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Abstract

Side-blotched lizards, Uta stansburiana, exhibit trimorphic male throat-colors (orange,

blue, or yellow). In terms of mating, the males participate in an apparent game of rock-paper-

scissors determined by throat color (i.e., a cyclic dominance chain). Mathematical models of

this behavior predict stable monomorphic and trimorphic populations. However, researchers

have observed stable dimorphic populations of orange and blue males. Furthermore, it is

postulated that the only large-scale, long-term, stable solutions exclude the yellow throat

type. We propose a new mathematical model accounting for the female population available

for mating that may exhibits such behavior. We discuss the conditions under which particular

population configurations are stable and flow attractive. We use these results to motivate

conservative methods that may mitigate biodiversity loss by preventing the decline of a

particular monomorphic or dimorphic population.

1 Introduction

Biodiversity is an important characteristic to the measurement of the health of ecological

systems [6]. A biologically diverse system is better able to adapt to disruptive environmental

changes [8]. Identifying the conditions under which an ecosystem undergoes a reduction

in biodiversity is critical to the study of its conservation [10]. Non-hierarchical dominance
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systems, in which no species or morph has complete dominance over all others, may maintain

biodiversity [20]. Thus, exploring how specific examples of non-hierarchical dominance break

down into hierarchical structures subject to massive population decline benefits the study of

biodiversity.

One species that exhibits non-hierarchical dominance with respect to mating behavior

is Uta stansburiana, a desert lizard native to Western North America, commonly known as

the side-blotched lizard. Male side-blotched lizards exhibit three hereditary throat colors:

oran(G)e, (B)lue, or (Y)ellow [17]. Each of the three male types has a reproductive advantage

over one other male type but is inferior to the third [18]. Orange-throated males have the

highest levels of testosterone and defend a large territory. They aggressively attack and

drive off blue-throated lizards, who also hold territory, so orange-throated males can mate

with females on both orange and blue territory. However, yellow-throated males, who do

not defend territory, rely on their physical and behavioral similarity to females to easily

infiltrate the relatively unmonitored orange territory and mate. Even though blue-throated

males generally lose against orange-throated males in a head-on fight, they meticulously

guard and track their females which prevents the yellow-throated males from easily sneaking

into blue territory to mate with females. Since there is not a single dominant male morph

(throat color), the fitness of a given morph is dependent on the prevalence of the others in

a manner similar to a rock-paper-scissors (RPS) game [18].

Similarly, female Uta stansburiana have either yellow or orange throats. They occupy

either the blue or orange-throated males’ territory, and the inheritance of both the female

and male throat colors follows a set of complex rules. The relative mating rates for various

male and female color morphs have been suggested to be context dependent and may rely on

aspects such as social environment, ecological conditions, or individual experience [1]. The

overall reproductive success is therefore highly dependent on female mate selection and is

negative frequency dependent. In essence, this means that the optimal mating strategy for

females is to: (a) mate with yellow when orange is common; (b) mate with blue when yellow

is common; and (c) mate with orange when blue is common. This is because when young

lizards of the male type that beats the most common male type mature, they will be the

most fit [16].

Side-blotched lizard populations have maintained male populations exhibiting all throat
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colors (i.e., the GBY trimorphism) for millions of years across all regions [7]. This is consis-

tent with the robust persistence of the coexistence equilibrium present in many mathemat-

ical models of three competing species [1, 11, 14, 15, 17]. It has recently been observed that

some populations have destabilized and lost biodiversity giving rise to dimorphic (BG) and

monomorphic (B or G) populations. Interestingly, dimorphic and monomorphic populations

that include yellow-throated males have not been observed [7]. The repeated loss of the

yellow morph suggests that the evolutionary stable state of the RPS strategies may destabi-

lize over large spatial and temporal scales [7, 13]. These findings contradict the traditional

RPS mathematical models that exhibit only monomorphic and trimorphic populations. A

proposed hypothesis for the cause of destabilization of the GBY trimorphism is female posi-

tioning (whether in orange or blue territory) and her resulting selectivity in partner [7].

We seek to expand the scope of RPS mathematical modeling by proposing a traditional

two-sex pair formation model with a mating consent function that accounts for female selec-

tion. We investigate two functional forms for this consent function: (1) a constant consent

function representing relative preference and (2) a pseudo-spatial consent function repre-

senting female membership to specific male-type territories. Pair formation models have

been used in many different contexts, mainly two-sex problems in demography and mixing

problems in multi-type epidemic models [4,9,12]. We use a pair formation model with rapid-

pairing dynamics to assess how female selection may drive the disappearance of the yellow

morph from a trimorphic population.

In Section 2 we introduce the mathematical model and detail its base assumptions.

