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Abstract

With growing reliance on mass transit systems in American cities, the question of access

becomes more important. This study aims to explore the spread of an infectious disease across

a transportation network created to optimize access to most frequented destinations for distinct

socioeconomic groups. First, we develop a theoretical model of a city, based on the Kohl

model for urban growth which assumes distinct regions where income groups live and work.

It is assumed that all income groups in this city are transit-dependent. In this framework,

we maximize “satisfaction,” a measure of how easily the population of a neighborhood can

travel to desirable destinations, through placement of bus routes. Within this framework we

connect a single-outbreak multi-patch SIR model of Influenza A, incorporating the effects

of attraction and travel time into the incidence rate. We track the populations’ interactions

through contact within their neighborhoods, within the transit network, and with other transit-

connected neighborhoods. We observe how the basic reproductive number is affected by the

layout of the optimized transportation network. Results show that use of public transportation

largely does not affect the global epidemic but that more equal time spent in transit leads to

less disparate patch-specific epidemic outcomes.
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1 Introduction

Many American cities are currently undergoing demographic inversion. Demographic inversion

refers to the trend of suburbs of a city becoming the principal region where immigrants and

minorities settle due to the continuous increase in cost of living in central city areas [1]. For

example, Atlanta has historically been home to a majority black community, but between 2000

and 2010, the percentage of African-American residents within the city fell from 61% to 54%,

while in the same time period, suburban counties like Clayton and DeKalb saw an increase in

black population. Washington, D.C. is undergoing a similar inversion [2]. From 2000 to 2008-

2012, the percentage of suburban poor in America increased by 139%, which is nearly three times

more than within cities. By 2008-2012, 46% of all non-rural poor residents living in concentrated

poverty lived in the suburbs [3]. Large metropolitan suburbs house about one-third of low-income

Americans, a greater share than big cities, small metropolitan areas, or rural areas. Through the

2000s, suburban poverty increased at a rate five times more to what we have seen within cities [4].

On the other hand, over the last 20 years, American transit ridership has increased by 32%,

creating a need for more robust transit systems [5, 6]. There are many advantages to high-quality

transit services, including equity benefits for disadvantaged users [7]. Studies have shown that the

primary reason for central city poverty is access to the public transportation system [8]. Upward

mobility, that is the capacity of increasing one’s social or economic position, is currently higher

in cities with less sprawl, as measured by commute times to work [9, 10]. This suggests that job

access, economic segregation, and transportation access are strongly correlated and interdependent.

However, transit extensions may not be designed to fully serve disadvantaged users.

Urban economics literature has developed different types of models to analyze the socioeconomic

distribution of a city. One of the most well-known monocentric city models, created by Ernest W.

Burgess in 1925 [11], posits that the large American city can be generalized to have a central

business district surrounded by a zone of transition including other industries, followed by inner-

city poor residences and then high-income residences located in the suburbs. This is contextualized

within an industrial city, where the wealthy prefer the suburbs because of pollution and violence

downtown, while lower-income people prioritize lower transit costs. This model is still in use today

but is seen as outdated as the post-industrial processes of gentrification and displacement become

increasingly more common. An older monocentric city model was created in 1841 by J.G. Kohl

[11], based on the pre-industrial cities of continental Europe, in which the high-income population

was housed in the city center and the low-income communities resided farther from the city. At this

time, transit costs were very high so the wealthy preferred to live downtown near the destinations

they desired most [12]. With demographic inversion occurring in many large American cities, the

Kohl model becomes relevant again in such cases.
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This layout mirrors the makeup of New York City, one the few cities that underwent demo-

graphic inversion in the 1970s. In 2007, new households in the Financial District had a median

income of $256,000 and were 74% single adults or childless couples [2]. In New York City, wealthy

Manhattan is located at the center of the city whereas Queens, the Bronx, and Brooklyn with

less concentrated wealth and more concentrated poverty are farther from the center. Taking a

close look at a map of the New York City subway reveals the fact that there is considerably more

transit access in the central city than in Queens or in the Bronx, showing that the system has been

designed to serve the wealthy communities better than the poor [8].

Moreover, the current work in transportation modeling is based on the principle of demand

and cost-benefit analysis. As a result, their work reproduces already imbalanced transit provisions,

ignoring populations that do not already have transportation access. Martens suggest changing

the base of the model to the principle of need in order to have a minimal level of transport service

for the entire population [13]. An interesting question arises when we consider the socioeconomic

reverberations of the placement of public transit infrastructure: What does an "equitable" transit

system look like? Furthermore, we may ask how it compares to a network optimized for the wealthy

or for both.

When the people are more connected, the potential to create devastating epidemics increases.

Public transportation creates an ideal environment for disease spread: Each bus creates an environ-

ment where a high concentration of dust particles or water droplets allow biological agents to float

in the air, at temperatures that favor their rapid growth.[14, 15]. Most of the airborne diseases are

caused by different pathogens such as viruses, bacteria, and fungus that are released into the air

by normal processes such as sneezing, coughing and laughing [15, 16]. The hard surfaces of buses

and trains provide an ideal environment for viruses to spread as they extend the survival time of

viruses, unlike porous surfaces [17].

Even if transportation networks were developed to serve the low- and high-income groups

equitably, what public health consequences would stem from improved transportation access? How

does varying public transportation infrastructure affect the spread of disease in a city? We aim to

investigate these questions by looking at how influenza, a common infectious disease, can spread

through a theoretical city under different optimized public transit arrangements.

Influenza can spread through direct contact between individuals, indirect contact with contami-

nated objects, droplet transmission, or airborne transmission through infectious droplet nuclei that

can linger in the air. Airborne transmission can only be dealt with through air-handling and venti-

lation procedures [18, 19]. For example, public health researchers at the University of Nottingham

found that recent bus or train use within 5 days of influenza symptoms is associated with six times

higher risk of a doctor visit for an acute respiratory infection [20]. Another study on tuberculosis in
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South Africa found that, although the average number of passengers sharing an indoor space was

higher in trains than in minibus taxis, minibus taxi commuters faced a higher risk of tuberculosis

infection, which they attributed to poor ventilation and high respiratory contact rates within the

minibus taxis [21]. As well, health facilities with many infectious patients experience higher risks

of infectious disease transmission when paired with poor ventilation infrastructure [22].This show-

cases the importance of ventilation in slowing the spread of airborne disease. Another tuberculosis

study was focused on transmission within school buses in Houston, Texas. They found that higher

rates of transmission coincided with duration of the bus ride [23], signaling that the longer the time

spent by an individual in the enclosed environment, the more prone he or she is to the contagion.

In developing better transit infrastructure, we are concerned in particular about the impact on

the health of disadvantaged users. The World Health Organization (WHO) identified poverty as

a major contributor to vulnerability, or the level to which a population can resist environmental

health disasters, including disease outbreaks [22]. Thus, we wish to focus on the health outcomes

of people by economic class.

Past work has been done on the spread of influenza in a city, mainly relying on simulations

[12, 16]. We focus on the impact of public transportation on specific income groups in urban cities

capturing the Kohl model of income distribution. Different income groups have varied preferences

for different destinations. We build upon former work by Song and Castillo-Chavez [24] on virtual

mass transportation by adapting their model to consider a population of solely bus riders who

interact in a proportional mixing scheme within the public transportation network as well as

within transit-connected neighborhoods, placing it on top of our theoretical transportation model.

Between our theoretical and epidemic model we will be able to picture how public transportation

facilitates the spread of airborne disease in various neighborhoods.

Our paper will investigate Influenza A (H3N2) as it is currently one of the most prevalent

strains of influenza: In 2016-2017, 75% of all positive influenza tests were A (H3N2) [25]. We

then explore how the basic reproductive number is affected by our transportation networks, by

employing sensitivity analysis. We also place our epidemiological model on top of our theoretical

model and run it as a simulation. Results show that public transportation largely does not affect

the global epidemic but that more equal time spent in transit leads to less disparate epidemic

outcomes.
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2 Methods and Model Description

Two models are developed and linked in order to understand how transportation systems in an

urban city can affect the spread of airborne disease. The first model is a type of lattice grid, used to

find the optimal location of bus routes for various income groups in a theoretical city. The second

is an epidemic SIR model that describes the spread of influenza in an urban city with optimized

bus transportation systems (generated from first model).

