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Abstract

Infections caused by antibiotic–resistant bacteria are posed to be one of the most pressing health

concerns of the twenty–first century. A common mechanism of resistance involves production of

an antibiotic–degrading enzyme. In this case, neighboring, nonproducer bacteria can “cheat” by

sharing the benefits of resistance while the metabolic cost of enzyme production falls solely on

producer cells. The objective of this work is to explore how the spatial population dynamics of

producers and nonproducer maintain the resistance found in biofilms. A three–dimensional spatial

model was used to simulate growth of both producers and nonproducer under antibiotics with

different characteristics. Standard antibiotics resulted in a heterogeneous populations with stable,

homogeneous community structure. The population of resistant bacteria was most sensitive to

altering the fitness cost of enzyme production. These results could suggest novel antibacterial

treatments in order to create therapies less likely to favor the evolution of resistance.
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1 Introduction

Throughout most of human history, infectious diseases have been the second leading cause of death

among individuals, with bacteria playing a central role [1]. Clinicians now face the obstacle of

antibiotic–resistant bacterial disease. If neglected, this new menace is posed to undo much of what

clinicians have accomplished, leaving millions at risk [1]. The driving force behind resistance is the

selection pressure imposed by the use of antibiotics, which results in resistance to antibiotics becoming

an evolutionary stable strategy for bacteria. The purpose of this research is to analyze the dynamics

of a bacterial population in order to find ways to destabilize the strategy of resistance. According to

the hypothesis being proposed, this could be done by finding conditions favorable for the proliferation

of bacteria that do not contribute to the resistance of the population, as shall be explained in the

following pages. Should the hypothesis hold true, it could suggest new treatment approaches against

resistant strains of bacteria and preventive strategies that avoid their appearance in the first place.

1.1 Historical Background

While not as apparent today, the pre–antibiotic era was marked with outbreaks of bacterial diseases

such as cholera, bubonic plague, tuberculosis, and leprosy, claiming hundreds of thousands of lives

[1, 2]. Bacterial infection of open wounds and childbirth lesions were an ordinary phenomenon [2].

Occurrences of outbreaks continued to escalate throughout the industrial revolution. As explained

in [3], mass immigration to American cities introduced new viral/bacterial strains into a susceptible

population. Cramped city housing allowed for the easy transmission of said diseases. Inadequate

waste management systems, coupled with poor public health services, hindered any recovery efforts.

Under these conditions, the main causes of death in the United States at the start of the twentieth

century were tuberculosis, influenza and diarrhea [4]. The relevance of bacterial disease was a situation

representative of most of the world at the time [2].

As a result, resources, time, and study have been allocated to the understanding and eradication of

such illnesses. Interactions between bacterial diseases and human response have introduced therapies

adept in fighting infection. One such treatment that has revolutionized how clinicians combat bacterial

disease has been the use of antibiotics. Beginning with the large–scale implementation of penicillin in

1942 [1], numerous classes of antibiotics have been discovered and used to treat bacterial illness.

The initial effectiveness of antibiotics created a culture overly dependent on their use. Although it

is true that excessive prescription, patient misuse, and overuse of antibiotics in the livestock industry

have contributed to the rapid spread of resistance [5], it is a problem that underlies the way antibiotics
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are designed to be used. Antibiotics, when conceived as tools to try to completely erradicate every

member of a population of bacteria, constitute a strong evolutionary selection pressure favoring the

growth of resistant bacteria. The stronger the selection pressure, the more evolutionary incentive

bacteria will have to be resistant. Proof of this is the speed with which resistance to an antibiotic is

found. Penicillin–resistant strains of bacteria were widely found in hospitals throughout the 1950s [6].

Methicillin, the next–generation replacement of penicillin and its derivatives, was met with resistant

strains in 1962, a year after being introduced into hospitals [6]. All classes of antibiotics introduced

into clinical use since then have followed similar trends, with resistance being encountered a few years

after being introduced, or even before doing so [6]. This goes to show the importance of reconsidering

the view of antibiotics as “weapons of mass destruction” at a microbial scale, in favor of a more nuanced

view of them as “precision weapons” aimed at modifying bacterial population dynamics.

1.2 Resistance Strategies Taken by Bacteria

In order to understand how to use antibiotics as “precision weapons”, it is necessary to understand

how resistance works. Resistant bacteria have developed numerous strategies to neutralize the threat

of antibiotics. One strategy often employed is the formation of a biofilm on the surface of a substrate.

Biofilms are composed of dense concentrations of bacteria embedded in an extracellular matrix com-

posed of substances synthesized by the microorganisms [7]. They are common in natural environments,

but they constitute a significant challenge in clinical situations [8]. Bacteria in biofilms are known to be

significantly more resistant to antibiotic treatment than their free–living, planktonic counterparts, even

in situations in which they are genetically identical to each other [7]. Multiple mechanisms have been

proposed to explain this, including reduced diffusion rates of antibiotic in biofilm, slower metabolic

rates, and degradation of the antibiotic in the extracellular matrix [7, 9]. Nevertheless, fluorescent

microscopy studies have found that diffusion of small molecules occurs throughout biofilms in a mat-

ter of hours [10], leading authors to conclude reduced antibiotic diffusion is not the principal means

by which biofilms increase antibiotic resistance [10, 7, 11]. Therefore, the latter two mechanisms of

antibiotic degradation and slow metabolism are of particular interest to this study.

Antibiotics can have various modes of actions and can disrupt biological processes at various stages

in the bacterial life cycle, including protein synthesis, nucleic acid synthesis or cell wall synthesis [12].