In Section 3, we analyze the stability of equilibria of each system both analytically and

numerically. Finally, we discuss our results and their biological significance in Section 4,

and we provide further support for our numerical results with a brief analysis of a simplified

version of our model.
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2 Model Description

We consider a population differentiated by gender (with males differentiated by throat

color)1 encompassing classes of orange-throated males (G), blue-throated males (B), yellow-

throated males (Y ), and females (F ). All lizards within a class are considered identical and

homogeneously-mixed. These individuals may form a breeding pair distinguished by the male

phenotype: orange-throated male and female (PG), blue-throated male and female (PB), and

yellow-throated male and female (PY ). Pairs are formed according to a mass action flow:

males of type-i seek out females at rate Si. Given an encounter between a mate-seeking male

and a female, the success of such a pairing type is dependent on a female consent function

Ci. Since mating is rapid (modeled via a pair separation rate parameter of σi), we assume

that death does not occur for individuals while paired. The birth rates, ri, account for both

clutch size and the success rate for each new individual to reach reproductive age. Each

clutch exhibits roughly equivalent sex differentiation and clutch size, so males and females

are born at the same per capita rate regardless of their father’s type (i.e., ∀i ∈ {G,B, Y }
ri = r and rF = r) [21].

Figure 1: Flow to and from classes.

A seeking male of type-i attempts to court a female, and if successful, they form a

1We omit the female color dimorphism as a simplification meant to isolate the effect of availability akin to the
survival of the weakest [11] and not confound the results with clutch viability considerations.
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mating pair. After a mating event, one new, mature individual is immediately born into

either the F class or male type-i class. Newborns are assumed to reach maturity instantly. A

mating season realistically occurs during the summer, but we omit seasonality in our model

by converting all rates to be in terms of the length of one mating season. Thus, events happen

in a continuous time flow. Since there is not a limiting factor in the total population, the

population size is able to grow without bound assuming that the landscape is arbitrary large

enough to handle it. Therefore the density of lizards does not become supersaturated.

Using the flow depicted in Figure 1 and the parameters described in Table 1, we form

the following system of differential equations to describe the mating dynamics of the side-

blotched lizard:

dG

dt
= (r + σG)PG − μGG− SGGCGF,

dB

dt
= (r + σB)PB − μBB − SBBCBF,

dY

dt
= (r + σY )PY − μY Y − SY Y CY F,

dF

dt
= (r + σG)PG + (r + σB)PB + (r + σY )PY − (SGGCG + SBBCB + SY Y CY + μF )F,

dPG

dt
= SGGCGF − σGPG,

dPB

dt
= SBBCBF − σBPB ,

dPY

dt
= SY Y CY F − σY PY ,

dN

dt
=

dG

dt
+
dB

dt
+
dY

dt
+
dF

dt
+ 2

(
dPG

dt
+
dPB

dt
+
dPY

dt

)
. (1)

To study the effect of female selection, we consider two separate sets of rules for female

consent to courting. Under our first assumption, we propose that female consent to mating

with a particular male type is constant through time; thus, we set the consent as a fixed

numerical value. These functions are best interpreted as unitless relative measures of female

preference for specific male-types, reflecting the proportion of total mating attempts that

are successful. Hence,

0 < Ci < 1.

Additionally, we propose a second set of non-constant consent functions to study how
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Parameters Unit Biological Interpretation Value [18, 21]

r time−1 birth rate of progeny that survive until maturity 1.094

μG time−1 death rate of orange males 1.229

μB time−1 death rate of blue males 1.075

μY time−1 death rate of yellow males 1.075

μF time−1 death rate of females 0.956

Si lizard−1 time−1 rate at which type-i males seek females [20,60]

σi time−1 rate at which a Pi pair separates 18,864

νG meter2 territory defended by an orange male 100

νB meter2 territory defended by a blue male 40

Table 1: Model parameters with their biological definition and estimated value or range indexed by
male throat color i ∈ {G,B, Y }. Time is measured in mating season.

the state of the current population affects the female’s decision. In order to account for

the disproportionate size of orange and blue territories, we propose a pseudo-spatial consent

function where each male type is given a weight based on the territory they occupy and the

control they exert over it.

CG = 1

CB =
νB(B + PB)

νG(G+ PG) + νB(B + PB)
(2)

CY =
νG(G+ PG)

νG(G+ PG) + νB(B + PB)

The total space occupied by the lizard population will be the sum of the space occupied by

all the blue and orange-throated male lizards as yellows do not defend territory. In a system

with any number of lizards, the mating events will always favor orange lizards because their

physiology allows them to mate with their females and with females within blue territory.

When the proportion of orange-throated males is high, the possibility of yellow-throated

males to obtain multiple matings by sneaking into orange territory is higher (yellow beats

orange) and that of blue-throated lizards is lower (orange beats blue). In the extreme case

of a complete blue-throated male population, yellow-throated males cannot sneak into blue’s

territory (blue beats yellow). Assuming that νB and νG account for both the relative size

of each color-morph’s territory and the density of females therein, these consent functions

represent the RPS game mediated through the preference of females.
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3 Analysis and Results

In this section, we discuss the estimates of parameter values used in our analysis as well as

our theoretical and numerical analysis performed on Model (1) with both Constant Consent

and Pseudo-Spatial Consent Functions in order to determine stability of their equilibria.

