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Abstract

The success of honeybee (Apis mellifera) colonies is critical to the United States
agriculture with 35% of American diets dependent on honeybee pollination. There are
various complex factors that can contribute to a colonys failure, such as nutritional
stress. Nutritional stressors primarily pertain to food scarcity, lack in diversity of
food, and the availability of food with low nutritional value. Previous mathematical
models have examined the impact of nutrition and the early recruitment on honeybee
population dynamics. These models do not include the impact of a food supply with
a limited storage space within a single hive. In this work, we use a mathematical
model to investigate the impact of food scarcity and limited storage space on honeybee
viability, early recruitment rates of workers into foragers, and the influence of these
rates on the growth of a colony. A threshold, Rd, was found for conditions when
a colony will persist or collapse. We found conditions for the stable coexistence of
a honeybee population and food supply as well as conditions for periodic behavior.
Through sensitivity analysis we find that a honeybee colony is most sensitive to changes
in the rate at which a worker bee encounters food and the rate food is entering the
food supply. There are no qualitative differences between using a Holling Type I or
Holling Type II functional response in honeybee population persistence when modeling
the interaction between a honeybee colony and the availability of food.
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1 Introduction

Honeybee colonies are highly complex societies with each individual’s survival dependent
on one another and the honeybee’s longevity influenced by their role in the colony [10]. In
addition to their role in the colony, honeybees play a vital role in global food production in
which honeybees are responsible for pollinating 80% of all pollinated plants. Pollination is
crucial to food production and the economy; food coming from pollinated plants accounts for
35% of an American’s diet, with $15 billion annually in the United States, and exceeds $200
billion globally [11, 12]. Honeybee health is therefore a topic that has over the past decade
received considerable attention, especially given reports of an unexpected and undetermined
cause of colony losses since October 2006. During the winter of 2006-2007 and subsequently
2007-2008, apiaries lost up to 90% of their colonies due to a condition referred to as Colony
Collapse Disorder (CCD) [7]. Many studies are being conducted to explore what stressors
may be causing honeybee colonies to collapse not only due to CCD, but in general [7]. It
is suggested that a combination of one of the following anthropogenic stressors such as par-
asites, pathogens, certain agricultural pesticides, beekeeper applied chemicals, genetically
modified crops, and changed cultural practices may be leading to the failure of honeybee
colonies [13, 14].

Depressed honey prices have forced beekeepers to change their cultural practices by seek-
ing alternative income through the leasing of colonies for pollination–typically almond polli-
nation [13]. Resulting from the lack of diversity in plants and restricted floral resources due
to crop monocultures, adequate nutrition may not be provided and is reducing the ability
of colonies to endure stress. In addition to poor nutritional sources, transporting colonies
in holding yards may also inflict stress on the honeybees. The honeybees eventually are
trucked to a location with exceptional floral resources in order to feed on high quality pollen
to restore their protein levels, which is not practiced by all beekeepers. Additional studies
observed that even when presented with nutritionally diverse diets, the bees failed to adjust
their intake to improve their survival when exposed to other stressors [1]. These studies draw
attention to the impact of food scarcity, and how the sensitivity of changes to food storage,
inflow of food, and consumption of food affect the division of labor of bees.

The complex social life of honeybees includes a division of labor among worker bees and
forager bees. The primary form of division of labor is called “temporal polyethism”, in which
younger adult bees referred to as workers perform tasks within the colony such as nursing
the brood, maintaining the nest, and storing food collected by forager bees. Approaching
the end of the third week of the worker’s life, assuming the hive is at homeostasis, worker
bees will become forager bees and begin foraging for food and protecting the nest for the re-
mainder of their life [16]. The division of labor among the workers and foragers is associated
with differences in age, genotype, and morphology, all of which are based on the worker’s
behavioral development. This method of dividing labor is thought to contribute immensely
to the overall growth and development of a honeybee colony.

There is great flexibility in this pattern of dividing labor amongst the adult bee popula-
tion [16, 20]. For example, bees exhibit social inhibition in which the transition to foraging
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is socially regulated such that the existence of an established foraging population in the
colony delays the recruitment of worker bees to the role of a forager. In response to multiple
stressors, such as a loss in the forager population, low food storage, or diseases, worker bees
expedite their behavioral development in order to fulfill the needs of the colony [9]. Preco-
cious foragers may not be optimally adapted for the foraging tasks outside the colony. There
is evidence that precocious foragers are heavier and less efficient fliers than adequate foragers
and the efficiency of the foraging force is reduced, which may have serious consequences such
as a food shortage [14].

Additionally, brood rearing is also sensitive to a shortage in food supply. For example,
in a honeybee colony, most of the protein income comes from pollen which is utilized to feed
the uncapped brood. Thus the colony’s capability of raising brood successfully depends on
keeping a sufficient supply of pollen. The brood’s mean capping age highly correlates with
the mean pollen income; the less pollen stored in the colony during the brood’s development,
the earlier the brood are capped. This leads to an accelerated reduction in the quantity of
uncapped older brood in response to a shortage of available pollen. Older uncapped brood
have the highest pollen demand, so worker bees will cannibalize younger uncapped brood to
compensate for a shortage of pollen supply by reducing pollen demand. The protein gained
from cannibalism enriches the royal jelly, and the early capping of older brood saves the
oldest part of the brood, which represents the maximum brood care investment [18].

Several mathematical models have been developed to describe the dynamics of honeybee
populations and the impact of anthropogenic stressors, particularly pathogens, parasites,
and nutritional stressors, on the long-term viability of a colony [2, 3, 5, 6, 8–11, 14, 17]. Of
these previous studies, the most relevant are those of Khoury et al. in which a model was
established to study different death rates of foragers and the impact these had on colony
growth and development [9,10]. Russell et al. examined the sensitivity of a colony by looking
into seasonal variations, rates of forager mortality, food availability and factors that influence
the transition age of worker to forager. [17]. Perry et al. studied a model and collected data
to examine food shortage and the impact of rapid maturation on the success of a honeybee
colony [14]. However, to our knowledge, our approach is the first to recognize a finite food
storage, and the impact of the food storage on early and delayed recruitment within a hon-
eybee colony.

In this study, we employ a mathematical model to simulate the potential influence of
food shortage and storage space on honeybee population dynamics. We explore how a finite
food supply or shortage in food supplies influence rapid maturation of worker bees, and
overall growth or collapse of the colony. In the following sections we describe the stage-
structured model employed, the sources of data used in this analysis, which is then followed
by a presentation of results and a discussion.
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2 Model

2.1 Model Framework

In order to study the impact of food supply on the dynamics of a honeybee colony, we have
constructed a simple model consisting of three classes: a class for the brood, a class for the
worker bees, and a class for the forager bees . The bee life cycle outlined in the model starts
with the queen bee’s production of brood, in which the birth rate of brood grows or decays
with respect to the available food supply and worker bee population. A conversion factor is
utilized to convert what food is available and how many workers there are into the amount
of brood born. The brood leave the brood class through the process of eclosion, and become
worker bees or they die a natural death or death induced by lack of food supply.