2.1 Transportation Network Model

First, we assume that all city residents are transit-dependent (can only either walk or take the

bus). Second, we contextualize our transportation network in an already-existing city layout. To

create the city layout we use a variation of the Kohl model (Figure 1a). This variation is based on

bid-rent theory1 leading to the development of the classical monocentric city model by Alonso et.

al, which consists of multiple sectors and different income groups [26]. It consists of two industries

and two household groups, where I1 is an industry with low demand for horizontal space and high

returns for agglomeration of human capital, for example, technology and consulting firms. The

individuals who work in I1 live in HH1, household group 1, as they value a quick commute to

work and have a low demand for land. Then, I2 has a higher demand for land and employs the

residents in HH2. This could include industries like automotive or manufacturing firms. In 1b,

we generalize HH1 to be high-income and HH2 to be low-income, as in the Kohl model, and we

abstract the industries to be represented by nodes that are characterized into different destination

types.

(a) HH1: Income community number 1, HH2: Income community number 2, I1: Industry
1, where most of the population from HH1 work and I2: Industry 2, where most of the
population from HH2 work

(b) H: high-income communities, L: low-
income communities (c) Portion to analyze

Figure 1: Variation of the Kohl model based on distribution of incomes

1Bid-rent theory analyzes how demand and willingness to pay for land are a function of distance from the central
business district (CBD).
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2.1.1 Equations, Definitions and Parameters: Transportation Network Model

Figure 2: Theoretical City of dimension of 6. Blue circle: attractive to low-income; red diamond:
attractive to high-income; green star: attractive to everyone; black: empty.

Node Type.

An individual node dj represents a destination such as a job hub, health center, grocery store,

shopping district, soup kitchen, park, etc. Not all destinations are attractive to every income group;

they may only be attractive to a particular income group or none at all. Thus, we assign nodes

to four broad categories, as seen in Figure 2: attractive to high-income, attractive to low-income,

attractive to everyone. Equation (1) gives the node type of a node, dj .

T (dj) =





H, if node j is attractive to high-income

L, if node j is attractive to low-income

E, if node j is attractive to everyone

N, if node j is empty

(1)

Patch Type.

A face or patch represents a neighborhood which can be low-income, high-income, or non-

residential, as in equation (2).

Q(Ai) =





H, if patch i is high-income,

L, if patch i is low-income,

N, if patch i is non-residential.

(2)

A particular neighborhood Ai has a constant population of individuals Ni. If Ni = 0, then the
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face is a non-residential area. Otherwise, it is a low- or high-income neighborhood with population

Ni > 0.

Attractiveness.

In considering the utility of a particular destination to various income groups, we define attrac-

tiveness to be the measure of how valuable a destination is to a particular income group. Therefore,

the attractiveness of a node depends on the node type and patch type. Naturally, residents from

high-income patches are attracted to H and E nodes, and disinterested in L and N nodes. Simi-

larly, residents from low-income patches are attracted to L and E nodes, and impartial to H and

N nodes. We quantify this through a function for attractiveness (3).

attr(Q(Ai), T (dj)) =





Λ, if T (dj) = Q(Ai) = H.

γ, if T (dj) = Q(Ai) = L.

σ, if T (dj) = E and Q(Ai) = H.

ν, if T (dj) = E and Q(Ai) = L.

0, if T (dj) = L and Q(Ai) = H,

or T (dj) = H and Q(Ai) = L,

or T (dj) = N or Q(Ai) = N.

(3)

Travel Time.

Each edge on the grid is of uniform distance. However, some edges represent bus routes. We

define tw to be the time it takes an individual from any patch to walk one edge, and tb to be the

time it takes an individual from any patch to ride the bus one edge. Thus, the time it takes an

individual from patch Ai to travel from a node of patch Ai to node dj is equal to a∗tw+b∗tb, where

a is the number of edges walked and b is the number of edges traveled by bus. We are interested

in finding the fastest path from a node in patch Ai to node dj . The shortest path between Ai and

dj is defined to be the path with least travel time, which may not necessarily be unique and may

include both walking and bus edges. Let Θij = {e1, e2, e3, ...el} where l is the number of directed

edges in the shortest path from Ai to dj and el is the last edge on the path, which contains node

dj . Then, accounting for the time it takes an individual to get from a location in their home patch

to a home node, the travel time of the fastest path is trt(Ai, dj),

trt(Ai, dj) = 0.25 +
∑

ek∈Θij

weight(ek) (4)
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weight(ek) =





tb = 0.25, if ek is a bus route;

tw = 1, otherwise;
(5)

Satisfaction.

We define satisfaction to be a measure of happiness with the public transportation system,

or how easily residents can travel to the places attractive to their particular income group. The

farther away a destination is from a patch, the less residents are willing to travel to it and the

less it contributes to the patch’s satisfaction. Thus, satisfaction is a function of attractiveness and

travel time. Equation (6) is the satisfaction of a single patch over all the nodes in the grid.

Satpatch(Ai) =
TotalNodes∑

j=1

attr(Q(Ai), T (dj))

trt(Ai, dj)
. (6)

We can raise the satisfaction of a patch by placing bus networks to shorten the travel time

between the patch and the destinations attractive to their particular income group. Moreover,

the overall satisfaction of the grid is the weighted sum of each patch in the grid multiplied by the

fraction of the total population in the patch.

Satgrid =

TotalFaces∑

i=1

Ni
NT
· Satpatch(Ai) ·W (Ai). (7)

where W (Ai) =





wlow, if Q(Ai) = L,

(1− wlow), if Q(Ai) = H.
(8)

wlow is the importance or weight given to the satisfaction of all low-income patches on the grid.

Similarly, (1−wlow) is the weight given to high-income patches. Hence, a value of wlow = 0.5 gives

equal weight to the satisfaction of all income groups, while a value of wlow = 0.2 gives greater

importance to the satisfaction of high-income patches. Equations (7) and (8) allow us to define

the following optimization problem:

Maximize Satgrid

{Potential bus routes}

subject to Theoretical city with

predetermined nodes

and patches

It is to say, given a grid with predetermined node types and patch types, where a certain

amount of edges can be bus routes, what layout of routes yields the highest Satgrid for a given

wlow? For the purposes of this paper, we will optimize the transportation networks for high-income
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neighborhoods as well as for everybody. The results obtained from this optimization problem will

allow us to model and analyze the epidemiological effects of transportation networks on low- and

high-income groups during an outbreak of airborne disease.

Table 1: Variables in the transportation model

Notation Definition

Ai patch i

dj node k

H = (γ, 0) attraction value of high-income node

L = (0,Λ) attraction value of low-income node

E = (σ, ν) attraction value of everyone node

N = (0,0) attraction value of empty node

Table 2: Parameters in the transportation model

Notation Definition

Ni population of patch i

NT total population

wlow weight of low income patch in satisfaction optimization

1− wlow weight of high income patch in satisfaction optimization

tw amount of time it takes to travel one edge by walking

tb amount of time it takes to travel one edge by bus

Tables 1 and 2 list the variables and parameters used in the transportation network model. We

will need to estimate many of these parameters for our simulations and sensitivity analysis.

2.1.2 Parameter Estimation: Theoretical Transportation Model

We estimate parameters for a lattice grid of 4 nodes by 4 nodes or, equivalently, 3 faces by faces.

The grid is sufficiently large enough to model 81mi2, of an urban city while maintaining appropriate

dimensions (9 mi2) of faces to represent neighborhoods. We found that for a large city like New

York City, NY, which has an area of approximately 308.9 mi2, our grid is large enough to represent

roughly a quarter of the total area. Using the 2010 census data for New York City as a guide, we

let the total population of our lattice grid be 3,294,000 individuals.