Given that all of these processes depend on the metabolic rate of a given bacterium, the effectiveness of

the antibiotic is reduced in conditions of low metabolism. Well–known examples of this are β–lactam

antibiotics such as penicillin or piperacillin, which function as inhibitors for cell wall biosynthesis [13].
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These antibiotics hinder the biosynthesis process by competitively binding and irreversibly inhibiting

enzymes responsible for catalyzing the polymerization of peptidoglycan, an essential polymer in pre-

serving the structural integrity of a cell wall [13]. In an environment where β–lactam are not present,

biosynthesis is undeterred; however, once introduced, the antibiotic binds to DD-transpeptidase, pre-

venting peptidoglycan production [13]. Consequently, the cell wall degrades, leaving a fragile sphero-

plast which dies soon after [13]. However, if a bacterium is undergoing growth and replication at a

slower rate, cell wall synthesis is less likely to occur, and the death rate due to antibiotic presence

is reduced. Measurement of growth rate inside biofilms have shown replication rates up to ten times

slower for bacteria at the bottom of the biofilm when compared to surface–dwellers, probably due to

reduced levels of resources available in the highly–dense areas at the bottom of the biofilm [14].

Another common mechanism of resistance amplified within biofilms involves the secretion of en-

zymes outside the cell wall that degrade the antibiotic. An example of such a mechanism is the release

of β–lactamases from a β–lactam resistant bacteria [15, 16]. This production is activated by an in-

crease in wall precursor molecules inside the cell wall [16]. As the β–lactam is inhibiting cell wall

synthesis, the concentration of wall precursors such as murein increases until the activation level is

reached. A signal transduction cascade activated by the increased concentration of precursors results

in the expression of β–lactamase genes inside the cell, producing β–lactamases [16]. The enzyme is

then secreted from the cell, where it then comes in contact with the β–lactam antibiotic. This in-

teraction results in the hydrolysis of the β–lactam ring, and the antibiotic is rendered ineffective for

treatment. As the antibiotic concentration decreases, so does the concentration of wall precursors that

are now used as structural support for the cell wall. When the concentration falls below the activation

level, expression of β–lactamases halts [16]. However, antibiotic will readily diffuse from the surround-

ings towards the surface of the enzyme–producing bacterium, inducing β–lactamase production. This

negative–feedback regulation system results eventually reaches equilibrium levels of antibiotic degra-

dation and gene expression, and thus metabolic cost. In this work, bacteria that produce degradation

enzymes in this manner are denominated “producers”, while those that do not are “nonproducers”.

1.3 Benefits and Costs of Resistance by Enzyme Production

This process highlights several key features necessary in studying the interactions of bacterial cells in

a biofilm. First, the benefits of antibiotic degradation are also shared by neighboring, nonproducer

bacteria. Each producer bacterium found can be thought of as a point sink with a constant flux of

antibiotic toward it, causing a decreased concentration of antibiotics around it at equilibrium [9]. The
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result is a decrease in antibiotic concentration near the sinks when compared to the concentration

elsewhere. Thus, nonproducer bacteria near the vicinity of producers are surrounded with a lower

concentration of antibiotics than if they were far from any producer bacteria. Consequently, their

relative fitness increases compared to other cells increases [17].

Furthermore, producer bacteria only produce the amount of enzyme necessary to ensure their

own survival, as explained above. Such behavior encourages cooperation between producer bacteria

close enough to each other for their antibiotic degradation to impact each other’s local antibiotic

concentration. Therefore, the producer bacterial cells involved produce less enzyme than if they were

isolated. This implies varying fitness levels, where close–knit groups of resistant bacteria are more fit

than separated resistant cells or clumps of nonresistant cells.

Despite the shared benefits resistance has on the local bacterial community, costs are administered

unevenly. Bacterial cells that are resistant pay for their resistance with decreased metabolic rates and

functions [18, 17]. Studies have shown resistant cells expend large resources of energy in producing the

proteins required to maintain resistance [18]. According to this study, when compared to nonresistant

bacterial cells, they produced far less proteins used for primary metabolic functions. Moreover, the

resistant strains were found to replicate at a lower rate than those who were nonresistant [18].

1.4 Spread of Resistance

Bacterial genetics play an important role in the rise and spread of resistance. Resistance genes, such as

those encoding degradation enzymes, are contained within plasmids, circular units of extrachromosomal

DNA. When a producer cell undergoes replication through binary fission, boeth daughter cells will

usually receive a copy of the plasmid. Nevertheless, occasionally, only one of these daughter cells will

receive the plasmid necessary for production of resistance [19, 20]. Instead of just passing a resistance

plasmid to the next generation, bacterial cells can also spread resistance through horizontal gene

transfer [21]. This mechanism can be accomplished through a number of ways, including bacterial

conjugation, transformation, and transfection. Conjugation involves both a donor and recipient cell

exchanging plasmids through, a hair–like organelle termed pilus [22]. Transformation occurs when

bacteria uptake free nucleic acids in the medium [21]. Transfection occurs when bacteria–infecting

viruses, termed bacteriophages, transfer genetic information from one cell to another [21]. In these

ways, the genes for resistance can spread throughout a bacterial population.
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1.5 Previous Models Studied

Previous work on microbial population dynamics has provided valuable insight for the structure and

assumptions of this model. For example, Szilágyi et al. [23] examined the population dynamics of

a free–living community of bacteria using game theory to model a rock–paper–scissors dynamic. A

public good is a product produced by an individual that nearby individuals can benefit from [23].