Brood enter the worker class through the process of eclosion and then are naturally re-
cruited to foraging typically within three weeks . When the forager population is too low,
more workers are recruited to become foragers. In the case of too many foragers, either there
is a delay in recruitment, referred to as social inhibition, or a portion of foragers transition
back to the role of a worker [?]. Aside from recruitment, workers may also leave the worker
class through natural death or death induced by lack of food supply. Workers are entering
the forager class via natural recruitment, or hastened recruitment, depending on the forager
population. Foragers leave the forager class either through recruitment back to the worker
class due to overpopulation of foragers, or through natural death or death induced by lack
of food supply.

With the food supply, we assume the foragers are consuming their portion of food (in
grams) and storing the remainder that is collected in the hive. The food supply is assumed
to grow logistically. Note that with a lower forager population, the overall growth rate of
the incoming food supply is lower. Food is then removed from the supply by the workers
in order to feed and nurture themselves along with the existing brood; also this relationship
between workers, supply, and workers encountering food per unit time is dictating how many
brood are being born.

A compartmental diagram of the model can be seen in Figure 1. Empirical data sup-
ports that sex-allocation ratios of pupae or adults are typically female biased; therefore this
model only considers the female population of the hive [15]. We do not distinguish between
uncapped brood and capped brood, and assume them all to be a part of the brood class
similarly. Although the food supply in a bee colony consists of mostly nectar (carbohydrates)
and a small quantity of pollen (protein), we do not distinguish between the two.

2.2 Logistic Growth of Food with Holling Type II Functional Re-
sponse for Consumption

In the absence of a bee population, the food supply (S) grows logistically at the rate, r, with
a carrying capacity, K. We implement a Holling Type II functional response to examine the
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Figure 1: Schematic representation of the compartmental model. Brood eclose into workers, then
mature to foragers. Food is collected by the foragers, while the workers and available food develop
brood (dashed-dotted line). In the case of not enough foragers, workers precociously transition to
the forager class; and if there is an abundance of foragers, the recruitment of workers to foragers is
delayed or foragers revert back to workers (dashed line).

relationship between the food supply, workers (W), and brood (B) being born. Here a is
the encounter rate of the workers with the food supply per unit time, c is the conversion
of the food to brood, and b is the amount food required to reach half the maximum birth
rate of brood. Brood eclose at a rate, γ, and the workers are naturally recruited to foraging
at the rate, αmin. The ratio of foragers (F) to workers is represented by α, and when the
populations are out of proportion the adult bees will transition either to or from each class
at a rate of σ. We assume the death rates for each class (μB, μW , and μF ) and growth rate
of food supply to be constant.

These assumptions lead to the following system of non-linear ordinary differential equations:

dB

dt
=

caSW

b+ S
− γB − μBB,

dW

dt
= γB − αminW − σ(αW − F )− μWW,

dF

dt
= αminW + σ(αW − F )− μFF,

dS

dt
= rS

(
1− S

K

)
− aSW

b+ S
.

3 Analysis

We analyze the mathematical model by first rescaling it to reduce the number of parameters
in order to simplify the analysis. We find the existence of three equilibria and linearize about
each one to determine the stability. We use conditions on the stability of the nontrivial
boundary equilibria to find a demographic reproductive number, Rd. We substitute in our
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original parameters and provide a biological interpretation for Rd. We explore the dynamics
of this system numerically by varying parameters to simulate different existence and stability
combinations and observe limit cycles formed from a Hopf bifurcation which implies that
populations may never stabilize to fixed values.

3.1 Scaled Model

Our rescaled model is found by first letting, x(τ) = γaB(t)
r2

, y(τ) = aW (t)
r

, z(τ) = aF (t), u(τ) =
S(t)
k
, τ = rt.

We substitute x(τ), y(τ), z(τ), and u(τ) to obtain the following rescaled form:

dx

dτ
=

Huy

J + u
− V x, (1)

dy

dτ
= x− Ey +Gz, (2)

dz

dτ
= Ay −Dz, (3)

du

dτ
= u(1− u)− uy

k(J + u)
, (4)

where the new parameters (consisting of original parameters) are the following:

H = γc
r2
, J = b

k
, V = 1

r
(γ + μB), E = 1

r
(αmin + σα + μW ) , G = σ

r2
, A = αmin + ασ,

D = 1
r
(σ + μF ).

3.2 Equilibria and Stability

In order to determine the existence of equilibria we set the system equal to zero and solve for
x∗, y∗, z∗, and u∗. We find the existence of three equilibria: (0, 0, 0, 0), (0, 0, 0, 1), and an in-
terior equilibrium, where (0, 0, 0, 0) is extinction with no food supply, (0, 0, 0, 1) is extinction
with food supply, and the interior equilibrium is coexistence between food and the colony.
We find the general Jacobian and evaluate the Jacobian at each equilibria and determine
stability by finding the eigenvalues of the resulting matrix.
The general Jacobian matrix is as follows:

J (x∗, y∗, z∗, u∗) =

⎛
⎜⎜⎜⎝
−V Hu

J+u
0 HJy

(J+u)2

1 −E G 0
0 A −D 0

0 −u
ku+b

0 1− 2u− by
(b+ku)2

⎞
⎟⎟⎟⎠
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3.2.1 Stability of the Trivial Equilibrium

We evaluate the Jacobian at the equilibrium point (0, 0, 0, 0) and find the eigenvalues of the
resulting matrix:

J (0, 0, 0, 0) =

⎛
⎜⎜⎝
−V 0 0 0
1 −E G 0
0 A −D 0
0 0 0 1

⎞
⎟⎟⎠

With a positive 1 for an eigenvalue, the equilibrium (0, 0, 0, 0) is unstable. This implies that
once a bee or food has entered the system, the trajectories never tend to the extinction point
with no food. This is biologically valid because it is unnatural for all of the bees and food
supply to disappear in a colony collapse.
We evaluate the Jacobian at the equilibrium (0, 0, 0, 1) and find the eigenvalues of the re-
sulting matrix:

J (0, 0, 0, 1) =

⎛
⎜⎜⎝
−V H

J+1
0 0

1 −E G 0
0 A −D 0
0 −1

b+k
0 −1

⎞
⎟⎟⎠ .

We can see that −1 is an eigenvalue. We can remove the last row and column ofJ (0, 0, 0, 1)
because it suffices to focus on the resulting 3 by 3 matrix, denoted as M . We then utilize
the Routh-Hurwitz Criteria to determine the stability of the equilibrium point.