We assume that it takes the average person 20 minutes to walk one mile, so that it takes an

individual 60 minutes to travel one edge on the grid (3 mi). Similarly, we assume a bus traveling 30

mph takes 15 minutes (accounting for stops) to travel one edge. The transportation simulation uses

a standard time unit of hours. Table 3 list values assigned to each node type for the simulations.
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Table 3: Parameter estimates for the transportation model

Parameter Value

γ 9

Λ 9

σ 5

ν 5

Ni population of patch i

NT total population

wlow weight of low income patch in satisfaction optimization

1− wlow weight of high income patch in satisfaction optimization

tw 1 hour

tb 0.25 hours

2.1.3 Optimization Methodology

To accomplish the objective of the first model, that is to find the optimal transportation network

for the two cases, we need to know all the possible satisfaction values that a set of combinations of

bus routes will give, and identify the set that maximizes the satisfaction. Case one is optimized for

the high income, with wlow = 0.2; case two is optimized equally for both incomes, with wlow = 0.5.

The computational approach to this problem was made in MATLAB Software. This program

allows the creation and processing of graph structures. For this, the dimension desired must be

given to compute, which will indicate the total number of nodes (10), the total number of faces

(9), and the total number of edges (11). For example, if the dimension is 2, then the structure

will contain 1 face, 4 nodes and 4 edges. The second step is to identify the possible relationships

between the nodes. This will allow the creation of the graph structure, including the set the

incomes for the faces and the type for the nodes following the variation of the Kohl distribution.

Dimension, dim: number of nodes in a row/column.

TotalFaces = (dim− 1)2 (9)

TotalNodes = (dim)2 (10)

TotalEdges = 2 · dim · (dim− 1) (11)

We index face Ai, node dj , and edge ek such that:

i ∈ {1, 2, ...,TotalFaces}

j ∈ {1, 2, ...,TotalNodes}
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k ∈ {1, 2, ...,TotalEdges}

The next step is to identify all the possible sets of bus routes, when each edge in the grid is

chosen to be a bus route or not. Thus to calculate every possible combination, we are essentially

permuting a string of binary numbers that take into account the different localizations of the bus

routes in the whole grid. For each set, we compute the satisfaction, and then we compare the

satisfaction for all the sets, identify the maximum satisfaction and the current set related to it.

Parallel processing is used to speed up the brute force optimization process, and each permutation

will be calculate inside the parallel loop.

2.2 Multi-patch Influenza Epidemic Model

It is important to identify the role of the transportation system in the spread of an airborne disease.

Therefore, a multi-patch SIR model is proposed to represent the epidemic spread of the Influenza A

(H3N2) through the connections made by the transportation network. Influenza A is the respiratory

infection virus and one of the main ways of its transmission is the airborne respiratory droplets. As

mentioned above, the public transportation system like buses across the cities marks the continuous

presence of this type of particles during the day. As a result, it is important to analyze the relation

between the amount of time an individual spends on the bus and his chance of being affected by

the disease while he was on the bus. To describe the population dynamics of this disease a SIR

compartmental model is proposed, capturing the movement of individuals across the three stages

of disease. To analyze the transition in each stage with respect to time, a system of differential

equations were formulated that were parameterized by the proportion of time individuals spend

on the public transportation system.

In order to build the model, it is important to identify the movement of people from one

stage to another. A susceptible individual can become infected generally by the contact with an

infected individual with a certain probability of effectiveness, known as the incidence rate. On

the other stage, generally the infected can become recovered after a certain time. In order to

define this model and especially the incidence rate, we use a similar approach as the one made

by Castillo-Chavez, Song and Zhang [24]. This allows them to know the proportion of time spent

on the subway, and off the subway. For this work, the mixing probabilities are based on the

connections that a neighborhood, patch, can have with the other neighborhoods, patches, just by

the transportation network, in other words, the only possible connection between patches is by

a bus route. Additionally, the proportion of time spent on the bus system is determined by the

satisfaction of the patch with the current transportation network.

105



2.2.1 Equations, Definitions and Parameters: Epidemic Model

As mentioned above, the multi-patch SIR compartmental model proposed is the next:

Si Ii Ri
Bi αIi

Figure 3: Flow diagram for SIR Model

The rate at which individuals from S progress to I is Bi(t), the incidence rate, so that Ṡi(t) =

−Bi(t). The rate at which individuals from I proceed to R is the recovery rate, α, thus İi(t) =

Bi(t)−αIi(t) and Ṙi = αIi(t). The total population of patch i at any time t is Ni = Si + Ii +Ri.

Note that Ni is constant for each patch. Individuals do not move between populations and no one

is born into or dies in a population. To capture how individuals from various patches interact with

one another within the multi-patch model, proportionate mixing probabilities are incorporated in

Bi(t).

Ṡi = −Bi (12)

İi = Bi − αIi (13)

Ṙi = αIi (14)

Bi = βbiSi

[
TotalFaces∑

k=1

(
PAiAk

Ik
Nk

+ PAiAk

Ik
Nk

) ]
(15)

The proportionate mixing probabilities account for all of the possible sources of infection for

any given patch. They are defined as follows:

Ci is the set of patches connected to Ai by bus.

PAiAk
=





bkτkNk∑
m∈Ci

bmτmNm

τi, if Ak ∈ Ci

0, otherwise

(16)

PAiAk
=





bkωkNk∑
m∈Ci

bmωmNm

ωi, if Ak ∈ Ci

0, otherwise

(17)

Each probability represents the chance of the event that, given an individual from patch i makes

a contact, this contact has happened both in a location and with an individual from patch k.

106



P (X ∩ Y |Z) = P ( event X ∩ event Y | event Z)

where

X = Contact takes place in location x,

Y = Contact with individual from patch k

Z = Individual from patch i makes a contact

We employ Bayes’ Theorem in developing the probabilities. The probability P (Y |B) in this

case is the probability of event Y (contact occurring with individual from patch k) given event

B, which is that, in location x, there are currently xkNk people from patch k with contact rate

bk. For the construction of bkxkNk, xk can be either ωk, the proportion of time spent on the bus

system during the day, or τk, the proportion of time spend off the bus system during the day.

Then, bkxkNk represents the average number of contacts that are caused by the average number

of individuals from patch k in location x. We divide bkxkNk by the the total average number of

contacts in location x with individuals from the remaining patches given that this kth patches can

access to the actual one by the bus routes. PAiAk
and PAiAk

represents the probability that given

an individual from the ith patch makes contact with an individual from the kth patch off the bus

and on the bus, respectively.

With interest in formulating a measure for average time spent on the bus, we define a modified

shortest bus travel time, as seen in equation (18).

trtB(Ai, dj) =
∑

ek∈Ωij

weight(ek) (18)

Here Ωij = {e1, e2, ..., eq} is the set of edges in the shortest path between Ai and dj (with

cumulative least weight, not necessarily unique, bus edges only).

q = the number of edges from Ai to dj , eq is an edge containing dj .

Then, we can consider Di to be the set of nodes that are connected to Ai by bus.

SatBpatch(Ai) =
∑

j∈Di

attr(Q(Ai), T (dj))

trtB(Ai, dj)
(19)
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SatBnode(Ai, dj) =
attr(Q(Ai), T (dj))

trtB(Ai, dj)
for j ∈ Di (20)

Equation (19) is used to calculate the overall satisfaction of a given patch. The satisfaction is

a function of attraction and travel time. Here we are summing over the set of nodes connected to

patch Ai by a bus route.

ρij =
SatBnode(Ai, dj)

SatBpatch(Ai)
(21)

Equation (21) is used to calculate the probability that a path will be taken. The idea is that the

satisfaction is the driving force behind an individuals decison to make a trip to a node. Therefore,

we devide the satsifaction a patch recieves from a node over the overall satisfaction to get the

probability.

ωi =
2

14

∑

j∈Di

ρij · trtB(Ai, dj) (22)

τi = 1− ωi (23)

The above equation (22) calculates the proportion of time an individual spends on the bus.