Bacteria that are susceptible to the antibiotic, but are unable to produce enzymes to keep themselves

safe, may hide in the safety radius of an enzyme producing bacteria without incurring the metabolic

cost of producing the enzyme themselves. Szilágyi et al. [23] examined the role of these public goods,

as they modeled the interactions between bacteria that produced them. The three groups considered in

these models were antibiotic–producing bacteria (producers), bacteria that degrade antibiotics but do

not produce them (production cheaters), and bacteria that neither produced nor degraded antibiotics

(degradation cheaters). This scenario led to a rock paper scissors dynamic, similar to the scenario

modeled by Inglis et al. [24]. Their work also identified conditions that lead to the collapse of the

bacterial community. If a well mixed population of bacteria is invaded by production cheaters, the

population equilibrium will be disrupted and a loss of a competing species due to the invasion results

in decreased biodiversity [23].

The work of Szilágyi et al. [23] has shortcomings for the clinical context in different fronts. First,

Szilágyi et al. [23] modeled the population with a system of ordinary differential equations, which may

not accurately capture the spatial dynamics of the biofilm. Second, the three–player dynamics of free–

living communities are replaced by two–player dynamics in clinical contexts, given that in pathological

biofilms, the antibiotic is administered externally and not produced internally. The model studied

here takes into account how the spatial organization of the biofilm affects antibiotic diffusion and

population dynamics, as well as how the surrounding concentration of externally–applied antibiotic

affects the fitness and reproduction rate of a given bacterium.

2 Methods

2.1 Model Parameters

Antibiotic resistance has been the subject of extensive empirical study, both in vitro and in vivo.

Consequently, there is a rich source of literature from which to find values for biological constants

and parameters. The model was calibrated using parameters from Pseudomonas aeruginosa biofilms,

of high importance in the clinical setting [7], and a common beta–lactam antibiotic used to treat it,
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piperacillin. Table 1 illustrates constant parameters used in the present model. Table 2 illustrates

parameters that were varied in the analysis of the model, with their ranges of interest.

Table 1: Physical and Biological Constants

Constant Symbol Value Units Reference

Death rate in the absence of antibiotic γn 1 · 0.05 hr−1 [25]

Distance between cell centers in highly

dense biofilm

db 1.75 µm [26]

Fraction of total body water at which an-

tibiotic diffusion becomes negligible

βC 0.95 – –

Loss rate at replication of enzyme–

production plasmid

λL 1 · 10−5 cell−1 · hr−1 [27]

Radius of bacteria, average rc 0.500 µm [26]

Replication rate of nonproducer bacteria in

the absence of antibiotic

αn 0.909 hr−1 [14]

Simulation plane length and width Xmax 100 µm –

Simulation time step ts 1.0 hr−1 –

Simulation time, maximum value tmax 62 hr−1 –

Thickness of cell cluster in biofilm, maxi-

mum value

Zmax 10.0 µm [28]

Total body mass M 70 kg [29]

Total body water Vw 5.5 L [29]

Transfer rate at replication of enzyme–

production plasmid

λT 1 · 10−5 µm3 · cell−1 · hr−1 [30]
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Table 2: Biological and Pharmacological Control Parameters

Parameter Symbol Range Units Reference

Biofilm thickness, initial value as a fraction

of maximum value

hi 0.05 – [31]

Clearance rate of antibiotic from blood

plasma

Ka 10.02 L hr−1 [32]

Minimum Inhibitory Concentration (MIC)

of antibiotic for total growth inhibition in

susceptible bacteria

CM 32

(piperacillin)

µg mL−1 [33]

Minimum Inhibitory Concentration (MIC)

of antibiotic for 50% growth inhibition

(MIC50)

CI 4

(piperacillin)

µg mL−1 [33]

Concentration of antibiotic at cell wall of

resistant bacteria

Cc [0.001,100] µg mL−1 –

Proportion of resistant bacteria in biofilm,

initial

φi 0.001 cells−1 [34]

Relative fitness of enzyme producers to

nonproducer in absence of antibiotic

FE 0.8696 hr−1 [17]

Set of antibiotic doses administered D [80,100] mg kg−1 [35]

Set of times at which doses of antibiotic are

administered

T [4,6,8,12+] hr−1 [35]

2.2 Model Design

The model studied is a spatially explicit, probabilistic, three–dimensional simulation of individual

bacteria across discrete time. Each bacterium had a distinct location, and belonged to either one of

two classes: enzyme–producing resistant bacterium (producers), or non enzyme–producing bacteria

(nonproducer). Information relevant to a bacterium’s survival and reproduction was stored for each

bacterium, including its production class, the local antibiotic concentration, and the total number

and location of nearby neighbors. Bacteria, simplified as spheres, are considered static in space, an

assumption based on experimental evidence of low cell mobility inside the biofilm [36]. At every
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time step, every bacterium can undergo one of three different actions: replication through binary

fission, death due to the action of the antibiotic or natural causes, and horizontal gene transfer of

the gene encoding the antibiotic–degrading enzyme. Figure 1 illustrates the various actions routes

any one bacteria can take at a given time step. Bacteria may either die through natural causes,

acquire resistance plasmids through horizontal gene transfer, or attempt replication. Once replication

is attempted, they may either complete binary fission successfully, die due to the antibiotic’s effect if

they are not producers, or segregate the enzyme–production plasmid to only one daughter cell if they

are producers. The actions undertaken modify environmental conditions –namely, local concentration

of antibiotic and local population density– experienced by both the bacterium in question and its

neighbors. These conditions go on to modify the future behavior of all the bacteria in the vicinity.

Figure 1: Different possible actions a nonproducer (left) and producer (right) bacterium can under-
take in one time step. Bacteria may either die through natural causes, acquire resistance plasmids
through horizontal gene transfer, or attempt binary fission, which may result in successful replication
or antibiotic–induced death.