Due to the exponential and unbounded growth our model assumes, the population can ap-

proach infinity (Figure (2)). Under exponential growth, we consider the persistent population

distribution (Figure (3)). We denote such Stable Population Distributions as SPD [5].
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Figure 2: Exponential Growth.
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Figure 3: Stable Proportion Distribution.

3.1 Parameter Estimation

Since we model only the reproductive season, we use the time unit of one mating season for

all parameters. We assume the average mating season to last 131 days, or 4.3 months [21].

The birth rate is estimated as the product of the average number of clutches per female per

mating season, the average number of eggs per clutch, and percentage of hatchlings that

survive to reproductive age per sex type. This yields an average birthrate of 1.094 new

mature lizards of each gender type born to each female per mating season. Additionally, the

seeking rates, a measure of how often a male seeks and finds a female whom he will court,

must be estimated. In our numerical solutions, we estimate each seeking rate to be between

20 and 60 attempts per mating season roughly based off data presented in [21]. We consider

seeking rates proportional to the activity of each male type as reported in [18], i.e., we as-
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sume SY < SB < SG. Since mating lasts a very short time, our average pair separation rate

should be very large [21]. Assuming a mating event lasts 10 minutes, then the separation

rate is 18, 864 per mating season.

For the estimation of the death rates, we note that a several-year study of a population

of side-blotched lizards found that generally there is a complete turnover of the mature pop-

ulation every year [21]. Since we consider new entries in our system to be mature adults aged

to 8 months, we use 4 months as an average life span after reaching maturity. This results in

an average death rate of 1.075 deaths per mating season. In our parameter estimation, we

consider μF < μB = μY < μG. This assertion is biologically significant as the high plasma

testosterone level of orange-throated lizards reduces its lifespan [18]. Furthermore, females

tend to live longer since they are protected by males [21]. In the absence of further data,

we took the average lifespan of 4 months after maturation derived from [21] to apply to

blue and yellow males, increased it by half a month for females, and decreased it by half a

month for orange males. Additionally, the average home range of orange-throated males is

about 100 square meters and that of blue-throated males to be about 40 square meters [18].

Thus, we use these values for νG and νB respectively. We assume females to be uniformly

distributed among all area, so these also capture the average number of females on orange

and blue-throated territory. A complete listing of all parameter values and their estimates

can be found in Table 1.

3.2 Analysis of Model (1) with Constant Consent

Assuming Model (1) and phenomenological constant values for the consent functions are

such that 0 < CY < CB < CG < 1, the biologically relevant equilibrium states are given in

Table 2. Four additional equilibria exist on the boundaries within our parameter space but

they are not biologically relevant (See Appendix).

The Jacobian matrix for this case, J1(E
∗) is given by:
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Equilibrium E1
∗ = (G∗, B∗, Y ∗, F ∗, P ∗G, P

∗
B , P

∗
Y ) Biological Interpretation Stability

E10 = (0, 0, 0, 0, 0, 0, 0) Extinction Stable

E1G = ( σGμF

SGCGr , 0, 0,
σGμG

SGCGr ,
σGμFμG

SGCGr2 , 0, 0) Monomorphic Orange Saddle

E1B = (0, σBμF

SBCBr , 0,
σBμB

SBCBr , 0,
σBμFμB

SBCBr2 , 0) Monomorphic Blue Saddle

E1Y = (0, 0, σY μF

SY CY r ,
σY μY

SY CY r , 0, 0,
σY μY μF

SY CY r2 ) Monomorphic Yellow Saddle

Table 2: Equilibria of the Model (1) with constant consent functions. All equilibria exist under the
assumption that all parameters are positive. All equilibria are initially evaluated at values in Table 1. If
unstable, then we evaluated within a biologically relevant parameter space.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−CGFSG − μG 0 0 −CGGSG r + σG 0 0

0 −CBFSB − μB 0 −CBBSB 0 r + σB 0

0 0 CY FSY − μY −CY SY Y 0 0 r + σY

−CGFSG −CBBSB −CY FSY −CGGSG − CBBSB − CY Y SY − μF r + σG r + σB r + σY

CGFSG 0 0 CGGSG −σG 0 0

0 CBFSB 0 CBBSB 0 −σB 0

0 0 CY FSY CY SY Y 0 0 −σY

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Jacobian Matrix evaluated at the extinction equilibrium, E10 , has eigenvalues −σG,
−σB , −σY , −μG, −μB , −μY , and −μF . Since all parameters are positive, the extinction

equilibrium is locally asymptotically stable. Unfortunately, similar analysis on the monomor-

phic equilibria is currently intractable as eigenvalues are rather large. Thus, we calculate the

eigenvalues for each monomorphic solution using our estimated biological parameter values

from Table 1. The eigenvalues are described in Table 3.