M =

⎛
⎝ −V H

J+1
0

1 −E G
0 A −D

⎞
⎠ .

The Routh-Hurwitz Criteria requires computing the negative determinant of matrix M , w1,
the negative trace of matrix M , w2, and the sum of the minors of matrix M from the first
row, w3, resulting in the following:

w1 = − det(M) = V (ED − AG)− HD

J + 1
, (5)

w2 = −Tr(M) = V + E +D, (6)

w3 =

(
V E − H

J + 1

)
+ ED − AG+ V D. (7)

The real parts of all eigenvalues of M are negative thus the equilibrium is stable if and
only if wi > 0, i = 1,2,3 and w2w3 > w1. If these conditions are satisfied then we have sta-
bility. We now show that the equilibrium (0, 0, 0, 1) is locally asymptotically stable if w1 > 0.

Lemma 1. If w1 > 0, then the Routh-Hurwitz Criteria is satisfied for the equilibrium
(0,0,0,1) under Holling Type 2.
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Proof. Assume w1 > 0, then from (5)

ED > AG (8)

V E >
H

J + 1
(9)

From (8) and (9), it follows that w3 > 0. Since D,E, V > 0, it follows that w2 > 0. To meet
the second condition of the Routh-Hurwitz Criteria, we multiply w2 and w3:

w2w3 = (V + E +D)

(
V E − H

J + 1
+ ED − AG

)

= V

(
V E − H

J + 1
+ ED − AG

)
+ E

(
V E − H

J + 1
+ ED − AG

)

+ D

(
V E − H

J + 1
+ ED − AG

)

= V (ED − AG) + V

(
V E − H

J + 1

)
+ Ew3 − HD

J + 1
+D(V E + ED − AG)

By (5), (8), and (9) we get, w2w3 = w1 + V (V E − H
J+1

) +Ew3 +D(V E +ED−AG). Thus
w2w3 > w1. Therefore by assuming w1 > 0, we have shown the equilibrium point (0,0,0,1)
is locally asymptotically stable. This completes the proof.

3.2.2 Calculation of the Demographic Reproductive Number, Rd

Here we provide a condition for collapse of the honeybee colony by demographic factors.
Recall that w1 = − det(M) = V (ED − AG) − HD

J+1
. Assume that w1 > 0, then we have,

V (ED − AG)− HD
J+1

> 0. Rearranging terms and simplifying we have H
(J+1)(V E)

+ AG
ED

< 1.

We define our demographic reproduction number, Rd =
H

(J+1)(V E)
+ AG
ED
. If w1 > 0 this

implies Rd < 1, and under this condition the honeybee colony will collapse. Substituting the
original parameter values from the parameters A, C, D, and E into Rd and simplifying, we
have:

Rd =
(ασ + αmin)σ

(ασ + αmin + μW )(σ + μF )
+

γck

(γ + μB)(ασ + αmin + μW )(b+ k)
. (10)

Theorem 1. If Rd < 1, then the equilibrium (0, 0, 0, 1) is locally asymptotically stable.

Proof. Suppose Rd < 1. Then H
(J+1)(V E)

+ AG
ED

< 1. Multiply by DV E and rearrange, then

V (ED − AG)− HD
J+1

> 0. By Lemma 1, since w1 > 0, then (0, 0, 0, 1) is stable.

This theorem implies that if Rd < 1 then the honeybee colony collapses. So, to keep the
population from collapsing it is necessary to have Rd > 1.
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To highlight the role of social inhibition (σ) on Rd, we rewrite (10):

Rd = σ

(
ασ + αmin

ασ + αmin + μW

1

σ + μF
− γ

γ + μB

kc

b+ k

α

ασ + αmin + μW

1

αmin + μW

)
+

γ

γ + μB

kc

b+ k

1

αmin + μW
.

We can give a biological interpretation of the demographic reproduction number. The term
ασ+αmin

ασ+μW
, is the proportion of workers promoted to the role of foraging, σ

σ+μF
, is the pro-

portion of foragers demoted to the role of a worker, γ
γ+μB

is the proportion of brood that

survive and become workers, kc
b+k

is the number of brood produced by a worker per unit time,
ασ

ασ+αmin+μW
is the proportion of precocious workers becoming foragers, and 1

αmin+μW
is the

average time spent as a worker when the colony is in homeostasis.

To better understand the meaning of Rd we consider the simple case σ = 0 (without social
inhibition), which we denote as rd. Therefore the value for rd is the following:

rd =

(
γ

γ + μB

)(
kc

b+ k

)(
1

αmin + μW

)
.

The first term in rd is
γ

γ+μB
which is the number of brood produced by a worker per unit

time. Next the term, Kc
b+K

, is the the proportion of brood eclosing into workers. Finally

the last term, 1
αmin+μW

, is the average time spent in the worker class during homeostasis.
Therefore the demographic reproduction number during homeostasis represents the average
number of worker bees produced per worker bee during the average lifespan of a worker bee.

3.2.3 Existence of the Interior Equilibrium

We take the rescaled form of the model and set the system equal to zero. Solving for y∗ using
Equation (4), y∗ = (1−u∗)(b+ku∗). Solving for z∗ using Equation (3), z∗ = A

D
y∗. Solving for

x∗ using Equation (2), x∗ = (E− AG
D
)y∗. Solving for u∗ using Equation (1), u∗ = V J(E−AG

D
)

H−V (E−AG
D

)
.

This results in the following interior equilibrium:
(
(E − AG

D
)y∗, (1− u∗)(b+ ku∗), A

D
y∗, u∗

)
, if

H − V (E − AG
D
) > 0 and

V J(E−AG
D

)

H−V (E−AG
D

)
< 1.

We can rearrange u∗ to be in terms of Rd.

u∗ =
J

(J + 1)Rd − 1
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So if we suppose Rd > 1, then the interior equilibrium u∗, y∗, x∗, z∗ exists.

u∗ =
J

(J + 1)Rd − 1 <
J

JRd
=

1

Rd
< 1,

y∗ = (1− u∗)(b+ ku∗),

x∗ =
1

D
(ED −GA)y∗,

z∗ =
A

D
y∗.

Table 1: Stability of Equilibria

Equilibrium Component Existence Stability

Extinction without food supply - E0 (0, 0, 0, 0) always never

Extinction with food supply - E1 (0, 0, 0, 1) always Rd < 1

Coexistence of bees with food supply - E2 (x∗, y∗, z∗, u∗) Rd > 1 conditional

4 Hopf Bifurcation

The appearance or the disappearance of an orbit through a local change in the stability of
an equilibrium point is known as a Hopf bifurcation. We will show the existence of a Hopf
bifurcation using a numerical approach.