2.3 Antibiotic Dynamics and Effects

2.3.1 Total Body Water Antibiotic Concentration

The local concentration of antibiotic impacts a bacterium’s probability of death and is therefore crucial

to calculate in the model developed. It is assumed all of the mass of antibiotic in the dose enters total

body water immediately upon administration, for example as occurs in intravenous administration,

resulting in a maximum peak concentration given by CB,peak:

CB,peak = D(t)
M

Vw
(1)
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At the body–system level, the model assumes the antibiotic diffuses freely throughout the total body

water of the patient, and is removed through renal excretion at a rate of γa = Ka/Vw [37]. This means

the concentration in total body water follows an exponential decay between time steps, with new doses

of concentration D(t) being administered at specific time points t ∈ T . Thus, the concentration CB(t)

of antibiotic in total body water at time t is given in terms of the concentration CB,peak and the time

tB,peak at the last dosage peak by:

CB(t) =





CB,peak · exp (−γa(t− tB,peak)) t /∈ T

CB,peak · exp (−γa(t− tB,peak)) +D(t) t ∈ T
(2)

2.3.2 Local Antibiotic Diffusion Dynamics in Biofilm

At the local level of the biofilm, fluorescent microscopy studies have found that small molecules such

as antibiotics (200 to 500 Da, [38]) diffuse freely throughout the biofilm [39, 7]. Therefore, to simplify

diffusion phenomena, it is assumed the concentration of antibiotic in the biofilm is in temporal equilib-

rium with the concentration in the total body water at each timestep. This means the concentration

of antibiotic at any point inside the biofilm is dictated by the conditions at that timestep, without

regard of the system’s previous state.

On the other hand, large molecules like antibiotic–degrading enzymes (30 to 40 kDa) have negligible

diffusion inside cell clusters in a biofilm [40], justifying the treatment of producer cells as point sinks

of antibiotic. Because these enzymes lose efficacy over time in the extracellular milieu [41], producer

bacteria constantly express and regulate these genes in order to maintain survivable conditions without

incurring in unnecessary metabolic cost [42]. This means that antibiotic degradation will occur at a

constant rate at each producer cell surface, maintaining a constant concentration of enzyme and

antibiotic Cc at the cell surface and necessitating a constant metabolic effort. Thus, at the temporal

equilibrium occurring at every time step, there will be a concentration gradient around a producer

bacterium going from Cc to Cb, described by Fick’s second law of diffusion [43]. This law states that

∂C

∂t
= D∆C, (3)

where C is the concentration of a substance as a function of time and position. At equilibrium, this

reduces to

∆C = 0. (4)
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Since the equilibrium concentration field is a harmonic function, a domain and boundary conditions

must be defined for a unique solution. One assumption of the model is local isotropy, which necessitates

radial symmetry in the solution. It then becomes natural to work in spherical coordinates with angular

arguments suppressed. The general radially symmetric solution to Equation 4 is given by

C(r) =
A

r
+B, (5)

where A and B are arbitrary constants. This function increases without bound at the origin (clearly,

A 6= 0 unless Cb = Cc), so a sphere of radius rc should be excluded from the domain. Let C(rc) = Cc

and define the asymptotic boundary condition

lim
r→∞

C(r) = Cb (6)

then

C(b,p) = Cc + (CB(t)− Cc)
(

1− rc
d(b,p)

)
(7)

where d(b,p) is the Euclidean distance between bacteria b and p.

From equation 7, it is possible to find the radius for diffusion, rdif (t):

rdif (t) =
rc − Cc

CB(t)

1− βC
(8)

Since the model would be complicated by a non–constant radius, it is advantageous to use the following

upper bound which is independent of CB :

rd =
rc

1− βC
(9)

This radius defines the spherical volume inside of which the model will consider the effect on

antibiotic concentration of enzymatic degradation due to a producer cell at the center of the sphere.

Beyond the border of the sphere, C(b,p) < βCCB(t), and the effect of the enzyme producer is assumed

to be negligible.

Due to the self–regulation of enzyme production, Cc will be constant even in situations with multiple

producer bacteria within rd of each other. In other words, when the spheres of influence of multiple

producers overlap, each producer decreases its production of enzyme in such a way as to keep the

antibiotic concentration at the cell wall at concentration Cc without wasting metabolic resources.
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This implies that the effect of reduction in antibiotic concentration due to different producers is not

cumulative. In this way, the net antibiotic concentration CNet(b) that would be experienced by a

given bacterium b with multiple producer neighbors can be approximated as the concentration that

would be experienced solely due to pn, the nearest producer bacterium:

CNet(b) = C(b,nn) (10)

Transcriptional regulation of the degradation enzyme’s expression rate occurs over a timescale of

minutes to hours [44], meaning that equilibrium levels of degradation are not reached immediately.

The complete diffusion of antibiotic within the biofilm occurs within a similar time scale [45, 7]. The

timestep chosen in this model is of similar magnitude. Because of this, the model assumes equilibrium

levels of enzyme production and antibiotic diffusion are reached immediately.

2.3.3 Antibiotic Effect on Death

In spite of the fact that different classes of antibiotics differ in their mechanisms of action, it is widely

reported that the effectiveness of an antibiotic decreases noticeably when cellular metabolism is slow,

a feature at least partially responsible for the increased resistance of bacteria in biofilms to antibiotics

when compared to their genetically identical, planktonic counterparts [9]. Furthermore, antibiotics,

particularly β–lactams and other wall–targeting antibiotics, cause death only when the bacterium

is undergoing growth, especially when it is attempting to undergo binary fission [5]. Because of

this, antibiotic–induced death in this model is assumed to occur only upon attempting to undergo

replication, as portrayed in Figure 1.