Interestingly, each equilibrium value is inversely related to its associated consent pa-

rameter. That is, increasing Ci actually decreases the number of male type-i, Pi, and F at

the type-i monomorphic equilibrium. Also, the first three eigenvalues for each monomorphic

equilibrium are independent of the consent functions. This peculiarity motivates us to ex-

amine the specific subset of biological parameters over which each eigenvalue depends, seen

in Table 4.

The stability of the extinction equilibrium is determined only by the death and divorce

rates. Regardless of the seeking rate, the extinction equilibrium will remain stable. Likewise,

the growth rate r does not affect the extinction equilibrium’s stability. This means that for

a population near the extinction equilibrium increasing growth and/or seeking rates can not
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Calculated Equilibrium Eigenvalues: e1, e2, e3, e4,5, e6,7

(G∗, B∗, Y ∗, F ∗, P ∗G, P
∗
B , P

∗
Y )

0.36− 0.4e−4i
−56336.23− 1.87e−7i

Monomorphic Orange −1.08 + .36e−4i

( 364.32CG
, 0, 0, 468.36CG

, 407.05CG
, 0, 0) − 0.1e−1(8.81×105CY +9.34×105CG±

√
8.72×1011C2

G+1.65×1012CGCY +7.76×1011C2
Y )

CG

− 0.1e−1(9.34×105CG+9.27×105CB±
√

8.72×1011C2
G+1.73×1012CGCB+8.59×1011C2

B)

CG

0.36− 0.2e−4i
−53695.18− .15e−5i

Monomorphic Blue −1.01 + .31e−4i

(0, 409.86CB
, 0, 460.88CB

, 0, 400.55CB
, 0) − 0.11e−1(7.71×105CY +8.30×105CB±

√
6.89×1011C2

B+1.28×1012CBCY +5.94×1011C2
Y )

CB

− 0.11e−1(9.13×105CG+8.30×105CB±
√

8.33×1011C2
G+1.52×1012CGCB+6.89×1011C2

B)

CB

0.36− 0.2e−4i
−53695.18− .23e−5i

Monomorphic Yellow −1.01 + .32e−4

(0, 0, 431.44CY
, 485.14CY

, 0, 0, 421.63CY
) − 0.12e−1(7.89×105CY +9.13×105CG±

√
8.33×1011C2

G+1.44×1012CGCY +6.22×1011C2
Y )

CY

− 0.12e−1(7.89×105CY +8.11×105CB±
√

6.58×1011C2
B+1.28×1012CBCY +6.22×1011C2

Y )

CY

Table 3: Listing of eigenvalues corresponding to J1(E1G), J1(E1B ), and J1(E1Y ) respectively evaluated
at parameter values listed in Table 1. All numbers are rounded to two decimal places. Note: Let ej be
the jth eigenvalue of each equilibrium state as listed in the above table.

Eigenvalue Indices Depend on

1,2,3 σY , μF , μG, μB , and μY

4,5 σY , σG, SY , SG, CY , CG, μY , μG, and r.

6,7 σY , σB , SY , SB , CY , CB , μY , μB , and r

Table 4: Parameters on which each eigenvalue associated with the monomorphic yellow equilibrium
depend.

save the population. This is biologically counter intuitive.

We next study the monomorphic equilibria and use the monomorphic yellow as an ex-

ample without loss of generality. We find that the first three eigenvalues are dependent on

μF , μY , r, and σY only; e4 and its conjugate, e5, depend on all Y and G parameters, and

that e6 and its conjugate, e7, depend on all Y and B parameters. Stability is therefore

determined by the comparative relationship between competitive male types and less on the

female’s ecology.

To further study e1, e2, and e3, we sample the μF , μY , r, and σY parameter space to
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determine parameter values that would make e1, e2, and e3 all have non-positive real part.

Parameter sweeps indicate that the real part of each eigenvalue is negative only when the

parameters are allowed to be negative. Thus, we exclude the possibility of a biologically

relevant stable equilibrium. Studying eigenvalues, e4, e5, e6, and e7, we find that oscillatory

behavior of solutions only occur if CY and CG and if CY and CB have opposite signs which

is not biologically plausible. We also find that when e4 and e6 are negative that e5 and e7 are

positive. Therefore, the monomorphic yellow equilibrium point is classified as an unstable

saddle point for all parameter choices.

Accordingly, when at the equilibrium point for a given parameter set, a negative pertur-

bation of CY (i.e., a small decrease in CY ) results in Y , F and PY populations asymptotically

decreasing to zero (Figure 4a). Conversely, with a positive perturbation of CY (i.e., a small

increase in CY ), the Y and F populations remain relatively constant but the PY population

exponentially increases (Figure 4b). Thus, the total Y-male population persists though al-

most exclusively as part of a mating pair. Perturbations of the other consent values, CG and

CB , do not affect the population dynamics near the monomorphic yellow equilibrium.
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(a) Negative perturbation of CY when at equilibrium
yields decreasing yellow male population.
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(b) Positive perturbation of CY when at equilibrium
yields increasing yellow male population.