First, we found the interior equilibrium of the original model:

B∗ = 1
γ

(
αmin + σα− σ(αmin+σα)

σ+μF
+ μW

)
W ∗,

W ∗ = r
a

(
1− S∗

K

)
(b+ S∗),

F ∗ = αmin+σα
σ+μF

W ∗,
where

S∗ =
(γ+μB)(αmin+σα−σ(αmin+σα)

σ+μF
+μW )

γc−(γ+μB)(αmin+σα−σ(αmin+σα)

σ+μF
+μW )

We use b as our bifurcation parameter and then fix the other parameters such that the nu-
merical simulations exhibit periodic solutions for the honeybee population and food supply.
We then evaluated the Jacobian matrix at this point:

J (B∗,W ∗, F ∗, S∗) =

⎛
⎜⎜⎝
−0.048719 0.184433

b+0.461083
0 0.004281b

(b+0.461083)2

0.047619 −.149647 0.092945 0
0 0.094091 −0.332945 0
0 −6.752379

b+0.461083
0 0.156746− 0.156747b

b+0.461083

⎞
⎟⎟⎠ .
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We then found the coefficients of the characteristic polynomial p(λ) = λ4 + a3λ
3 + a2λ

2 +

a1λ + a0. The condition a3 − 4
(
a2 − a1

a3

)
> 0 guarantees that the purely imaginary roots

are the only complex roots, while the condition a0 =
a2a1
a3
−
(
a1
a3

)2
shows the existence of a

purely imaginary number as a root of the characteristic polynomial.

To show that a Hopf bifurcation occurs, we need to show that the conditions:

F (bc) = 0 (11)

dF

db

∣∣∣∣
b=bc

�= 0 (12)

are satisfied where F = a0− a2a1
a3
−
(
a1
a3

)2
and bc is a particular numeric value of the param-

eter b. Using Maple we found that bc = 3.194001536. Using this value, two eigenvalues of
the Jacobian have negative real parts and the other two are purely imaginary, hence a Hopf
bifurcation.

Additionally, for any b close to bc, we have that the equilibrium (x∗, y∗, z∗, u∗) is asymptoti-
cally stable.

4.1 Parameter Estimation and Quantitative Analysis

Most model parameters were estimated from the literature. Khoury estimated the brood to
eclose in about 3 weeks ( 1

γ
), and Kribs estimated workers to be naturaly recruited to foraging

in approximately 3 weeks also ( 1
αmin

) [9, 11]. Brown estimates worker bees to die naturally

within 18 days ( 1
μW
), and foragers within approximately 4.17 days ( 1

μF
) [?]. Khoury et al.

suggests there is on average a 1:2 ratio of foragers to workers (αW − F = 0 when α = .5
). Like Khoury we assume that the effects of low food availability are not evident when
there is a kilogram or more food within the colony, we can then estimate that b = 500.
Schmickl estimates an average colony to contain 100,000 cells, so we calculate an average
ratio of pollen to honey to find out how many cells contained each and then calculated
the total milligrams kept in each cell and converted to grams for a total possible carrying
capacity within an average colony [19]. The rate of growth of the colony food supply was
estimated by evaluating the integral of the logistic equation from 0 to the carrying capacity
and solving for the rate set equal to the average amount of foragers multiplied by the average
food collected each day per forager. The Pearson Chi Square goodness-of-fit statistic was
used to estimate the conversion factor of food to brood, the brood death rate, the transition
rate to and from the adult classes, and the encounter rate of the workers with the food
supply. To estimate the model parameters that optimally describe the honeybee population
data, we randomly sample the parameters of the model from a uniform distribution and
calculated the Pearson Chi Square goodness-of-fit statistic comparing the model prediction
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to the honeybee population data [4].

Table 2: Parameter definitions, units, and values in our model.

Parameter Description Units Estimate Reference

γ Eclosion rate time−1 0.04761905 Kribs 2014

αmin Natural recruitment rate time−1 0.04761905 Kribs 2014

α Ratio of foragers to workers — 0.5 Khoury 2011

μB Natural death rate of brood time−1 0.00111 Estimated

μW Natural death rate of workers time−1 0.05555556 Brown 2013

μF Natural death rate of foragers time−1 0.24 Brown 2013

r Growth rate of food supply time−1 0.1567 Estimated

a Encounter rate grams
worker·time 14.6445884 Estimated

c Conversion factor of food to brood brood
grams

0.02731384 Estimated

K Carrying capacity of food supply grams 49310 Schmickl 2007

σ Additional recruitment rate time−1 0.092945 Estimated

b Amount of food when half of max grams 500 Khoury 2013

collecting rate is reached

5 Simulations

The following are four numerical simulations for each compartment in our model. These
simulations show the population growth and decline of the brood, workers, foragers, and
food supply over time. If we look at Figure 2, one can see that if there is an initial amount
of food in the hive, then the brood, workers, foragers and food supply will all grow and
decline periodically. In our simulations we have the period of each oscillation to be 500 days.
Looking at these simulations one can see that the honeybees have a strong resilience, since
when the population is near zero the bees are able to survive and prevent total collapse. If
we consider a stochastic effect on the population near zero, then there is a probability that
the bees can die out.

Figure 2 shows that when there is a low amount of food, there is a low population of
the brood, workers, and foragers. We can infer that since the quantity of food is low, the
mechanism of early recruitment is at play in helping the colony to persist and increase its
numbers. However, as the population grows, the demand for food also increases, therefore
the overall food supply decreases. This behavior becomes cyclic, creating periodic behavior
as shown in the numerical simulations.
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Figure 2: These numerical simulations illustrate oscillating behavior for all three honeybee classes,
as well as in the food supply within the colony.

6 Sensitivity Analysis

Sensitivity analysis is used to determine which parameters are the most influential on the
outcome of a model, whether we analyze equilibrium points, time, or basic reproductive
number.
We are interested in what conditions affect honey bee colony viability. Thus we analyze

the reproductive number Rd. If Rd > 1 then the colony will thrive. However if Rd < 1 the
colony will surely collapse. All of our parameters influence the basic reproductive number
and stability of equilibria. However we are most interested in σ, the social inhibition rate,
and r, the gathering rate of food, since both play a key role in survivability. We determine
the sensitivity of sp of the quantity Q to the parameter p using the formula

sp =
∂Q

∂p

This represents the reciprocal of the decrease in p required to reduce Q by one percent.
For example, a sensitivity of −10 indicates that p should be increase by 1

10
to reduce Q by

1. Rather than comparing absolute changes, we convert sensitivities to sensitivity indices or
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elasticities ep, which compare percentage changes of parameters and values:

ep =
p

Q

∂Q

∂p

In our model all parameters are positive values. We do not use the absolute value of the
scaling factor since our quantity of interest is Rd, which is also a positive value. Thus the
scaling factor is always positive. The resulting elasticities are displayed in Figure 2, with
their computed values provided in the Appendix.