The probability of dying upon replication can be modeled using the Hill equation, originally de-

veloped as a model of enzyme–substrate interaction but frequently used within the domain of phar-

macodynamics [46]. The probability of antibiotic–induced death at replication at a given antibiotic

concentration of C would be given by:

Pad(C) =
1

1 +
(
C1/2

C

)h (11)

The discontinuity in equation 11 at C = 0 is removed by defining Pad(0) = 0. In this equation,

C1/2 and h are parameters of the Hill equation, such that Pad(C1/2) = 1/2 and h describes the slope

of the curve at C = C1/2 [46]. In order to find values for C1/2 and h, it is possible to use the

experimentally determined values of CM and CI , more readily found in the literature for different
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antibiotics. When C = CM , there is no net growth. In the model described, at every replication

attempt of a nonproducer bacteria, there are only two possible outcomes: antibiotic–induced death

with probability Pab, and successful replication with probability 1 − Pab. This means the expected

value of population change E[∆N ] at every attempt at replication must be zero:

E[∆N ] = −1 · Pad(CM ) + 1 · (1− Pad(CM )) = 0,

Pad(CM ) =
1

2
.

Similarly, at C = CI :

E[∆N ] = −1 · Pad(CI) + 1 · (1− Pad(CI)) = 1/2,

Pad(CM ) =
1

4
.

Then solve for the value of h using Pad(CI) = 1/4:

C1/2 = CM

h =
ln 3

ln
(
CM

CI

)

2.4 Population Density Effects

2.4.1 Density–Dependent Inhibition of Growth

It is well known that bacteria exhibit density–dependent population dynamics within biofilms [34, 14].

This phenomenon is well documented in biofilms, in which bacteria in deeper areas of the biofilm

with less access to resources exhibit replication times many times slower than their surface–dwelling

equivalents [14]. Given that resource limitation reduces metabolism, an assumption for this model is

that density–dependent inhibition affects primarily probability of replication, rather than death. This

assumption along with these density–dependent effects are accounted for in this model as a logistic

term.

This logistic term is constructed from the maximum bacterial density in a given neighborhood

sphere around a bacterium. Because nutrients and cellular waste products are also small molecules

operating under similar diffusion kinetics as antibiotics, it is possible to assume the volume in which

population density impacts a bacterium’s growth is a sphere of radius rd, as calculated above. For

the same reason, the effect of new births and deaths within the sphere is assumed to be instantaneous
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on the order of the time step chosen. The maximum density ρb can be calculated from the distance

between bacteria in a tightly–packed biofilm using the sphere packing density relation:

ρb =
π

3
√

2
· 1

4π
3 rc

3
=

1

4
√

2rc3
, (12)

Then, the maximum number of bacteria in a given neighborhood sphere Nn,max is given by:

Nn,max =
4π

3
rd

3ρb, (13)

This value is then used to calculate the relative fitness of bacterium b due to population density in its

neighborhood, Fn(b), as a logistic term between 0 and 1. Here, relative fitness describes how likely

it is for bacterium b to replicate when compared to a nonproducer bacterium in an antibiotic free

environment with no resource limitation.

Fn(b) = 1− Nn(b)

Nn,max
. (14)

where Nn(b) describes the number of neighbors of bacterium b within the neighborhood sphere of

radius rd.

2.4.2 Density–Dependent Enzyme Production

As has been mentioned before, bacteria that produce an antibiotic degradation enzyme invest metabolic

resources that would otherwise be used in replication, resulting in reduced fitness when compared to

nonproducer bacteria under equivalent conditions and absence of antibiotic [18]. Nevertheless, given

that enzyme production is actively regulated and bacteria in a producer’s neighborhood also benefit

from its enzymatic degradation, enzyme production is decreased in communities with a large number of

producers [7]. In this way, the fitness penalty associated with enzyme production is distributed among

producer bacteria within a given neighborhood according to the distances between each producer.

Thus, the relative fitness Fe(b) of a producer bacterium b according to its own enzyme production

and that of its Npn(b) producer neighbors, prod(b), is given by:

Fe(b) = 1− 1− FE
Npn(b) + 1


1 +

∑

p∈prod(b)

C(b,p)− Cc
CB(t)− Cc


 (15)

Briefly, this expression divides the standard fitness penalty of producing enzyme 1 − FE among

the total number of producer bacteria in the neighborhood Npn(b) + 1, counting the producer b. The
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contribution of each neighboring producer is weighted according to the relative antibiotic concentration

reduction of each case, where the relative contribution of bacteria b is equal to 1. Finally, the relative

fitness is equal to the difference of 1 and the fitness penalty.

2.5 Probability of Replication and Death

The probabilities of replication and death both depend on the probability of attempting replication in a

given time step ts for bacterium b, Par(b), which can be calculated based on all the above expressions:

Par(b) = ts · αn · Fn(b) · Fe(b). (16)

With this information, it is possible to calculate the probability of replication for bacterium b in

time step ts, Pr(b) as the probability of attempting replication and not dying as a result of antibiotic

exposure:

Pr(b) = Par(b) · (1− Pad(b)) . (17)

Nonproducer bacteria will generate nonproducer daughter cells upon successful replication. Pro-

ducer bacteria will usually generate producer daughter cells, but they will occasionally generate non-

producer daughter cells upon replication with a probability of λL if all copies of the resistance plasmid

remain inside one of the daughter cells due to random effects at replication [20].

On the other hand, the probability of death within a time step is given by the independent events

of natural death and antibiotic–induced death at replication:

Pd(b) = tsγn + Par(b) · Pad(b) (18)

If ts is sufficiently small, it can be assumed that only one of the three possible events occurs every

time step, and the event probabilities can be taken as independent.