Figure 4: Monomorphic yellow population vs. time. Plot a and b result from a decrease and increase
of an equilibrium consent value (CY = .5) respectively. The same population dynamics are observed in
the monomorphic orange and monomorphic blue equilibria.
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Interestingly, introducing a certain number of an additional male type into a declining

monomorphic population prevents the population from asymptotically decreasing to zero.

Without the additional male type, the population declines but with the additional male

type, pairs of both types persist at SPD (Figure 5). This occurs even when the new male

population introduced is less than the original number of resident type-i males. The final

SPD of the dimorphism depends on the relation between the invading and resident states

consent values (Figure 6). Likewise, it is possible to revive a declining orange-blue dimor-

phisim by introducing yellow which leads to a trimorphic population in the SPD.
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(a) Total yellow-male population increases as total popu-
lation increases.
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(b) Proportion of total yellow male population increases
and stabilizes at SPD

Figure 5: The introduction of 1700 orange males into the declining monomorphic yellow population seen
in Figure 4a revives the population. Similar dynamics are observed in the blue and orange monomorphic
states.
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(a) Blue revives orange with CB = .3 and maintains a
higher proportion than orange.
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(b) Blue revives orange with CB = .25 and maintains a
smaller proportion than orange.

Figure 6: 5000 blues revive an asymptotically decreasing orange population. Depending on relationship
between consent values, we get different dimorphic SPD.

3.3 Analysis of Model (1) with Pseudo-Spatial Consent

Supposing Model (1) and consent functions described by System (3), we have equilibria of

the form found in Table 5.

Equilibrium E2
∗ = (G∗, B∗, Y ∗, F ∗, P ∗G, P

∗
B , PY ∗) Biological Interpretation Stability

E20 = (0, 0, 0, 0, 0, 0, 0) Extinction Stable

E2G = (
μFσg

rSg
, 0, 0,

μgσg

rSg
,
μFμgσg

r2Sg
, 0, 0) Monomorphic Orange Unstable

E2B = (0, μFσB

rSB
, 0, μBσB

rSB
, 0, μFμBσB

r2SB
, 0) Monomorphic Blue Unstable

E2GB
= ( L

rSGK ,− H
rK , 0,

μgσg

rSg
, L
r2SgK

,− H
r2K , 0) Dimorphic Orange-Blue Unstable

Table 5: Equilibria of the Pseudo-Spatial Model where L = νBμFμ
2
gσg(rSgμBσB+Sgμ

2
BσB−rSBμgσg−

SBμBμgσg), H = νgμBμFμg(r+μg)σBσG, and K = −rSGνGμ
2
BσB + rSGνBμBμGσB +SGνBμ

2
BμGσB −

SGνGμ
2
BμGσB − rSBνBμ

2
GσG−SBνBμBμ

2
GσG. All equilibria are initially evaluated at values in Table 1.

If unstable, then we evaluated within a biologically relevant parameter space.
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The Jacobian matrix for this case at the extinction equilibrium is given by:

J2(E20) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μG 0 0 0 r + σG 0 0

0 −μB 0 0 0 r + σB 0

0 0 −μY 0 0 0 r + σY

0 0 0 −μF r + σG r + σB r + σY

0 0 0 0 −σG 0 0

0 0 0 0 0 −σB 0

0 0 0 0 0 0 −σY

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Since all eigenvalues are always negative, the extinction equilibrium is locally asymptotically

stable. Now, we analyze the orange monomorphic equilibrium via the Jacobian matrix

evaluated at E2G :

J(E2G) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μG − μGσG

r 0 0 −μFσG

r r + σG 0 0

0 −μB 0 0 0 r + σB 0

0 0 −μY − SY μGσG

rSG
0 0 0 r + σY

−μGσG

r 0 SY μGσG

rSG
−μF r + σG r + σB r + σY

μGσG

r 0 0 μFσG

r −σG 0 0

0 0 0 0 0 −σB 0

0 0 SY μGσG

rSG
0 0 0 −σY

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

It is clear that −σB and −μB are eigenvalues of J(E2G). Thus, it can be reduced to the
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following five by five matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μG − μGσG

r 0 −μFσG

r r + σG 0

0 −μY − SY μGσG

rSG
0 0 r + σY

−μGσG

r
SY μGσG

rSG
−μF r + σG r + σY

μGσG

r 0 μFσG

r −σG 0

0 SY μGσG

rSG
0 0 −σY

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Unfortunately, the remaining eigenvalues are intractable, so we must rely on numerical anal-

ysis. In a similar manner, J2(E2B ) has two obvious negative eigenvalues, −σY and −μY ;

it can be reduced to a five by five matrix with difficult eigenvalues. The stability analysis

of the orange-blue dimorphic equilibrium results in a very large Jacobian matrix, and all

seven eigenvalues are intractable. Thus, we proceed to numerical solutions to determine

the stability of the monomorphic orange, monomorphic blue, and dimorphic orange-blue

population.