Figure 3: Elasticity of the parameters and their effect on scaled Rd

The parameters with the least amount of influence on Rd include the amount of food when
half of the maximum birth rate is reachedb, the carrying-capacity of the hive k, the eclosion
rate γ, the death rate of foragers μF , and the death rate of brood μB.
Increasing the amount of food when half of the maximum birth rate is reached b can induce
colony collapse because foragers need to gather more food to feed the growing brood popu-
lation, thus the foragers will die out faster.
The brood population increases at an exponential rate significantly higher than the death
rate, and as a result the death rate of brood μB is rendered insignificant to the vitality of
the hive. Nevertheless, increasing the brood mortality can lead to colony collapse.
Increasing the amount of food that bees can store K can increase Rd since the more food
the colony can store, the more capable it is of surviving. An interesting relationship to note
is that the elasticity of the death of brood is of the opposite sign of the elasticity of eclosion
rate γ. Increasing the eclosion rate can lead to colony survival, as the rate of brood becoming
worker bees increases with no negative consequences (as the eclosion rate would be natural).
Surprisingly, the death of foragers μF has very little influence relative to other parameters,
but realistically it could lead to colony collapse since the colony depends on foragers to col-
lect food. This is not the case with our model since the growth rate of food supply is not a
function of the amount of foragers.
An increase in social inhibition σ can lead to colony collapse, since social inhibition is caused
by the pheromones from foragers signaling for the delay of worker to forager promotion
(higher social inhibition rate means the delay of recruitment) . Thus increasing σ can po-
tentially halt the flow from workers to foragers.
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The parameter with the second most considerable influence on Rd is the conversion factor,
c. An increase in the conversion factor can lead to survival. This is reasonable since the
conversion factor is in terms of the amount of food given to the brood, as well the birthrate
of the brood. Thus c is necessary to expand the brood class. Note that an increase of c
does not imply a food shortage caused by the amount of brood, for the conversion factor
considers an increase in nutrition that would maintain the population.
Finally, the elasticity analysis indicates that the encountering rate between workers and food
a is consistently the most influential parameter among those we examined. Since the elastic-
ity of a is .93, then an increase of a by 1 percent would lead to an increase in Rd by .93%. We
hypothesized that increased contact between worker and food would lead to survival since
the workers are responsible for nursing the brood. Based on this result, we conclude that
encouraging more contact between workers and food can lead to colony survival, as well as
reducing the death rate of workers.

7 Conclusion

Honey bees live in a very complex society, with three different classes, the brood, the work-
ers, and the foragers. Honey bees are very important since 35% of our diet depends on their
pollination of various plants [11, 12]. There are many reasons why a honey bee colony will
collapse, some reasons include parasites, pesticides, and food stressors.

In this paper, we model the interaction dynamics between honey bees and the food avail-
able in a honey bee colony. Depending on parameter values, our model shows that the brood,
workers, and foragers all die if there is no food. However if there is food inside the hive, our
model shows that the brood, workers, foragers, and food supply can coexists. We then found
a threshold value Rd, where if Rd < 1 the bees die out and if Rd > 1 the bees will live on.

Sensitivity analysis was done on our threshold Rd. Through finding the elasticity of each
parameter on Rd, we found that the rate at which a worker bee encounters food, a, has the
strongest positive effect on the threshold Rd. While the death rate of the worker bees, μW ,
has the strongest negative effect on our threshold Rd.

Under our parameters, simulations show the extinction of the population if no food is
introduced in the system, even with an arbitrary amount of foragers. Extinction under these
circumstances occurs because the hive cannot sustain itself; it sends workers to their early
deaths, and the foragers die at a faster rate. Eventually the workers and foragers die out,
and the brood closely follow their demise. As long as we have food in the system, the pop-
ulation will find a way to thrive, since the initial condition of food is data sensitive. If there
is a lack of workers, the foragers will revert to workers at a fast rate. It also follows that if
there is a lack of foragers, the influx of workers will be tremendous at first but then slow down.
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Previous models have also included the food supply within a honey bee colony. For exam-
ple in Khourys 2013 paper,Modelling Food and Population Dynamics in Honey Bee Colonies,
which models the population of a honey bee colony with the supply of food within the hive.
Our model is similar to Khourys model in the sense that we have a food supply compartment.
Khourys model brings in food into the supply at a constant rate, while our model brings
food into the supply as a logistic function. In Khourys model of the food supply, Khoury
has the honey bees remove food from the food supply at a constant rate. Our model uses a
Holling Type II function to remove food from the food supply.

We have different conditions for the stability of the equilibria, where Khoury does not
mention stability or equilibria. The equilibria of (0,0,0,0) is never stable, the equilibria of
(0,0,0,1) is stable if Rd < 1, and the the stability of the interior equilibria is conditional.
Sensitivity analysis was also done on our model, which shows that the encounter rate has
a positive effect on our demographic reproduction number Rd. Or sensitivity analysis also
showed that the worker death rate had a large effect on Rd, thus worker deaths have an
impact on the mode. While Khoury did not do any sensitivity analysis on their model and
assumed worker deaths to be negligible.

Khourys simulations includes plots for the population of each honeybee class. Our model
also has simulations for each individual honeybee class. The simulations in Khourys paper
shows the growth of of honeybees varying the death rate of the foragers. While our simula-
tions show that the honeybee populations can grow and decline periodically without dieing
out.
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8 Appendix

8.1 Logistic Growth Holling Type I Model

Our original model became too intractable and difficult to carry out the analysis. To over-
come this, we simplified the model by keeping the death rates for each class (μB, μW , and μF )
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and growth rate of food supply (r) constant. We examine the relationship between the food
supply, workers, and brood born via a Holling Type I functional response. Here a is the en-
counter rate of the workers with the food supply and c is the conversion of the food to brood.

These assumptions lead to the following system of ordinary differential equations:

dB

dt
= cSW − γB − μBB,

dW

dt
= γB − αminW − σ(αW − F )− μWW,

dF

dt
= αminW + σ(αW − F )− μFF,

dS

dt
= rS

(
1− S

k

)
− aSW,

8.1.1 Scaled Model

To simplify the analysis, we re-scaled the model:

Let x(τ) = γaB(t)
r2

, y(τ) = aW (t)
r

, z(τ) = aF (t)
αmin+ασ

, u(τ) = S(t)
k
, τ = rt,

We substitute x(τ), y(τ), z(τ), and u(τ) to receive the following scaled form:

dx

dτ
= Auy −Gx,

dy

dτ
= x− Cy +Dz,

dz

dτ
= y − Ez,

du

dτ
= u(1− u)− uy,

where the new parameters (consisting of original parameters) are the following:

A = ckγ
r2
, G = 1

r
(γ + μB), C = 1

r
(αmin + σα + μW ), D = σ(αmin+ασ)

r2
, E = 1

r
(σ + μF ).