2.6 Horizontal Gene Transfer

Horizontal gene transfer occurs through a variety of mechanisms, mainly uptake of free genetic ma-

terial or transformation, viral transfection through bacteriophages, and conjugation [21]. This model

accounts for all of these methods with the parameter λT . The probability of a nonproducer bacterium

gaining producer status depends on the probability of uptake of the plasmid that encodes the gene

for degradation enzyme. This probability of horizontal gene transfer is not considered in the case

in which the bacterium is already a producer. However, a nonproducer bacterium has a probability
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of acquiring resistance based on the population density of plasmid-bearing, producer bacteria in its

neighborhood, as well as based on the rate of plasmid transfer. Thus, the probability Ph(b) of a non-

producer bacterium b switching phenotypes due to horizontal gene transfer during a given time step is:

Ph(b) =





0 b ∈ Producer Bacteria

tsλT · 3Npn(b)
4πr3d

b /∈ Producer Bacteria
(19)

2.7 Clustering Coefficients

Analysis was also done on the structure of the network to determine properties of the biofilm. The

global clustering coefficient is defined as the number of closed connected triplets of nodes divided

by the number of connected triplets, both opened and closed [47]. For a network with two classes of

nodes (producer and nonproducer), this can be generalized to four coefficients which better capture the

network topology, as shown in Figure 2. The Type I coefficient counts connected triplets of producer

bacteria, while Type II captures the interaction of a nonproducer bacterium with surrounding resistant

bacteria. Types III and IV are analogous but with the roles of producer and nonproducer bacteria

switched. The included figures provide examples of the triplets that are counted. If the dashed line

represents an edge, then the triplet is closed and will be included in the numerator of the corresponding

coefficient.

Figure 2: The four types of clustering coefficients. Type I is composed of all resistant bacteria and
type III is composed of all susceptible bacteria. Dark red denotes producer bacteria, light blue denotes
nonproducers.
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2.8 Latin Hypercube Sampling

Latin Hypercube Sampling [48] was used to explore the parameter space of the model for three pa-

rameters of interest. Three parameters were chosen as descriptive of an antibiotic’s mode of action:

the minimum inhibitory concentration (CM ) for inhibiting visible bacterial growth, the 50% inhibitory

concentration (CI), and the relative fitness of a producer compared to a nonproducer (FE). Biologi-

cally relevant ranges were selected for these parameters as obtained from the sources in 2, and Latin

Hypercube Sampling was used to select various parameter values and combinations from within these

ranges. Based on CM antibiotic concentration values observed in literature, the range over which

values were sampled for CM was [1, 100]. Since the amount of antibiotic needed to inhibit 50% of

bacterial growth should be less than the amount of antibiotic needed to inhibit 100% of bacterial

growth, CI should be a percentage of CM . In order to calculate this CI , random sampling was done

over the interval [0.1, 0.9], and this value was multiplied by CM for each Latin Hypercube Sampling

trial. Finally, the value for bacterial fitness is between one and zero, and since enzyme production

comes at a metabolic cost, the relative fitness of an enzyme–producing bacterium is less than one and

greater than zero. Therefore, the range over parameter values for FE were sampled was [0.1, 0.9]. Five

random samples were generated from a uniform distribution over sections of each interval determined

by Latin Hypercube Sampling using 5 divisions per parameter range. The parameter selections and

combinations are given in Table 3.

Table 3: Latin Hypercube Samples

Sample FE CM CI
A 0.7321 17.8990 8.8390
B 0.5017 96.2564 75.9245
C 0.8692 59.5555 10.7284
D 0.4003 67.6231 44.2439
E 0.2271 35.0190 12.2136

2.9 Implementation and Simulation

The simulation was implemented in the C language (standard C99). Clustering analyses were carried

out using Ruby and R scripts. Three-dimensional graphics were created using ParaView (https:

//www.paraview.org). The complete project source code is available on GitHub (https://github.

com/bacteriaboyz/CheatingTheCheaters).
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3 Results

Ten runs of the simulation under P. aeruginosa–piperacillin parameters were carried out, along with

five random antibiotic sampling simulations. Visualization of the simulation exhibited clear clustering

dynamics, with the bacteria forming into heterogeneous groups of producers and nonproducers once the

antibiotic was applied, as seen in Figure 3. An animation of a given simulation of the P. aeruginosa–

piperacillin system can be found at https://youtu.be/kJN0PWXCq1Y. Stable heterogeneous clusters

occasionally spawned clusters of exclusively producers as the simulation progressed, leading to the

growth of the population.

Figure 3: Simulation timeframe snapshot under the P. aeruginosa–piperacillin system (time 50 h).
Dark red denotes producer bacteria, light blue denotes nonproducers.

3.1 P. aeruginosa–piperacillin system

The effects of the fitness cost for enzyme production are evident, as the bacterial population for

producers remains much lower than that of logistically–growing nonproducers until the 12th hour, as

can be seen in Figure 4. At this time, the first dose of antibiotic is introduced, and nonproducer

bacteria start to die off. The restriction of growth could be seen in the simulation given that the

concentration of the antibiotic confined the nonproducers within the vicinity of producers. Clusters of

red and blue cells were heavily mixed, with the blue (nonproducers) located towards the interior of the

producer cluster Figure 3. In terms of community structure, Figure 6 shows all clustering coefficients

converged to the same value of 0.5− 0.55, indicating homogeneous community structure.
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Figure 4: Population time series for the P. aeruginosa–piperacillin system.

3.2 Latin Hypercube Sampling

Variation of antibiotic variables yielded differing levels of producer final population, as seen in Figure

5. Particularly, parameter sets with low values of relative fitness for producers (high cost of producing

degradation enzyme, FE < 0.6) resulted in significantly lower producer populations. However, under
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all conditions tested, the total community of the bacteria grew within the range of 3000 to 5000 bacteria

by the end of the simulation. Even under conditions where the producer population was relatively

low, the total bacteria population remained in this range. Unexpectedly, clustering coefficients exhibit

convergence to roughly the same values as the previous case.