For simplicity, we fix the parameters which are well reported in literature and vary

the seeking (Si) and pair separation rate (σi) as we do not have specific data for those

values. We also vary the parameters which appear in the Jacobian to see their effect on

stability of equilibria. We take equally distributed samples from sufficiently large ranges (i.e.,

Si ∈ (20, 60), νB ∈ (1, 10), νG ∈ (5, 15) and σi ∈ (12500, 25000)). Based on this numerical

sweep, we conclude that all non-extinction equilibria are unstable for all biologically relevant

parameters. This instability is mainly due to the exponential growth the model assumes.

We proceeded to study the behavior of the SPD by varying both parameters and initial

conditions. To better understand the stability of our equilibria, we sample the space of

initial conditions surrounding an equilibrium point and simulate the resulting dynamics. We

sample initial conditions (G0, PG0, F0) from a cube surrounding the monomorphic orange

equilibrium. We find that there exists a plane which intersects the equilibrium and separates

space into two basins of attraction: initial conditions which lead to extinction and those that

lead to exponential growth.

Our numerical solutions show the dimorphic population of yellow and orange males,
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Figure 7: The effect of varying the seeking rate on the SPD at an orange-yellow dimorphic population.
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PG+PY
remains constant regardless of seeking rate.

which is not seen in nature [7]. We study this SPD by varying the seeking rate of orange

lizards at the orange-yellow dimorphic coexistence (Figure 7). We find that as the seeking rate

of orange increases, the SPD evolves from a monomorphic yellow population to a dimorphic

orange-yellow population to finally a monomorphic orange population. Interestingly, we find

that the ratio of the population in mating pairs to those in single classes stays constant

regardless of seeking rate.

In order to study the effect of territoriality, we vary the ratio νB

νG
at the orange-blue

dimorphic equilibrium (Figure 8). Because of the high seeking rate and female consent

function of orange lizards, the system is unbalanced towards the orange morph. Thus, it

requires a large ratio of blue initial population to reach the equilibrium. Increasing this ratio

drives the population from monomorphic orange in the SPD to monomorphic blue in the

SPD to complete extinction. This last effect can be explained because the aggregate consent

function is not sufficient for the population to produce enough offspring. The ratio of νB

νG

given in Table 1 drives the population to an orange monomorphic population in the SPD.

In a fashion similar to the basic reproductive number of an epidemiological model, we

study invasion threshold of dimorphic equilibria such that an introduction of the third morph

leads to trimorphic coexistence (Figure 9). We find that a small introduction of yellow males
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dominance of the orange strategy, νB/νG = 0.40. C. Total Extinction of the population,. νB/νG = 0.33..

into a dimorphic orange-blue population perturbs the system such that orange becomes

dominant in the SPD. However, a large introduction of yellow induces a cyclic RPS dominance

wherein yellow dominates the population originally but eventually, due to female selection,

yellow relegates dominance to blue. Soon after, orange dominate over blue but finally, since

yellow beats orange, yellow becomes the dominant morph again. Here, our numeric solver

breaks down due to the extreme size of our state variables, but we can extrapolate that this

cyclic dominance would continue over time.
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4 Discussion

Previous approaches to modeling the population dynamics of side-blotched lizards have con-

sidered a male-only RPS dynamic. Although these models exhibit the oscillations in the

population distribution observed in nature, they neglect the interaction between the male

and female lizards. Some prominent researchers have suggested that female mate selection is

one of the mechanisms that has destabilized the non-hierarchical dominance [2,3,7]. We used

a pair formation framework to analyze some of the effects of female selection on population

dynamics. By the mere fact that we employed a pair formation model, we have implicitly

modeled the competition between the three strategies in forming mating pairs. The rock-

paper-scissors dynamics are modeled via a consent function that determines the success of

a given strategy. This consent may be constructed to model female selection as function of

the state variables of the system, the environment and/or spatial factors. We find that the

constant consent functions (not dependent on any state variables) provide no novel results

beyond trimorphic coexistence and monomorphic dominance, nor it exhibits transient dy-

namics. In response we include pseudo-spatial consent functions that measure both territory

size and female density in an average sense. Because our state variables are merely single
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lizard and/or pairs of lizards currently mating, we fail to explicitly model the truer dynamics

of male lizard’s harems (that they maintain more than one female as a mating partner at

a time). We approximate this by differentiating mate seeking and pair dissolution rates,

but this may only serve at best as an average. Because we abstract maturation and the

anestrus/estrus cycle of the organism, we allow for highly unrealistic mating regimes (e.g.,

a single individual mating with every member of the opposite sex within a single mating

season). This contributes to the rapid increase of the population size. To deal with such

growth, we attempt to analyze the Stable Population Distributions (SPD), which represents

the stable proportion of the population, rather than the population counts themselves [5].

However, our choice of consent functions severely limit this endeavor.