The total amount of time available for travel is 14 hours. An individual can make a round trip to

any node they are connected to by a bus route. We sum the travel time to a node weighted by the

probability of traveling to a node over the nodes a patch is connected to by bus. We multiply by

2 because we are considering round trips. Therefore, ωi is the expected proportion of travel time

in the bus routes in a day for the population of the ith patch, and τi is the expected proportion of

time out the bus routes in a day.

The route an individual from Ai chooses to take can be thought of as a random variable.

Consequently, the proportion of time the individual spends on the bus, ωi, can be thought of as

the expected value of travel time over the total amount of time available for travel. We call the

total amount of time available for travel the active period and assume it to be 14 hours (24 hours

minus 10 hours spent at home to rest). The expected travel time is the sum of the product of the

time it takes to travel to each node dj ∈ Di and the probability that the resident will travel to each

node, ρij . We assume all trips are round-trips in our formulation of ωi and double the expected
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travel time. Hence, the denominator of 7.

Table 4: Parameters in the SIR transportation model

Notation Definition

bi per capita contact rate for residents from the ith patch

β transmission rate for residents from the ith patch

α recovery rate of the disease

ωi proportion of time residents from the ith patch spend on the bus

τi = 1− ωi proportion of time residents from the ith patch spend off the bus

Di set of nodes connected to the ith patch by bus route

Ci set of patches connected to the ith patch by bus route

With the exception of tw and δi, all other parameters are recycled from the transportation

model (See Tables 1 & 2).

2.2.2 Parameter Estimation: Epidemic Model

Four new parameters are introduced in the epidemic model: β, τi, ωi, and bi. We have defined ωi

and τi so that ωi is the proportion of time residents from patch i spend on the bus and τi = 1−ωi
is the proportion of time residents from patch i spend off the bus.

The transmission probability β is assumed to be constant across patches, dependent on the

disease. From past work on influenza modeling, we see typical β values to be in the range of 0.2

to 0.5. For example, in "Modeling the Impact of Behavior Changes on the Spread of Pandemic

Influenza," the authors take β to be 0.4 [27]. In "Modeling Contact and Mobility Based Social

Response to the Spreading of Infectious Diseases," β = 0.2 [27]. Thus, we choose β ∈ {0.2, 0.5} for

our estimates.

While transmission probability is assumed to be constant, the estimated patch contact rate

bi varies by patch type. It is assumed that all residents spend time within either households,

workplaces, communities, or public transit at any given moment. In order to estimate contact

rates by patch, we make use of a typical ωi = 0.047, which can be interpreted as about 40 minutes

per day spent on bus, as well as estimates from the American Time Use Survey [28] to give a

weighted sum of contacts per day, using the following values considering workers from Cooley

(2011) [29]:
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Table 5: Mean contacts per day by location type

Location Mean contacts per day

Household 0.922

Office 3.68

Subway 33.88

Community 34.80

Taking the average commute to be 40 minutes, the average time spent at home during the

active period to be 2 hours, the average time spent at work to be 8 hours, and the average time

spent in the community to be the remainder of the 14 hours, we can consider the weighted sum of

the contact rates based on proportion of the active period of 14 hours.

Because the contact rate for the office estimated in [29] disproportionately considers smaller

firms and does not account for about a million New York City jobs, we take it to represent the

office contact rate for solely high-income individuals. Because many service jobs that are typically

low-income require more interactions with individuals, for example in food service or janitorial

and maid services, we consider the contact rate within the office for low-income individuals to

be 10(Office) from Table 5. In our model, we take the contact rate for Subway in Table 5 to be

equivalent to bus contact rate.

For Q(Ai) = H,

bi(H) =
2

14
(Household) +

8

14
(Office) +

2/3

14
(Subway) +

14− 2− 8− 2/3

14
(Community)

bi(H) =
2

14
(0.922) +

8

14
(3.68) +

2/3

14
(33.88) +

10/3

14
(34.80)

bi(H) ≈ 12.

For Q(Ai) = L,

bi(L) =
2

14
(Household) +

8

14
(10)(Office) +

2/3

14
(Subway) +

10/3

14
(Community)

bi(L) =
2

14
(0.922) +

8

14
(10)(3.68) +

2/3

14
(33.88) +

10/3

14
(34.80)

bi(L) ≈ 31.

The average recovery rate α is estimated by considering the average recovery period with respect

to the time units of our model. The average recovery period is one week. Thus, α = 1
7 days−1
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Figure 5: Example that shows the possible options for each patch

Table 6: Parameter estimates in the SIR transportation model

Parameter Value

bi(H) 12

bi(L) 31

β ∈ {0.2, 0.5}

α 1
7 ≈ 0.1428

2.2.3 Methodology and Simulations

We begin to explore the implications of this model by conducting analysis and simulation of the

two-patch system. We place our epidemic model on top of a theoretical city generated from the

former half of our work, to shed light on how transportation systems affect the spread of disease.

There is greater emphasis placed on the parameters that vary across patches and by measures of

satisfaction or transit access.

A given transportation network will generate interesting results in our model as it affects which

patches interact with one another and which patches spend more or less time in the transit system.

We can see below

Figure 4: Example of the kth patches connected to the ith patch by a certain bus route

The darker edges on the above grid form a bus route. Given this bus route, the patches which

are accessible to the patch labeled with i are itself and those labeled with k.
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The above Figure 5 shows how the different networks can divide up the overall region into sub-

regions when all of the network lines don’t intersect. This is because the probabilities only allow

mixing between connected patches. It is possible that patch i is connected to patch k and patch

k is connected to patch m, but patch i is not connected to patch m. Figure 5 has 7 sub-regions.

Notice how the top left face is isolated.
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3 Analysis

We employ analytical techniques as well as numerical simulations to explore the dynamics and

outcomes of our model. We begin by calculating the basic reproductive number, R0, for both a

single-patch and two-patch model. We explore the meaning of the basic reproductive number in

the context of special cases. We employ sensitivity analysis on the basic reproductive number in

order to determine which parameters have the largest impact on the epidemic.

The severity of the epidemic once it has ceased is measured by the final size equations. We

derive final size relations as a system of equations for the two-patch model.

3.1 The Basic Reproductive Number

In seeking epidemic control strategies, one can investigate which parameters most affect the basic

reproductive number, R0. Then, investigate control startegies to change those parameters.

3.1.1 One-Patch System

In an effort to recognize pattern-forming as we increment to multi-patch models, we choose to

begin by calculating the basic reproductive number for a one-patch model.

The equation is written below and for the derivation refer to the appendix.

R0 =
βb1
α

3.1.2 Two-Patch System

We consider a model with two patches connected by bus route.

For more simple notation, we define φ11 = PA1A1
+ PA1A1

, φ12 = PA1A2
+ PA1A2

, φ21 =

PA2A1
+ PA2A1

, and φ22 = PA2A2
+ PA2A2

.

Also, define Rijτ = βbi
α PAiAj and Rijω = βbi

α PAiAj

We conclude that

R0 =
(R11τ +R11ω) + (R22τ +R22ω) +

√
((R11τ +R11ω)− (R22τ +R22ω))2 + 4(R21τ +R21ω)(R12τ +R12ω)

2

Again, for the derivation refer to the appendix.

Rijτ represents the rate of secondary infections amongst residents of Ai by residents of Aj when

individuals from both patches are off the bus. Conversely, Rijω represents the rate of secondary

infections amongst residents of Ai by residents of Aj when individuals from both patches are on

the bus. If ωi = 0,

R0 = 1
2 [R11τ + (R22τ +R22ω) +

√
(R11τ − (R22τ +R22ω))2 + 4R21τR12τ ]
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Here R0 is consistent with the meaning of ω1 = 0. The interpretation is that people from

patch 1 do not ride the bus. Therefore, individuals from patch 1 can only make contact with an

infected individual within their own patch, whether from patch 1 or patch 2. People from patch 2,

however, are unrestricted; they can travel to patch 1. Therefore, people from patch 2 can become

infected from contact with patch 2 individuals in their own patch, patch 2 individuals on the bus,

and individuals from patch one or patch 2 while in patch 1. R0 has a similar interpretation when

ω2 and not ω1 is equal to zero. Now, consider τ1 = 0,

R0 = 1
2 [R11ω + (R22τ +R22ω) +

√
(R11ω − (R22τ +R22ω))2 + 4R21ωR12ω]

Here R0 shows individuals from patch 1, who spend all of their time on public transportation,

only come in contact with other individuals, whether from patch 1 or patch 2, while on the bus.