Figure 5: Population time series for the fictional antibiotics conceived through Latin Hypercube Sam-
pling. The P. aeruginosa–piperacillin system average is shown in black for comparison.
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Figure 6: Clustering Coefficient Analysis

4 Discussion

While the simulation did not show the desired result of a total collapse of the bacterial community

through competition, it did provide helpful insight into the relationship between producers and non-

producers. This information can still be helpful in designing future treatment. The model reinforced

the fact that antibiotic use can promote the growth of an antibiotic resistant population of bacteria

[49]. This demonstrates that antibiotics, while necessary in confining bacterial spread, can significantly

increase the lethality of bacterial disease, leading to the persistence of resistant cells. Such a scenario

was shown in the simulation. While antibiotics helped in reducing resistant bacterial levels, it did not

lead towards the collapse of the community and instead fostered the promotion of resistant cell. As a

result, it can be induced that other key factors are affecting the longevity of the biofilm.

Additionally, the model exhibited another emergent behavior verified in experimental observations.

For high population densities, bacteria show low probabilities of attempting reproduction and thus

death rates due to the antibiotic are reduced. This explains why biofilms exhibit high levels of bacterial

tolerance, even if the total population of producers is low. From the above, it can be concluded that

if antibiotics are going to be implemented in an effort to cure resistant bacteria disease, the disease

must be diagnosed early. At such an early phase, it is possible to considerably reduce the number of

bacteria in the biofilm trough traditional antibiotic implementation, allowing the immune system to

finish the bacteria off. Too late into the diagnosis and/or treatment schedule and the biofilm would

have taken up a considerable amount. From then on it would prove expensive and dangerous to purse

heavy antibiotic treatment without inducing a spike in resistant cell population. Moreover, the immune

system would prove incapable of penetrated the protected barrier formed.

This density–dependence of antibiotic effectiveness also underscores the importance of a natural,
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intrinsic bacterial death rate. Despite its low number, incorporating this rate allowed for the removal

of bacteria from the biofilm. The open space provided nearby bacteria with an incentive to replicate.

Doing so comes with the risk of antibiotic induced death, which makes population decrease possible.

Interestingly, biofilms possess increased levels of autolysis through holin activation systems, as a mech-

anism of removing bacterial cells [25]. The process involves several bacterial cells releasing lysosomes

that degrade several other bacteria inside the biofilm, and appears to be density–dependent as well,

although it is still under experimental study. If true, this mechanism, once incorporated in the model,

could increase the amount of antibiotic–induced death accounted for in simulations.

Out of the three parameters varied, the relative fitness of a producer bacterium was most critical

to the survival of a resistant bacteria population. Drugs with FE < 0.6 led to reduced levels of

nonproducer bacteria. This is because the low fitness of a producer bacterium leads to lower replication

rates compared to those of nonproducer cells. However, the producer cells were not driven to extinction

by outcompetition from the nearby nonproducer cells. Instead, heterogeneous clumps were formed. In

the presence of antibiotics, producer cells had a higher fitness than nonproducer cells, so they had higher

replication rates. In addition, those very same neighboring resistance cells were able to share in the

burden of enzyme production, increasing relative fitness. On the other hand, neighboring, nonproducer

bacteria were sheltered from antibiotic concentration by being near their producer neighbors.

For these reasons, clustering was expected. The system exhibits high variation in the types of

clustering that occur during the first hours of simulation, as shown in Figure 6. This is expected,

given that small numbers of initial resistant bacteria account for large denominators and variation in

clustering coefficients. Additionally, the absence of antibiotic implies that nonproducer bacteria can

survive without producers in their neighborhood, allowing for greater variation in the clustering coef-

ficients. After this initial period, they converge to a value, independently of the antibiotic parameters

simulated. This can be explained in terms of stabilizing selection. There were two opposing selection

pressures in this model. One selection pressure was resource limitation under population density, and

the other selection pressure was antibiotic concentration. These two pressures were accounted for in

Fn(b) and Fe(b), respectively. These terms affected probability of reproduction Par(b), which in turn

affected the probability of death, Pd(b). The pressure of antibiotic concentration encouraged bacterial

cells to clump near producers, and the selection pressure of population density encouraged bacteria

not to clump too close together. These two selection pressures likely affected the clustering coefficient

and the value at which it converged to. It remains to be seen why the convergence tends towards the

given value specifically.
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5 Conclusion

The model here proposed explores the spatial dynamics of resistance to antibiotics in heterogeneous

populations of bacteria in a biofilm. The biofilm has proven resistant to treatment under various con-

ditions. Mathematical and computational modeling prove that antibiotic treatment fosters resistance,

as well as that high population density in biofilms results in lower metabolic rates and thus less suscep-

tibility to antibiotics. These results highlight the importance of early treatment in bacterial disease,

as well as the relevance of intrinsic death rates for the success of treatment. The clustering coefficient

highlighted the relevance of selection pressures on biofilm formation, and its convergence under various

parameter conditions highlighted the stability of the biofilm. the topology of the network played a

key role in bacterial resistance. The clustering coefficient reflected how the network topology was a

product of the selection pressures imposed on the bacteria population. Based on analysis of the model,

treatment of a bacterial biofilm should involve using an antibiotic that leads to a high resistance cost

for enzyme producing bacteria. Doing so would make their relative fitness, FE , much lower compared

to the fitness of nonresistant bacteria, which would lead to a lower total bacterial population in the

patient. Of course, the fitness cost to the bacteria must also be compared with the cost to the patient

in terms of side effects and potential lethality of the antibiotic treatment.

6 Future Work

Despite the information found through this study, much more research and query must be done to

fully understand resistance in a biofilm. Previously, it was mentioned and explained why the clustering

coefficients converged. However, it is not yet clear as to why it converges to 0.5-0.55 and not some

other number above or below. Besides understanding why the clustering coefficients approach this

value, it is important to ask if there is a way to change that value. Initial thoughts include using a

graph theoretical/analytical approach to tackle both issues.