We first proposed to model a scenario where females could have a predisposition to a

specific male type with payoffs of specific male-morph strategies independent of the current

population distribution. The SPD resulting from this constant consent function is a direct

reflection of the relative consent values. In a sense this permitted us to study the case where

male fitness to the environment is given solely by the other system parameters and not the

population composition. The constant consent function is insufficient to replicate the RPS

dynamics observed in the lizard population. We find the constant consent function’s failure

to support the idea that female selection is context dependent. Interestingly, we find that

the introduction of a new type of lizards could alter the course of the system and save a

specific morph from extinction. We explain this phenomenon via a scenario where a dying

population is saved by the introduction of a better suited morph that maintains the female

population in a range that allows the two morphs to coexist.

We also analyzed pseudo-spatial consent functions which exhibit short-term RPS dy-

namics. These functions account for the relative dominance of a certain male lizard within

different territories. The pseudo-spatial consent function assumes that female lizards will

mate with orange lizards in all cases because of their dominance over their own territory

and their ability to drive blue males away. This process drives the population to an orange

dominance which then leads to a yellow dominance due to the increase in females who will

consent to mate with them. At this point the dynamics deviate from traditional models

and are driven by the aggregate effect of the higher seeking rate, despite the shorter average

life span, of orange lizards. A blue dominance is not a possible scenario unless there is an
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extremely high initial population of blue males.

Due to the complexity of the Model (1) coupled with the high degree of non-linearity

induced by the Pseudo-Spatial Consent functions in Equation System (3), we propose a

slightly simpler model that may give us insights to the qualitative behavior of the more

complex model. Formally, this may be constructed by allowing the pair separation rates to

go to infinity (that the average duration a pairing lasts is 0 time and in a sense they do not

exist). This omission of pairs in the system is modeled by:

dG

dt
= rSGGCGF − μGG,

dB

dt
= rSB

νBB

νBB + νGG
BF − μBB,

dY

dt
= rSY

νGG

νBB + νGG
Y F − μY Y,

dF

dt
= rF

(
SGGCG +

νBB

νBB + νGG
SBB +

νGG

νBB + νGG
SY Y

)
− μFF. (6)

This system exhibits orange monomorphic, blue monomorphic, orange-blue dimorphic,

and extinction equilibria. We find all equilibria to be unstable except the extinction equilib-

rium. These analytic results support our numeric results of Model (1). The full analysis of

Model (6) can be found in 5.1 in the Appendix.

As a future extension of this research, further consent functions could be considered to

represent additional biological characteristics that may play a role in female mate selection,

such as density dependence. In general, we have missed the effect of r and K strategies

displayed by the female side-blotched lizards [19]. This model could also be extended to

distinguish between female types to explore this dynamic. Furthermore, this model would

greatly benefit from a restructuring to include a carrying capacity to inhibit exponential

growth. Finally, it would be interesting to perform a sensitivity analysis on our system to

determine which parameters are most important in the dynamics of our system.

Overall, we found that female consent can explain the destabilization of trimorphic pop-

ulations into dimorphic populations overtime. Additionally, we explored a few conservation

efforts that can be used to maintain biodiversity where still present or reintroduce biodiver-

sity where the system has already destabilized into dimorphic or monomorphic populations.

117



5 Appendix

5.1 Pseudo-Spatial Model Reformulation

Model (6) straightforwardly exhibits monomorphic solutions for G and B and a dimorphic

solution for BG. This system does not have a monomorphic yellow equilibrium because

yellow males are dependent on orange males to maintain females within their territory. With

some subtle difficulty it can be shown that the system also exhibits an extinction equilibrium

(Table 6).

Equilibrium E3
∗ = (G∗, B∗, Y ∗, F ∗) Biological Interpretation Stability

E30 = (0, 0, 0, 0) Extinction Stable

E3G = ( μF

rSG
, 0, 0, μG

rSG
) Monomorphic Orange Unstable

E3B = (0, μF

rSB
, 0, μB

rSB
) Monomorphic Blue Unstable

E3GB
=
(
P,Q, 0, μG

SGr

)
Dimorphic Orange-Blue Unstable

Table 6: Equilibria of the Pseudo-Spatial Model Reformulation where

P= νBμFμG(SBμG−SGμB)
rSG(SBνBμ2

G+SGμB(νGμB−νBμG))
and Q= νGμBμFμG

r(SGνGμ2
B−SGνBμBμG+SBνBμ2

G)
. Note: These are not

SPD equilibria.