R0 also reflects the unrestricted movement of individuals from patch 2. Although individuals from

patch 2 can travel to patch 1, no contact between patch 1 and patch 2 residents occurs off the

public transportation system. Individuals from patch 2 can make contact with other individuals

from patch 2 in any location. The explanation for τ2 = 0 is similar.

R0 for a two-patch system does not hold when ω1 = ω2 = 0 or when τ1 = τ2 = 0. In the

first scenario, we consider the patches to be isolated, their reproduction numbers are independent

of each other. In the latter scenario, where both populations are entirely inside the public trans-

portation system, two patches become one patch. In other words, the system can no longer be

described by a multi-patch model.

Now, consider the following,

1
2 [(R11τ +R11ω)+(R22τ +R22ω)+

√
((R11τ +R11ω)− (R22τ +R22ω))2] ≤ R0 ≤ 1

2 [(R11τ +R11ω)+

(R22τ +R22ω) +
√

((R11τ +R11ω)− (R22τ +R22ω))2 +
√

(R21τ +R21ω)(R12τ +R12ω)]

If (R11τ +R11ω) < (R22τ +R22ω). Then

(R22τ +R22ω) ≤ R0 ≤ (R22τ +R22ω) +
√

(R21τ +R21ω)(R21τ +R21ω)

Similarly, if (R22τ +R22ω) < (R11τ +R11ω). Then

(R11τ +R11ω) ≤ R0 ≤ (R11τ +R11ω) +
√

(R21τ +R21ω)(R12τ +R12ω)

Therefore,

max((R11τ+R11ω), (R22τ+R22ω)) ≤ R0 ≤ max((R11τ+R11ω), (R22τ+R22ω))+
√

(R21τ +R21ω)(R12τ +R12ω)
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For a two-patch system, this means R0 will be at least as large as the product of the rate of

secondary infections amongst residents of Ai and Ai’s internal mixing probabilities, max((R11τ +

R11ω), (R22τ +R22ω)). Additionally, R0 is at most the sum of max((R11τ +R11ω), (R22τ +R22ω))

and the geometric mean
√

(R21τ +R21ω)(R21τ +R21ω). When we add Rijτ = βbi
α PAiAj

and

Rijω = βbi
α PAiAj we get βbi

α (PAiAj +PAiAj ) Since PAiAj and PAiAj are the probability of mixing

off and on the bus, respectively, they are disjoint and therefore when we add them we get the

probability of mixing anywhere. Thus, here we are averaging the rate of secondary infections

amongst residents of Ai by residents of Aj and the rate of secondary infections amongst residents

of Aj by residents of Ai.

3.2 Formulation of Final Size Relations

Consider a two-patch system with total population of patch i being Ni = Si(t) + Ii(t) +Ri(t) and

incidence rate of patch i being Bi(t) = βbiSi[Σ
n
k=1(PAiAk

Ik
Nk

+ PAiAk

Ik
Nk

)].

Ṡ1 = −βb1S1

[
(PA1A1

+ PA1A1
)
I1
N1

+ (PA1A2
+ PA1A2

)
I2
N2

]

İ1 = βb1S1

[
(PA1A1 + PA1A1)

I1
N1

+ (PA1A2 + PA1A2)
I2
N2

]
− αI1

Ṡ2 = −βb2S2

[
(PA2A2

+ PA2A2
)
I2
N2

+ (PA2A1
+ PA2A1

)
I1
N1

]

İ2 = βb2S2

[
(PA2A2

+ PA2A2
)
I2
N2

+ (PA2A1
+ PA2A1

)
I1
N1

]
− αI2

Note that the total population of both patches, N1 and N2 is constant.

In investigating these equations, we see:

(Si + Ii)
′(t) = −αIi (24)

If Si ≥ 0 and Ii ≥ 0, then (Si + Ii)(t) must be a smooth, non-negative, decreasing function,

meaning it will go to a limit.

lim
t→∞

(Si + Ii)(t) = Si∞, a constant.

Taking the derivative of both sides,

lim
t→∞

(Si + Ii)
′(t) = 0

∴ Ii∞ = lim
t→∞

Ii(t) = 0
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At t→∞, there are no more infected individuals.

Ni − Si∞ is the final size of the epidemic in patch i, or the total number of unique infections

in patch i over the course of the disease outbreak.

We calculated a system of equations which include S1∞ and S2∞ that can be solved by plugging

in estimations for the other parameters. This can then be used to calculate the final sizes.

ln

(
S1(0)

S1∞

)
= (R11τ +R11ω)

(
1− S1∞

N1

)
+ (R12τ +R12ω)

(
1− S2∞

N2

)
(25)

ln

(
S2(0)

S2∞

)
= (R21τ +R21ω)

(
1− S1∞

N1

)
+ (R22τ +R22ω)

(
1− S2∞

N2

)
(26)

3.3 Sensitivity Analysis

In investigating the effects of various parameters, namely the bus time parameters ω1 and ω2, we

can better understand the effects public transit has on the spread of disease. We employ sensitivity

analysis of the basic reproductive number with respect to these parameters in order to understand

their impact on the epidemic.

3.3.1 Sensitivity Indices for Two-Patch Basic Reproductive Number

In calculating the sensitivity indices for the basic reproductive number, we can begin by viewing

it in terms of mixing probabilities as defined earlier:

R0 =
βb1φ11 + βb2φ22 +

√
(βb1φ11 + βb2φ22)2 − 4(βb1φ11βb2φ22 − βb2φ21βb1φ12)

2α

We explore the sensitivity of R0 in relation to ω1, ω2, N1, N2, b1 and b2. The fact that ω1 and

ω2 are directly controlled by the optimization network makes them good candidates for sensitivity

analysis, as they vary by patch and are subject to change under different optimization constraints.

Exploring the sensitivity of R0 with respect to ω1 and ω2 will reveal the effects of disparate transit

ridership on the spread of disease. We analyze the effect of N1 and N2 on R0, because we can vary

the geographic size of the patches to affect the population values. We also explore the effects of b1

and b2 on R0, as the contact rates can be mitigated with cleaning strategies.

We discuss the process of deriving the sensitivity indices with respect to ω1 and ω2, while we

guide the reader to the appendix in viewing the rest. The sensitivity index with respect to ω1 is

defined as the partial derivative of R0 with respect to ω1 normalized by multiplying by ω1 over R0.
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When computing this partial derivative we get the partial derivatives of the φij ’s with respect to

ω1.

In order to explore the relationship between the parameters and the disease, we employ nu-

merical simulation of the two-patch model along with sensitivity analysis. We consider change in

parameters b1, b2, ω1, ω2, N1, and N2.

First, we will anlayze the sensitivity index of R0 with respect to both b1 and b2, and investigate

possible values in the range bi ∈ {0, 100}. The two plots in Figure 6 show the sensitivity of R0 at

various values of b1 and b2.

(a) (b)

Figure 6: Sensitivity indices for b1 and b2
(β = .015, n = 342000, ω1 = .01, ω2 = .01, α = .143)

Regardless of whether bi > bj or bj > bi, R0 has similar outcomes dependent on whether either

value is large. From figure 6, in increasing either parameter R0 will increase, and it will increase

quicker at smaller values. Also, notice that the sensitivity index will always be larger when the

parameter with which it is taken with respect to is the larger one.