8.1.2 Equilibria and Stability

In order to determine the existence of equilibria we set the system equal to zero and solve for
x∗,y∗,z∗, and u∗. We find the existence of three equilibria: (0, 0, 0, 0), (0, 0, 0, 1), and interior
equilibrium, where (0, 0, 0, 0) is extinction with no food supply, (0, 0, 0, 1) is extinction with
food supply, and the interior equilibrium is coexistence between food and the colony. We find
the general Jacobian and evaluate the Jacobian at each equilibria and determine stability by
finding the eigenvalues of the resulting matrix.
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J (x, y, z, u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−G Au 0 Ay

1 −C D 0

0 1 −E 0

0 −u 0 −2u− y + 1

⎞
⎟⎟⎟⎟⎟⎟⎠

We evaluate the Jacobian at the equilibrium point (0, 0, 0, 0) and find the eigenvalues of the
resulting matrix:

J (0, 0, 0, 0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−G 0 0 0

1 −C D 0

0 1 −E 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

With a positive 1 for an eigenvalue, the equilibrium (0, 0, 0, 0) is unstable. This implies that
once a bee or food has entered the system, the trajectories never tend to the extinction point
with no food. This is biologically valid because it is unnatural for all of the bees and food
supply to disappear in a colony collapse.
We evaluate the Jacobian at (0, 0, 0, 1) and find the eigenvalues of the resulting matrix:

J (0, 0, 0, 1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−G A 0 0

1 −C D 0

0 1 −E 0

0 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We can see that −1 is an eigenvalue. The other three eigenvalues are found by removing the
last row and column of J (0, 0, 0, 1) resulting in matrix M, and using the Routh-Hurwitz
Criteria to determine the stability:

M =

⎛
⎜⎜⎜⎝
−G A 0

1 −C D

0 1 −E

⎞
⎟⎟⎟⎠ .

The Routh-Hurwitz Criteria, requires computing the negative determinant of matrixM , w1,
the negative trace of matrix M , w2, and the sum of the minors of matrix M , w3, resulting
in the following:
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w1 = −det(M) = G(CE −D)− AE, (13)

w2 = −trace(M) = G+ C + E, (14)

w3 = GC − A+GE + CE −D, (15)

(16)

The real parts of all eigenvalues ofM are negative and the equilibrium is stable if and only if
wi > 0, i = 1,2,3 and w2w3 > w1. We can show that if w1 > 0, then we have the equilibrium
point (0, 0, 0, 1) is stable.

Lemma 2. If w1 > 0, then the Routh-Hurwitz Criteria is satisfied for the equilibrium
(0,0,0,1) under Holling Type I .

Proof.
Assume w1 > 0 then from (13)

CE −D > 0

GCE − AE > 0

By 13, it follows that w3 > 0. Since G,C,E > 0, it follows that w2 > 0. To meet the
second condition of the Routh-Hurwitz Criteria, we multiply w2 and w3 to get the following
product: We now show w3w2 > w1:

w3w2 = (GC −A+GE + CE −D)(G+ C + E)
= G(CE −D)− EA+G(GC −A+GE) + E(GC +GE + CE −D) + C(GC −A+GE + CE −D)

By (14) and (15) we get, w2w3 = w1 + G(GC − A + GE) + E(GC + GE + CE − D) +
C(GC − A + GE + CE − D). Thus w2w3 > w1. Therefore by assuming w1 > 0, we have
shown the equilibrium point (0,0,0,1) is stable. This completes the proof.

8.1.3 Calculation of the Demographic Reproductive Number

Here we provide a condition for collapse of the honeybee colony by demographic factors.
Recall that w1 = − det(M) = G(CE −D) − AE. Assume that w1 > 0, we have, G(CE −
D)− AE > 0. Rearranging terms and simplifying we have GD+AE

GCE
< 1.

We define our demographic reproduction number, Rd =
GD+AE
GCE

. If w1 > 0 this implies
Rd < 1, and under this condition the honeybee colony will collapse. Substituting the original
parameter values from the parameters A,C,D,E,G into Rd and simplifying, we have:

Rd =
σ(ασ + αmin)

(ασ + αmin + μW )(σ + μF )
+

ckγ

(γ + μB)(ασ + αmin + μW )
(17)

Theorem 2. If Rd < 1, then the equilibrium (0, 0, 0, 1) is locally asymptotically stable.

Proof. Suppose Rd < 1. Then GD+AE
GCE

< 1. Multiply by GCE and rearrange, then G(CE −
D)− AE > 0. By Lemma 2, since w1 > 0, then (0, 0, 0, 1) is stable.

To highlight the role of social inhibition (σ) on Rd, we rewrite (17):

Rd = σ
( 1

σ + μF

ασ + αmin

ασ + αmin + μW
− ck γ

γ + μB

α

ασ + αmin + μW

1

αmin + μW

)
+ ck

γ

γ + μB

1

αmin + μW
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8.1.4 Interpretation of Rd

In our Rd the ck represents the number of brood produced by a worker per unit time, while
γ

γ+μB
is the proportion of brood that eclose into workers, the term 1

ασ+αminμW
is the average

time spent in the worker class, the term 1
αmin+μW

is the time spent as a worker when the

colony is at homeostasis, and ασ+αmin

ασ+αmin+μF
is the proportion of workers recruited into foragers.

Finally the term σ
σ+μF

is the proportion of foragers that transition back into workers.

To better understand the meaning of Rd we consider the simple case σ = 0 (without social
inhibition), which we denote as rd. Therefore the value for rd is the following:

rd =

(
γ

γ + μB

)
(kc)

(
1

αmin + μW

)
.

The first term in rd is
γ

γ+μB
, which is the proportion of brood eclosing to workers. Next

the following term, kc, represent the birth rate of the brood per unit time. Finally the last
term, 1

αmin+μW
, is the average lifetime of a worker during homeostasis. This demographic

reproduction number represents the average number of worker bees produced per worker bee
during the average lifespan of a worker bee.

8.1.5 Interior Equilibrium

Using the rescaled form of the model:

x′ = Auy −Gx, (18)

y′ = x− Cy +Dz, (19)

z′ = y − Ez, (20)

u′ = u(1− u)− uy, (21)

we set the system equal to zero. Solving for y∗ using Equation (21), y∗ = 1 − u∗. Solving
for z∗ using Equation (20) , z∗ = 1

E
y∗. Solving for x∗ using Equation (19), x∗ = (C − D

E
)y∗.

Solving for u∗ using Equation (18), u∗ = G
AE
(EC −D).

This results in the following interior equilibrium:
(
(C − D

E
)y∗, 1− u∗, 1

E
y∗, u∗

)
, if EC−D >

0 and GEC −GD − AE < 0.

