descartes Rule of Signs, let’s look at the coefficients of this cubic and set them all to
be less than zero so there are no changes in sign. We are trying to prove if α < μ1, we are
stable.
This first coefficient a1 is always negative,

(−1) < 0.

Looking at the a2,

(−3μ1 + α− β − ζ) < 0,

α < 3μ1 + β + ζ,

α < μ1 + 2μ1 + β + ζ,
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and a3:

−3μ2
1 + 2μ1 (α− β − ζ) + ζ (α− β) + βα < 0,

2μ1α+ ζα+ βα < 3μ2
1 + 2μ1 (β + ζ) + ζβ,

α (2μ1 + ζ + β) < 3μ2
1 + 2μ1 (β + ζ) + ζβ,

α <
3μ2

1 + 2μ1 (β + ζ) + ζβ

(2μ1 + ζ + β)
,

α <
μ1 (3μ1 + 2β + 2ζ) + ζβ

(2μ1 + ζ + β)
,

α <
μ1 (3μ1 + 2β + 2ζ)

(2μ1 + ζ + β)
+

ζβ

(2μ1 + ζ + β)
,

α <
μ1 (2μ1 + β + ζ + μ1 + β + ζ)

(2μ1 + ζ + β)
+

ζβ

(2μ1 + ζ + β)
,

α < μ1 +
μ1 (μ1 + β + ζ)

(2μ1 + ζ + β)
+

ζβ

(2μ1 + ζ + β)
,

α < μ1 +

(
μ1 (μ1 + β + ζ) + ζβ

(2μ1 + ζ + β)

)
.

Considering the last coefficient a4,

−μ3
1 + μ2

1 (α− β − ζ) + μ1 (ζ (α− β) + βα− 2) + βq2αζ < 0,

μ2
1α+ μ1ζα+ βαμ1 + βq2αζ < μ3

1 + μ2
1 (β + ζ) + μ1ζβ + 2μ1,

α
(
μ2
1 + μ1ζ + βμ1 + βq2ζ

)
< μ3

1 + μ2
1 (β + ζ) + μ1ζβ + 2μ1,

α <
μ3
1 + μ2

1 (β + ζ) + μ1ζβ + 2μ1(
μ2
1 + μ1ζ + βμ1 + βq2ζ

) ,

α <

(
μ2
1 + μ1 (β + ζ) + ζβ + 2(
μ2
1 + μ1ζ + βμ1 + βq2ζ

)
)

μ1,

recall p2 + 2pq + q2 = 1,

α <

(
μ2
1 + μ1 (β + ζ) + ζβ

(
p2 + 2pq + q2

)
+ 2(

μ2
1 + μ1 (ζ + β) + βq2ζ

)
)

μ1,

α <

(
1 +

ζβ
(
p2 + 2pq

)
+ 2

μ2
1 + μ1 (ζ + β) + βq2ζ

)
μ1,

α < μ1 +

(
ζβ

(
p2 + 2pq

)
+ 2

μ2
1 + μ1 (ζ + β) + βq2ζ

)
μ1.
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Combining these final inequalities,

α < μ1 + 2μ1 + β + ζ,

α < μ1 +

(
μ1 (μ1 + β + ζ) + ζβ

(2μ1 + ζ + β)

)
,

α < μ1 +

(
ζβ

(
p2 + 2pq

)
+ 2

μ2
1 + μ1 (ζ + β) + βq2ζ

)
μ1.

By Descartes’ Rule of Signs, all real parts of λ are negative if α < μ1.

If α < μ1, our zero equilibrium is locally asymptotically stable.
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