The graphs in both figures 9 and 7 show the sensitivity indexes of R0 at varying values of ω1

and ω2. These graphs are subject to the parameter estimations for the variables β, N1, N2, b1, b2,

and α. The baseline values for these parameters are the following:

β = .2, N1 = N2 = 342000, b1 = 13, b2 = 32, α = 0.143.

Note that here the N1 and b1 values reflect a high income patch while the N2 and b2 reflect a low

income patch. With these values the above graphs have a few interesting characteristics. When

describing these characteristics we will refer to the parameter the index is being taken with respect

to as the main parameter and the other parameter as the secondary parameter.

First, notice that when the main parameter is zero the sensitivity index is zero. This makes

sense because of the normalization to the index by multiplying by the parameter over R0. Second,

when holding the secondary parameter constant and increasing the main parameter the index
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will increase. On the other hand, when holding the main parameter constant and increasing the

secondary parameter the index will decrease. Finally, any change in the main parameter has a

large impact on sensitivity index magnitude than the same change in the secondary parameter.

Notice how when the main parameter is ω2 the index can increase all the way to 1 while when ω1

is the main parameter the index can only increase to just above 0.4. We believe this is because the

per capita contact rate for patch 2 is so much larger than that of patch 1.

(a) (b)

Figure 7: β = .015, n1 = n2 = 342000, b1 = 47, b2 = 30, α = .143

The plots above analyze the situation where the per capita contact rate of one patch is slightly

larger than that of the other. Both indexes were larger when the parameter they were with respect

to was closer to 1 and the other parameter was closer to 0. This was not affected by which contact

rate was actually larger.

This can be understood because as one ωi gets larger and the other gets smaller the populations

begin to isolate themselves, one is always on the bus and the other in the patches. The individuals

who make a lot of contact with others are sharing the same space and thus more transmissions occur

than when people are evenly distributed based upon contact rate. This result can be illustrated with

the simple numeric example that 47∗47+30∗30 = 3109 contacts > 2820 contacts = 47∗30+47∗30.

This does not happen when the parameter values are reversed and the parameter the indexes are

with respect to approach 0 because of the normalization by the parameter.

The same can also be seen through the simulated results. We investigate the situation where

b1 > b2 by testing different situations where ω1 = ω2 or where ω1 > ω2 by a great amount. Similar

trends occur as in 9, but the magnitude of the effect that ωi can have is lessened.
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(a) (b) (c)

Figure 8: Investigating the relationship of ωi values
(β = 0.015, b1 = 65, b2 = 41.3, α = .143)

Figure 8 showcases the effect that magnitude difference of the ωi values can have on the epidemic

outcome. The plots in (a) and (b) are striking because they exhibit the same behavior, while ωi

values are very different. In simulating many different combinations of ωi values, it became clear

that regardless of the values of ω1 and ω2, that if they are equal, they will have the minimum effect.

Conversely, increasing their magnitude difference, irrespective of which belongs to the patch with

higher bi, results in more disparate epidemic results where the patch with greater bi experiences

the peak of the epidemic larger and sooner than the other patch. With ωi values encroaching

on each other, the disparity between the two patches’ behavior decreases. This sheds more light

on the sensitivity indices from 7, revealing that perhaps the patch-specific R0 terms are changing

quite a lot in magnitude but overall R0 is only affected in the more extreme cases of ωi values.

(a) (b)

Figure 9: β = .015, Ni = 342000, b1 = 70, b2 = 13, α = .143

Figure 9 represents the sensitivity indices of R0 with respect to ω1 and ω2 in the context of

b1 > b2 by a large amount. In the case represented above, patch 1 has a higher contact rate and

thus is more so the instigator of the disease. Increasing ω1 will increase R0, especially as it nears

to 1, suggesting that the averaging effect within the R0 is mostly controlled by patch 1 because of

its higher contact rate, while the increase of ω2 can lead to either a positive or negative sensitivity

index depending on the respective ω1. We can see that when ω1 and ω2 are very different, they

tend to have larger-valued sensitivity indices but that when they are very similar they have a

negligible value. For the sensitivity index of R0 with respect to ω1, different values of ω2 do not
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make a difference at smaller ω1 and only play a slightly larger role at larger values of ω1. These

results can be clarified by interpreting the numerical solutions.

(a) (b)

Figure 10: The effect of magnitude difference in ωi on the outcome of the epidemic
β = .015, n1 = n2 = 342000, b1 = 58.3, b2 = 11.6, α = .143

It is again seen in Figure 10 that, in considering b1 > b2 with a larger difference, that ω1 and

ω2 being closer in magnitude (as in 10(a)) results in each patch sharing a more similar epidemic

process, when compared with plot (b) where ω1 and ω2 have very disparate values. The results are

very similar to but lesser in magnitude than in Figure 9. The patch with the lower contact rate

absorbs more of the epidemic when ωi values are not disparate. In the contrary situation, patch

1 is hit by the epidemic much quicker and has a much larger final size of the epidemic compared

to patch 2. This contextualizes the results for sensitivity analysis, in that the averaging of R0

weakens the apparent effects of ωi values, but when investigating on the patch level, it becomes

clear that more disparate ωi values cause more disparate epidemics between patches while similar

ωi values cause the epidemics to trend more similarly, in the presence of largely different contact

rates by patch.
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4 Results

4.1 Satisfaction within Transportation Networks

To examine the impact of limited transportation access on satisfaction, we consider grids in which

only a quarter of the edges can be bus routes. Table 7 presents average total satisfaction of

dimension-3 grids optimized for high-income neighborhoods and optimized for everybody.

Table 7: Average Satisfaction Values: 3x3 Grid

Optimization for Average Satgrid

High-income 0.484047

Everybody 0.713985

As seen in Table 8, the aforementioned trend persists in the dimension-4 grid.

Table 8: Average Satisfaction Values: 4x4 Grid

Optimization for Average Satgrid

High-income 0.712302

Everybody 0.853852

We found that, on average, the satisfaction of a city optimized for all income groups is about 0.23

points higher than a city optimized for only high-income groups. When bus routes are concentrated

in high-income regions, low-income neighborhoods become isolated or disconnected from their

places of interest. In other words, their satisfaction is much lower than the satisfaction of high-

income neighborhoods, resulting in a low total-satisfaction for the entire community.

4.1.1 Transit Parameters Generated from the Transportation Networks

We use Equation (22) in order to generate ωi values from the transportation networks. Table 9

shows the average ωi values for high- and low-income neighborhoods based again on dimension-3

grids optimized for high-income neighborhoods or optimized for everybody.

Table 9: Average ωi Values by Income Group: 3x3 Grid

Optimization for ωi for High-Income ωi for Low-Income

High-income 0.0092 0.0112

Everybody 0.0086 0.0124

We do the same for dimension-4 as seen in Table 10. As the grid grows larger, values are more

comparable to what would be a realistic proportion of the 14-hour active period to spend in transit.
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Table 10: Average ωi Values by Income Group: 4x4 Grid

Optimization for ωi for High-Income ωi for Low-Income

High-income 0.0197 0.0116

Everybody 0.0173 0.0234

Table 11: Average satisfaction and ωi values

wlow
(Optimized for)

Average
Satgrid

ωi for
High-Income

ωi for
Low-Income

wlow = 0.2
(High-income)

0.712 0.0197 0.0116

wlow = 0.5
(Everybody)

0.854 0.0173 0.0234

The proportion of time high-income residents spend on the bus decreases on average when

the public transportation network is optimized for everybody. In cases where the transportation

routes are predominantly located in low-income areas, connected destinations contribute less to

the satisfaction of high-income residents, resulting in lower proportions of time spent on public

transit. On the other hand, when public transit is optimized for everyone, low-income residents

spend a greater proportion of time on public transit, about 0.011 points more (Table 10). This

means residents spend a greater amount of time on the bus if destinations connected by bus routes

contribute to their satisfaction. Because we used the Kohl model to determine the placement of high

and low-income areas, high-income neighborhoods are generally located near desirable destinations

and low-income neighborhoods are situated farther away from desirable destinations. As a result,

transportation networks have a greater effect on the ridership of low-income neighborhoods, as

measured by the proportion of time spent on the bus, than on high-income neighborhoods.