The Jacobian matrix of the system evaluated at the extinction equilibrium, E30 , is given

by:

J3(E30) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μG 0 0 0

0 −μB 0 0

0 0 −μY 0

0 0 0 −μF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

It is clear that the extinction equilibrium of the reformulated model is also locally asymp-

totically stable (just like the extinction equilibrium of Model (1)) because eigenvalues are

simply the entries on the main diagonal. The Jacobian matrix of the system evaluated at

the monomorphic orange equilibrium is given by:
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J3(E3G) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 μF

0 −μB 0 0

0 0 SY μG

SG
− μY 0

μG 0 SY μG

SG
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

with eigenvalues −μB ,−√μGμF ,
√
μGμF , and

SY μG

SG
−μY . The first two are always negative,

the third is always positive. The last is negative if SY

SG
< μY

μG
. Regardless of the sign of the

fourth eigenvalue, the equilibrium is an unstable saddle. The Jacobian at monomorphic blue

equilibrium is given by:

J3(E3B ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

§GμB

SB
− μG 0 0 0

νGμB

νB
0 0 μF

0 0 −μY 0

(SGνB−SBνG)SBμB

νB
μB 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

with eigenvalues −μY ,−√μBμF ,
√
μBμF , and

SGμB

SB
−μG. The first two are always negative,

the third is always positive, and the fourth is negative when SB

SG
> μB

μG
. Just as in the orange

monoporphic equilibrium, the blue monomorphic equilibrium is unstable.

The Jacobian evaluated at the orange-blue dimorphic equilibrium, E3GB
, is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 μF − SGνGμ2
BμF

SBνBμ2
G+SGμB(νGμB−νBμG)

−SGνGμ2
B

SBνBμG
μB − SGμ2

B

SBμG
0

SGνGμ2
BμF

SBνBμ2
G+SGμB(νGμB−νBμG)

0 0 SY (μG−μB)
SG

− μY 0

−SGνGμ2
B

SBνBμG
+ μG μB(2− SGμB

SBμG
) SY (μG−μB)

SG
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

The most straight forward eigenvalue of this matrix is SY (μG−μB)
SG

− μY . This is negative

under the assumption SY

SG
< μY

μG+μB
. Thus, we can reduce our system to the following three

by three matrix to continue determining the stability of this equilibrium:
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A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 μF − SGνGμ2
BμF

SBνBμ2
G+SGμB(νGμB−νBμG

−SGνGμ2
B

SBνBμG
μB − SGμ2

B

SBμG

SGνGμ2
BμF

SBνBμ2
G+SGμB(νGμB−νBμG

−SGνGμ2
B

SBνBμG
+ μG μB(2− SGμB

SBμG
) 0

⎞
⎟⎟⎟⎟⎟⎠
. (11)

We now may apply Routh-Hurwitz criteria for three dimensional systems to the resulting

characteristic polynomial. One condition for stability is that the determinant of matrix A

must be positive. Det(A) = μBμF (SGμG−SBμB) > 0 implies SB

SG
> μB

μG
. Another condition

for stability is that the trace must be negative. However, Tr(A) = μB − SGμ2
B

SGμG
< 0 implies

SB

SG
< μB

μG
. Thus, the meeting of one condition implies the failure of another. This is sufficient

to show that the Dimorphic Orange-Blue Equilibrium is unstable without examining the

other conditions of the Routh-Hurwitz criteria.

Thus, we show analytically that the extinction equilibrium is the only stable equilibrium

of the Reformulated Pseudo-Spatial model, and all monomorphic and dimorphic equilibria

are unstable saddles. This gives us confidence in our numerical results from the Model (1).

5.2 Derivation of Boundary Equilibria

Model (1) with constant consent parameters has four additional boundary equilibria not in-

cluded in our main analysis. The derivation of the Orange-Blue Dimorphic Equilibria follows.

Assume G �= 0, PG �= 0, B �= 0, PB �= 0, and F �= 0. Let Y = 0 and PY = 0. Setting the

derivative of all state variables equal to zero yields:

0 = (r + σG)PG − μGG− SGGCGF , (12)

0 = (r + σB)PB − μBB − SBBCBF , (13)

0 = (r + σG)PG + (r + σB)PB − (SGGCG + SBBCB + μF )F, (14)

0 = SGGCGF − σGPG, (15)

0 = SBBCBF − σBPB . (16)

Solving (15) for GF and substituting it into (12) gives
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PG =
μG

r
G. (17)

Likewise, solving (16) for BF and substituting it into (13) gives

PB =
μB

r
B. (18)

Now, substituting (17) and (18) into (21) and (13) respectively yield

0 =
[
(r + σG)

μG

r
− μG − CGSGF

]
G and (19)

0 =
[
(r + σB)

μB

r
− μB − CBSBF

]
B. (20)

Since we assume G �= 0 and B �= 0, (19) and (20) have one root each which exist when

F =
μGσG
rSGCG

and (21)

F =
μBσB
rSBCB

. (22)

Thus, this equilibrium exists when

μGσG
SGCG

=
μBσB
SBCB

. (23)

However, this case is not biologically significant as it lies on the a boundary hyperplane

of the parameter space. In the rare cases that (23) actually holds, the equilibrium exists.

However, with any perturbation of the parameters, the condition no longer holds, so the

equilibrium fails to exist. The same procedure can show the existence and insignificance of

the Blue-Yellow Dimorphic Equilibrium, Orange-Yellow Dimorphic Equilibrium, and Orange-

Blue-Yellow Trimorphic Equilibrium.
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