8.1.6 Sensitivity Analysis of Rd in Holling Type I

Using Mathematica, we computed the values for sensitivity indices. To ease the analysis, we
change variables. Let A = ackγ,B = μf + σ, C = αmin + ασ,D = γ + μB, E = C + μW , G =
αmin + μW , H = μWσ, I = ασ, J = μFσ.
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Then we have the following index values:

∂Rd
∂σ

σ

Rd
= μF

B
+ G
E
− αminσD+A(2μF+σ)

AB+DσC

∂Rd
∂α

α

Rd
= I(HD−AB)

E(AB+Dσc)

∂Rd
∂μW

μW
Rd

= −μW
E

∂Rd
∂αmin

αmin
Rd

= αmin(HD−AB)
E(AB+Dσc)

∂Rd
∂μF

μF
Rd

= JDC
B(AB+DσC)

∂Rd
∂c

c

Rd
= AB

AB+DσC

∂Rd
∂k

k

Rd
= ∂Rd

∂c
c
Rd

∂Rd
∂γ

γ

Rd
= μBAB

D(AB+DσC)

∂Rd
∂μB

μB
Rd

= −∂Rd

∂γ
γ
Rd

∂Rd
∂a

a

Rd
= ∂Rd

∂c
c
Rd

where
∣∣∣ ∂Rd

∂μB

μB
Rd

∣∣∣ = ∂Rd

∂γ
γ
Rd

< ∂Rd

∂k
k
Rd

= ∂Rd

∂c
c
Rd

= frac∂Rd∂a
a
Rd

and ∂Rd

∂α
α
Rd

< ∂Rd

∂αmin

αmin

Rd
if

ασ < αmin
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We now use our parameters and substitute them back into the indices to obtain the fol-
lowing values:

Table 3: Elasticity of Parameters on Rd

Elasticity Indices Numerical Value

∂Rd

∂σ
σ
Rd

−0.3105
∂Rd

∂α
α
Rd

−0.3105
∂Rd

∂μW

μW
Rd

−0.3712
∂Rd

∂αmin

αmin

Rd
−0.3182

∂Rd

∂μF

μF
Rd

−.0000009
∂Rd

∂c
c
Rd

1.000

∂Rd

∂k
k
Rd

1.000

∂Rd

∂γ
γ
Rd

0.0226

∂Rd

∂μB

μB
Rd

−0.0226
∂Rd

∂a
a
Rd

1.0000

8.2 Detailed Computations of the Logistic Growth Holling Type
II Model

dB

dt
=

cSW

b+ S
− γB − μBB,

dW

dt
= γB − αminW + σ(F − αW )− μWW,

dF

dt
= αminW − σ(F − αW )− μFF,

dS

dt
= rS

(
1− S

k

)
− aSW

b+ S
.

8.2.1 Rescaled Form

To simplify the analysis, we rescale the model:

Let x = B
φ1
, y = W

φ2
, z = F

φ3
, u = S

φ4
, τ = t

T

We then get the rescaledl form of our model to be the following:
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dx

dτ
=

Tcuφ4yφ2

φ1(b+ uφ4)
− Tγx− μBxT,

dy

dτ
= γT

φ1

φ2

x− Tαminy + σT

(
φ3

φ2

z − αy

)
− μWTy,

dz

dτ
= Tαmin

φ2

φ3

y − Tσz + Tα
φ2

φ3

yσ − TμF z,

du

dτ
= Tru

(
1− uφ4

k

)
− Taφ2uy

b+ uφ4

.

If we let T = 1
r
, φ1 =

r2

γa
, φ2 =

r
a
, φ3 =

1
a
, and φ4 = k, we then get the rescaled equations

to simplify to:

dx

dτ
=

Huy

J + u
− V x,

dy

dτ
= x− Ey +Gz,

dz

dτ
= Ay −Dz,

du

dτ
= u(1− u)− uy

k(J + u)
,

where the new parameters (consisting of original parameters) are the following:

H = γc
r2
, V = 1

r
(γ + μB), J =

b
k
, E = 1

r
(αmin + σα + μW ) , G = σ

r2
, D = 1

r
(σ + μF ),

A = αmin + ασ.

8.2.2 Equilibria and Stability

We first compute the equilibria, which turns out to be (0, 0, 0, 0), (0, 0, 0, 1) and an interior
equilibrium. We compute the general Jacobian, and found it to be:

J (x, y, z, u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−V Hu
J+u

0 HyJ
(J+u)2

1 −E G 0

0 A −D 0

0 −u
ku+b

0 1− 2u− by
(b+ku)2

⎞
⎟⎟⎟⎟⎟⎟⎠

We then compute the Jacobian of (0, 0, 0, 0):
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J (0, 0, 0, 0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−V 0 0 0

1 −E G 0

0 A −D 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and we found the equilibrium point (0, 0, 0, 0) to be unstable because one eigenvalue is
positive. We then look at Jacobian matrix evaluated at the equilibrium point (0, 0, 0, 1):

J (0, 0, 0, 1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−V H
J+1

0 0

1 −E G 0

0 A −D 0

0 −1
b+k

0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

We remove the last row and column because the last eigenvalue is negative. Then we can
analyze the resulting matrix for stability:

M =

⎛
⎜⎜⎜⎝
−V H

J+1
0

1 −E G

0 A −D

⎞
⎟⎟⎟⎠

We look towards the Routh-Hurwitz Criteria, where

w1 = −det(M) = V (ED − AG)− HD

J + 1
,

w2 = −trace(M) = D + E + V,

w3 =

(
V E − H

J + 1

)
+ ED − AG+ V D,

with w1 is the negative determinant of M , w2 is the negative trace of M , and w3 is the
minors of the matrix M . If w1, w2, w3 > 0 and w2w3 > w1, then the system is stable. We
now show that the equilibrium (0, 0, 0, 0) is asymptotically stable if w1 > 0.
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Proof.
Assume w1 > 0, then

ED > AG (22)

V ED >
DH

J + 1
(23)

V E >
H

J + 1
(24)

By (22) and (24), it follows that w3 > 0. Thus if w1 > 0 then w3 > 0.
w2 > 0 since D,E, V > 0.
We multiply w2 with w3 to get the following product:

w2w3 = (V + E +D)

(
V E − H

J + 1
+ ED −AG

)
+ V D

= V (ED −AG) + V
(
V E − H

J + 1

)
+ Ew3 − DH

J + 1
+D(V E + ED −AG)

By (22) and (24) we get, w2w3 = V (ED − AG) − HD
J+1

+ positive terms, which is just w1+
positive terms > w1. Thus w2w3 > w1.
If we assume (22) and (23) then w1, w2, w3 > 0 and w2w3 > w1 the equilibrium point (0,0,0,1)
is stable.

8.2.3 Calculation of Demographic Reproductive Number Rd for equilibrium
(0,0,0,1)

Now we examine w1. Recall that w1 = −det(M) = V (ED − AG) − HD
J+1

, let’s assume that
w1 > 0, then we get,

V (ED − AG)− HD
J+1

> 0 is equivalent to 1 > H
(J+1)(V E)

+ AG
ED
.