122



Figure 11: Transportation Network: Optimization for High-income (Wlow=0.2)

Figure 12: Transportation Network: Optimization for Everybody(Wlow=0.5)

Figures 11 and 12 display the same grid but are optimized for different income groups. It is

easy to see that by the layout of the Kohl model, low income groups, on average, have to travel

farther to reach destinations of interest.
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5 Discussion

Cities resembling the Kohl model may be heavily dependent on public transit systems. Modern

cities seem to prioritize high-income neighborhoods when developing public transit systems. We

examine what transportation systems look like when they are optimized for both high-income and

low-income groups. By generating transportation systems under varied optimization schemes, we

produce influential results. The data shows that overall satisfaction of our theoretical city is higher

when transportation networks are designed to serve both income groups equitably. By equitably,

we are referring to vertical “equity of opportunity,” meaning that marginalized people should be

identified and then given consideration in planning so they have adequate access to education and

employment opportunities through the transportation system [13]. We do this by identifying low-

income patches and setting our optimization weight to be 0.5. Because we use the Kohl model in

distributing nodes and patches on our grid, it is given by default that low-income neighborhoods

are less connected to desirable destinations. The more frequent placement of routes in low-income

areas is a result of the optimization for everyone, and it produces the greatest increase in overall

satisfaction when compared with placement in predominantly high-income areas. Our finding

reinforces the common understanding within transportation equity literature that “accessibility-

constrained people tend to gain relatively more from a given transportation improvement” [13].

Therefore, in optimizing for high-income neighborhoods and thus ignoring the needs of low-income

neighborhoods, the overall satisfaction of the city suffers.

Ignoring the transit needs of low-income neighborhoods brings implications from the epidemic

model. Using the data generated from the simulations as parameters, we came to interesting

conclusions. Transportation networks optimized for high-income neighborhoods resulted in more

disparity in ridership (measured by proportion of active period spent on bus) between the two

income classes, compared with when optimizing for everyone. In other words, the average type-

specific ωi values generated by the transportation simulations were more disparate in optimizing

for high-income groups when compared with ωi values generated from the optimization for every-

one. Sensitivity analysis on the basic reproduction number with respect to ω1 and ω2 showed that

the relationship between ωi values significantly affects the shapes of the patch-specific epidemics,

while their contribution to the global basic reproductive number is relatively negligible when com-

pared with contact rates. This makes sense in the context of the averaging property of our basic

reproductive number.

The magnitude difference between ωi values is what impacts the patch-specific epidemics. When

the contact rates of patches are disparate, patches with low contact rates benefit from limited

interaction with individuals with high contact rates, exhibiting a smaller final size and a smaller

and later peak time. When decreasing the magnitude difference between ωi values, the disparities
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between the patches are lessened. While the intensity of the epidemic in the patch with the lower

contact rate worsens as ωi values are more equal, the implementation of cleaning and ventilation

procedures to effectively lower contact rate while in transit would mitigate this effect. Equal

mixing contributes to more equitable epidemic dynamics. Thus, the transportation networks that

are optimized for everyone would generate transit parameters that result in less disparate epidemic

outcomes when compared with the former. We can conclude that in making transit more accessible,

useful, and desirable to all income groups, health disparities across the city are lessened.

The argument then becomes that we should optimize transportation networks for vertical equity,

due to all the benefits of mass transit: sustainability, higher equity of opportunity, lower congestion,

and a returns to scale that ensures the transportation system will have even more resources available

to fund it. With increased ridership, transit systems will have more money available to them. Along

with improved routes and service, transit systems must ensure that ventilation and cleanliness are

prioritized. While the contact rates used in our implementation of the model were patch-specific

averages based on previous literature, other works have employed differing contact rates while on or

off the public transit systems. We acknowledge the role that transit can play in spread of disease,

as we cited previous literature in the introduction. These were resulting from poor ventilation or

cleanliness strategies, so we suggest that in investing money in lowering contact rates on subway,

we can create more equitable transportation networks as well as mitigate health disparities across

the city. Cleaning procedures on public transit should be implemented, as they may affect the

total number of infections in a neighborhood. Then, we can heighten access to transportation and

produce more equitable disease outcomes while not globally increasing the spread of disease.

In considering future work, we must point out some of the simplifications made in this report

in order to to highlight the role of transportation networks in disease spread. For example, in

the transportation model, we assumed attractiveness of destinations do not take negative values.

Future work could incorporate the negative effects on satisfaction that being located near certain

destinations may have, as is assumed in much of urban economics literature [8]. As for the mathe-

matical model, future work should focus on sensitivity analysis of final size equations with respect

to the ωi parameter. We hope to incorporate more sophisticated residence times to keep track of

the amount of time people spend in a given patch [30]. Simulation of more patches for the multi-

patch model would generate new results to incorporate the concept from Figure 5. Analytically,

exploring the basic reproductive number for a 3-patch system, while varying the transportation

connectivity between the three patches, would allow unique insight into the dynamics of patches

that are central places for mixing between many groups to occur. With ideas of “walkability”

emerging in urban planning literature, we plan to incorporate walking time into transportation

satisfaction, as well as multi-modal transit such as subway, commuter rail, and bus. Adding more
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refined detail to nodes would consider the explicit inclusion of health centers, food centers, job

centers, shopping districts, public amenities, and schools, in order to measure key forms of access.

Likewise, future work could incorporate middle-income as well as mixed-income patches and de-

mographic information of patches. In this way, we could make use of already-existing measures

of access and utility within economics, such as the Gini coefficient or Shannon’s diversity indices.

In this way, we can allow the creation of transit networks that are more useful, accessible, and

desirable to everyone.
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Appendix

A Robustness Check of Contact Probabilities

This work is to ensure that the sum of the contact probabilities is 1, as it should be when exhausting

all possible options.

n∑

k=1

(PAiAk
+ PAiAk

) =
n∑

k=1

PAiAk
+

n∑

k=1

PAiAk

=
∑

k∈Ci


 bkτkNk∑
m∈Ci

[bmτmNm]
τi


+

∑

k∈Ci


 bkωkNk∑
m∈Ci

[bmωmNm]
ωi




=




∑
k∈Ci

[bkτkNk]

∑
m∈Ci

[bmτmNm]


 τi +




∑
k∈Ci

[bkωkNk]

∑
m∈Ci

[bmωmNm]


ωi

= τi + ωi

= 1

Therefore,
n∑

k=1

(PAiAk
+ PAiAk

) = 1.
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B Caclulating the Basic Reproductive Number

B.1 One-Patch System

Ṡ1 = −B1

İ1 = B1 − αI1

Ṙ1 = αI1

Disease Free Equilibrium: (S1, I1, R1) = (N1, 0, 0)

F = B1
∂F

∂I1
|DFE = F = βb1(PA1A1

+ PA1A1
)

V = αI1
∂V

∂I1
|DFE = V = α V −1 =

1

α

Define φ11 = PA1A1
+ PA1A1

. Then

FV −1 = R0 =
βb1φ11

α

Note that in the case of a one patch system φ11 = 1 and thus the R0 = βb1
α .

B.2 Two-Patch System

Ṡ1 = −B1

İ1 = B1 − αI1

Ṙ1 = αI1

Ṡ2 = −B2

İ2 = B2 − αI2

Ṙ2 = αI2

Disease Free Equilibrium : (S1, I1, R1, S2, I2, R2) = (N1, 0, 0, N2, 0, 0)
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F =



B1

B2


 J (F )|DFE = F =




βb1(PA1A1
+ PA1A1

) βb1N1

N2
(PA1A2

+ PA1A2

βb2N2

N1
(PA2A1 + PA2A1) βb2(PA2A2 + PA2A2)




V =



αI1

αI2


 J (V )|DFE = V =



α 0

0 α


 V −1 =




1
α 0

0 1
α




Define φ11 = PA1A1
+ PA1A1

, φ12 = PA1A2
+ PA1A2

, φ21 = PA2A1
+ PA2A1

, and φ22 =

PA2A2
+ PA2A2

.