Along those same lines, the simulation shown resistant bacteria escape the main producer–nonproducer

cluster and forming a small resistant cluster. The question becomes under what circumstances do

resistant cells escape from the producer–nonproducer cluster and is there a way to prevent it. Under-

standing this problem can lead us into the overall goal of designing actual treatment schedules that

lead to the collapse of the bacterial community without harming the patient.

Another avenue of research is studying further mechanisms of biofilm resistance. This paper high-

lighted biofilm resistance through the lens of stress response, assuming that antibiotics diffuse through
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the film easily. However, that is not necessarily the case throughout the entire biofilm. Slow penetra-

tion is a biofilm property where the antibiotics outside the bacterial cells walls diffuses into the film at

a slower rate due to the compactness of the cells near the outer. Some antibiotics may fail to penetrate

due to the compactness of the surface cells. Other rates of resistance occur the deeper the antibiotics

penetrates the biofilm. Beyond the region of stress response, the grouping of cells become more dis-

perse. As the disparity/space increases the potency of antibiotics decrease. This region, often called

an altered micro environment, continues to lower the concentration of antibiotics inside the biofilm.

Finally, some biofilms possess an inner population of resistance cells used as a last line of defense for

the preservation of the biofilm. This property has been termed as having an area of “persisters” [50].

Each one of these features has a profound effect on the concentration of antibiotic the biofilm comes

into contact with, affecting bacterial fitness.

There are other treatments options that have yet to be implemented that made hold the key to

solving the problem of bacterial resistance. They include applying a number of antibiotics concur-

rently on varying concentrations and dosages. Another method of treatments are using viruses called

bacteriophages to disrupt the replication of bacterial cells. Finally, other strategies involves tackling

the problem of anti–virulence instead of bacterial resistance. )
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7 Supplementary Information

7.1 Simulation Pseudocode

Algorithm 1: Full Simulation
Data: Simulation parameters

Result: Spatial evolution of population size and composition over time

Setup (memory allocation, etc.);

Initialization (global variables);

for t← 0 to tmax do

UpdateAntibiotic(Simulation);

foreach b in bacteria do

random1 ← Uniform(0, 1);

if random1 < Pr(b) then

Add b to replication stack;

else if random1 < Pr(b) + Pd(b) then

Add b to kill stack;

else if random1 < Pr(b) + Pd(b) + Ph(b) then

Add b to HGT stack;

foreach b in kill stack do

KillBacterium(b);

foreach b in replication stack do

ReplicateBacterium(b);

foreach b in HGT stack do

HorizontalGeneTransfer(b);

foreach b in update stack do

UpdateBacterium(b);

Record simulation status;

Output results;

25



Algorithm 2: Initialize
Data: Simulation parameters

Result: Simulation environment under starting conditions

Initialize Biofilm with update set, replication, kill, and dead stacks ;

Add all bacteria to dead stack;

Initialize Simulation with Biofilm;

while connected components > 1 and below iteration limit do

for i← 0 to ρb ·Xmax
2 · Zmax · hi do

isProducer ← 0;

if Uniform(0, 1) < tsφi, 0 then
isProducer ← 1

(xr, yr, zr)← (Uniform(0, Xmax), Uniform(0, Xmax), Uniform(0, Zmax · hi))

CreateBacterium((xr, yr, zr) , isProducer, Simulation);

Evaluate connectivity;

return Simulation
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Algorithm 3: CreateBacterium
Data: Position, IsProducer, Simulation

Result: Bacterium added to Simulation at given position

Reinitialize unused Bacterium variable from dead stack;

Add new Bacterium into corresponding bucket;

Potentialneighbors← NearestNeighborStructure;

foreach pot in Potential neighbors do

distance← d(newbacterium, pot);

if distance < rd then

Add pot and distance to new Bacterium from Nearest Neighbor Structure;

Add new Bacterium to neighbor’s neighbor array;

Add distance from new Bacterium to neighbor’s distance array;

Increase neighbor’s number of neighbors by 1;

Add neighbor to update set if not there yet;

Add new Bacterium to update set;

return new Bacterium;

Algorithm 4: ReplicateBacterium
Data: Parent Bacterium, Simulation

Result: New Bacterium added to Simulation near parent

isProducer ← parent.producer;

if Uniform(0, 1) < tsλL then

isProducer ← not isProducer;

(xr, yr, zr)← Random sphere sample around parent;

daughter ← CreateBacterium((xr, yr, zr) , isProducer, Simulation);
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Algorithm 5: KillBacterium
Data: Bacterium,Simulation

Result: Bacterium set to unused in Simulation

Bacterium.used← 0;

Check bucket index of Bacterium;

Remove Bacterium from bucket;

foreach neighbor ∈ Bacterium do

Remove Bacterium from neighbor’s neighbor hash table;

Reduce neighbor’s number of neighbors by 1;

Add neighbor to update set if not there yet;

Add Bacterium to dead stack;

Algorithm 6: HorizontalGeneTransfer
Data: Nonproducer Bacterium

Result: Bacterium producer status and HGT probability updated

Bacterium.producer ← 1;

foreach n in neighbors do

Add neighbor to update set if not there yet;

Add Bacterium to update set if not there yet;

Algorithm 7: UpdateBacterium
Data: Bacterium

Result: Bacterium probabilities updated

-

Update Pr(b);

Update Pd(b);

Update Ph(b);

28



Algorithm 8: UpdateAntibiotic
Data: Simulation,time

Result: Antibiotic concentration in total body water updated

CB ← CB−renalClearance(CB);

if time ∈ Td then

CB ← CB +D(time);
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