We define Rd =
H

(J+1)(V E)
+ AG
ED
. Now we have the following: If w1 > 0 ⇒ Rd < 1, then

honey bee colony collapses.

Substituting the values of C, E, D, A back into Rd and simplifying the equation, we have:

Rd =
(γ + μB)(ασ + αmin)σ

(γ + μB)(ασ + αmin + μW )(σ + μF )
+

γck(σ + μF )

(γ + μB)(ασ + αmin + μW )(σ + μF )(b+ k)

=
ασ + αmin

ασ + αmin + μW

σ

σ + μF
− γ

γ + μB

kc

b+ k

ασ

ασ + αmin + μW
+

γ

γ + μB

kc

b+ k

1

αmin + μW

We have successfully separated away all the σ terms. That way, we can determine whether
σ plays a role in Rd becoming greater or less than 1. Rd is the demographic reproductive
number for foragers.
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8.2.4 Interpretation of RD

Now we interpret Rd, where the
ασ+αmin

ασ+μW
term is the proportion of workers promoted to

foragers, the σ
σ+μF

term is the proportion of foragers becoming workers. Then the γ
γ+μB

term is the proportion of brood that become workers, then the kc
b+k

term is the proportion of
food converting to brood, then the ασ

ασ+αmin+μW
term is the proportion of premature workers

becoming foragers, and finally the term 1
αmin+μW

is the time spent as a worker during home-
ostasis.

Consider RD(σ). For the case when σ = 0, then we have the value for Rd(0):
Rd(0) =

γ
γ+μB

kc
b+k

1
αmin+μW

, where kc
b+k

is the proportion of food capacity, while γ
γ+μB

is the

proportion of brood eclosing into workers, and 1
αmin+μW

is the average time spent in the
worker class during homeostasis.

8.2.5 Interior Equilibrium

dx

dτ
=

Huy

J + u
− V x, (25)

dy

dτ
= x− Ey +Gz, (26)

dz

dτ
= Ay −Dz, (27)

dz

dτ
= u(1− u)− uy

b+ ku
. (28)

To solve for equilibria , we set the system equal to 0.
Solving for y using equation (28), u(1− u)− uy

b+ku
= 0 and (1− u)(b+ ku)− y = 0. Solving

for y in the previous expression, y = (1 − u)(b + ku). Solving for z using equation (27),
Ay − Dz = 0. We can simplify the expression to be z = A

D
y.Solving for x using equation

(26), x−Ey+Gz = 0, which we can simplfy to x = (E− GA
D
)y. Solving for u using equation

(25), Huy
J+u

− V x = 0. Since y = (1 − u)(b + ku), if y = 0 then either u = 1 or b + ku = 0
(which is not biologically relevant since we cannot have a negative value for u). Suppose

y �= 0, then Hu
J+u

− V (E − GA
D
) = 0. Solving for u, u∗ = V J(E−GA

D
)

H−V (E−GA
D

)

Suppose u∗ = 0. Then x∗ = 0 and Ay∗ −Dz∗ = 0 ⇒ y∗ = z∗ = 0. Suppose u∗ = 1. Then

y∗ = 0 ⇒ x∗ = z∗ = 0. Suppose u∗ = V J(E−GA
D

)

H−V (E−GA
D

)
, 0 < u∗ < 1 and y∗ = (1 − u∗)(b + ku∗),

z∗ = A
D
y∗, and x∗ = (E − GA

D
)y∗

Conditions on positive equilibrium interior are H − V (E − GA
D
) > 0 and

V J(E−GA
D

)

H−V (E−GA
D

)
< 1.

Recall that
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Rd =
HD

V (J + 1)(DE −GA)

u∗ =
JV (E − GA

D
)

H − V (E − GA
D
)

=
J

(J + 1)Rd − 1
Suppose Rd > 1:
u∗ = J

(J+1)Rd−1
,

= J
JRd+Rd−1

< J
JRd

= 1
Rd

< 1,

y∗ = (1− u∗)(b+ ku∗),
x∗ = (E − GA

D
)y∗ = 1

D
(ED −GA)y∗,

z∗ = A
D
y∗.

8.2.6 Sensitivity Analysis of Rd in Holling Type II

Using Mathematica, we computed the values for sensitivity indices. To ease the analysis, we
change variables. Let A = ackγ,B = μf + σ,C = αmin + ασ,D = γ + μB, E = C + μW , F =
b+ k,G = αmin + μW , H = μWσ, I = ασ, J = μFσ.
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Then we have the following index values:

∂Rd
∂σ

σ

Rd
=

σ(− Aα
FD

+αminμFG+2αμFGσ+I
2μF+IH)

E( A
FD

+σC
B

)

∂Rd
∂α

α

Rd
= I(FDH−AB)

E(AB+FDσC)

∂Rd
∂μW

μW
Rd

= −μW
E

∂Rd
∂αmin

αmin
Rd

= αmin(FDH−AB)
E(AB+FDσC)

∂Rd
∂μF

μF
Rd

= FDJC
B(AB+FDσC)

∂Rd
∂c

c

Rd
= AB

AB+FDσC

∂Rd
∂k

k

Rd
= bAB

F (AB+FDσC)

∂Rd
∂γ

γ

Rd
= μBAB

D(AB+FDσC)

∂Rd
∂μB

μB
Rd

= −∂Rd

∂γ
γ
Rd

∂Rd
∂b

b

Rd
= ∂Rd

∂k
k
Rd

∂Rd
∂a

a

Rd
= ∂Rd

∂c
c
Rd

where
∣∣∣ ∂Rd

∂μB

μB
Rd

∣∣∣ = ∂Rd

∂γ
γ
Rd

< ∂Rd

∂k
k
Rd
= ∂Rd

∂b
b
Rd

< ∂Rd

∂c
c
Rd

and ∂Rd

∂α
α
Rd

< ∂Rd

∂αmin

αmin

Rd
if ασ < αmin
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We now use our parameters and substitute them back into the indices to obtain the fol-
lowing values:

∂Rd
∂σ

σ

Rd
= −.2333

∂Rd
∂α

α

Rd
= −.0.2792

∂Rd
∂μW

μW
Rd

= −0.3712
∂Rd
∂αmin

αmin
Rd

= −0.2860
∂Rd
∂μF

μF
Rd

= −0.0458
∂Rd
∂c

c

Rd
= 0.9364

∂Rd
∂k

k

Rd
= 0.0094

∂Rd
∂γ

γ

Rd
= 0.0211

∂Rd
∂μB

μB
Rd

= −0.0211
∂Rd
∂b

b

Rd
= −0.0094

∂Rd
∂a

a

Rd
= 0.9364
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