FV −1 =




βb1φ11

α
βb1N1φ12

αN2

βb2N2φ21

αN1

βb2φ22

α




Consider the characteristic equation

|FV −1 − λ| =

∣∣∣∣∣∣∣

βb1φ11

α − λ βb1N1φ12

αN2

βb2N2φ21

αN1

βb2φ22

α − λ

∣∣∣∣∣∣∣

= (
βb1φ11

α
− λ)(

βb2φ22

α
− λ)− (

β2b2φ21N2N1b1φ12

α2N2N1
)

=
β2b1φ11b2φ22

α2
− λβb1φ11

α
− λβb2φ22

α
− β2b2φ21b1φ12

α2
+ λ2

= λ2 − λβb1φ11 + βb2φ22

α
+
β2b1φ11b2φ22 − β2b2φ21b1φ12

α2

The eigenvalues are as follows:

λ =
βb1φ11 + βb2φ22 ±

√
(βb1φ11 + βb2φ22)2 − 4(βb1φ11βb2φ22 − βb2φ21βb1φ12)

2α

Define Rijτ = βbi
α PAiAj

and Rijω = βbi
α PAiAj

R0 =
(R11τ +R11ω) + (R22τ +R22ω)

2

+

√
((R11τ +R11ω) + (R22τ +R22ω))2 − 4((R11τ +R11ω)(R22τ +R22ω)− (R21τ +R21ω)(R12τ +R12ω))

2

This simplifies to:

R0 =
(R11τ +R11ω) + (R22τ +R22ω) +

√
((R11τ +R11ω)− (R22τ +R22ω))2 + 4(R21τ +R21ω)(R12τ +R12ω)

2
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C Final Size Equations

Consider a two-patch system with total population of patch i being Ni = Si(t) + Ii(t) +Ri(t) and

incidence rate of patch i being Bi(t) = βbiSi[Σ
n
k=1(PAiAk

Ik
Nk

+ PAiAk

Ik
Nk

)].

Ṡ1 = −βb1S1

[
(PA1A1 + PA1A1)

I1
N1

+ (PA1A2 + PA1A2)
I2
N2

]

İ1 = βb1S1

[
(PA1A1

+ PA1A1
)
I1
N1

+ (PA1A2
+ PA1A2

)
I2
N2

]
− αI1

Ṡ2 = −βb2S2

[
(PA2A2

+ PA2A2
)
I2
N2

+ (PA2A1
+ PA2A1

)
I1
N1

]

İ2 = βb2S2

[
(PA2A2 + PA2A2)

I2
N2

+ (PA2A1 + PA2A1)
I1
N1

]
− αI2

Note that the total population of both patches, N1 and N2 is constant.

In investigating these equations, we see:

(Si + Ii)
′(t) = −αIi (27)

If Si ≥ 0 and Ii ≥ 0, then (Si + Ii)(t) must be a smooth, non-negative, decreasing function,

meaning it will go to a limit.

lim
t→∞

(Si + Ii)(t) = Si∞, a constant.

Taking the derivative of both sides,

lim
t→∞

(Si + Ii)
′(t) = 0

∴ Ii∞ = lim
t→∞

Ii(t) = 0

At t→∞, there are no more infected individuals.

Ni − Si∞ is the final size of the epidemic in patch i, or the total number of unique infections

in patch i over the course of the disease outbreak.

We can integrate both sides of equation 27 for each patch for the entire time period, first for

patch 1:

∫ ∞

0

(S1 + I1)′(t)dt = −α
∫ ∞

0

I1dt

By the fundamental theorem of calculus,

S1∞ + I1∞ − S1(0)− I1(0) = −α
∫ ∞

0

I1dt
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Because I1∞ = 0 and N1 = S1(0) + I1(0),

∫ ∞

0

I1dt =
N1 − S1∞

α
. (28)

The same can be done for patch 2:

∫ ∞

0

(S2 + I2)′(t)dt = −α
∫ ∞

0

I2 dt

S2∞ + I2∞ − S2(0)− I2(0) = −α
∫ ∞

0

I2dt

∫ ∞

0

I2dt =
N2 − S2∞

α
. (29)

We can then take the equations for Ṡ1 and Ṡ2, divide by S1 and S2 respectively, and integrate:

First, for patch 1:

∫ ∞

0

Ṡ1

S1
=

∫ ∞

0

−βb1
[(
PA1A1

+ PA1A1

) I1
N1

+
(
PA1A2

+ PA1A2

) I2
N2

]
dt

Because N1 and N2 are constant with respect to time, they can be taken out of the integral

along with all the other parameters.

ln

(
S1(0)

S1∞

)
=
βb1
N1

(
PA1A1 + PA1A1

) ∫ ∞

0

I1 dt+
βb1
N2

(
PA1A2 + PA1A2

) ∫ ∞

0

I2 dt

Substituting in equations 28 and 29 for
∫∞

0
I1 dt and

∫∞
0
I2 dt, we result in a transcendental

equation for S1∞ as a function of itself as well as S2∞ and parameters of interest.

ln

(
S1(0)

S1∞

)
=
βb1
α

(
PA1A1 + PA1A1

)(
1− S1∞

N1

)
+
βb1
α

(
PA1A2 + PA1A2

)(
1− S2∞

N2

)

ln

(
S1(0)

S1∞

)
= (R11τ +R11ω)

(
1− S1∞

N1

)
+ (R12τ +R12ω)

(
1− S2∞

N2

)
(30)

We can mimic the process for patch 2 as follows:

∫ ∞

0

Ṡ2

S2
=

∫ ∞

0

−βb2
[(
PA2A1 + PA2A1

) I1
N1

+
(
PA2A2 + PA2A2

) I2
N2

]
dt

135



Then,

ln

(
S2(0)

S2∞

)
=
βb2
N2

(
PA2A1

+ PA2A1

) ∫ ∞

0

I1 dt+
βb2
N2

(
PA2A2

+ PA2A2

) ∫ ∞

0

I2 dt

Substituting in equations 28 and 29 for
∫∞

0
I1 dt and

∫∞
0
I2 dt, we result in a transcendental

equation for S2∞ as a function of itself as well as S1∞ and parameters of interest.

ln

(
S2(0)

S2∞

)
=
βb2
α

(
PA2A1

+ PA2A1

)(
1− S1∞

N1

)
+
βb2
α

(
PA2A2

+ PA2A2

)(
1− S2∞

N2

)

ln

(
S2(0)

S2∞

)
= (R21τ +R21ω)

(
1− S1∞

N1

)
+ (R22τ +R22ω)

(
1− S2∞

N2

)
(31)

Equations 30 and 31 together describe the final size relations for the two-patch model.
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D Sensitivity Indices

We define the partial derivatives as follows:

∂φ11

∂ω1
= σ12 + 2θ121, ∂φ11

∂ω2
= ε12, ∂φ12

∂ω1
= µ12 + θ212, ∂φ12

∂ω2
= ψ21 + θ211,

∂φ21

∂ω1
= ψ12 + θ122, ∂φ21

∂ω2
= µ21 + θ121, ∂φ22

∂ω1
= ε21, ∂φ22

∂ω2
= σ21 + 2θ212

where we define εij ,σij , θijk, γij , and ψij to be:

εij =
bibjninj(1− ωi)2

(bini(1− ωi) + bjnj(1− ωj))2
− bibjninjω

2
i

(biniωi + bjnjωj)2

σij =
b2in

2
i (1− ωi)2

(bini(1− ωi) + bjnj(1− ωj))2
− b2in

2
iω

2
i

(biniωi + bjnjωj)2

θijk =
biniωk

biniωi + bjnjωj
− bini(1− ωk)

bini(1− ωi) + bjnj(1− ωj)

γij =
biniω

2
i

biniωi + bjnjωj
+

bini(1− ωi)2

bini(1− ωi) + bjnj(1− ωj)

µij =
bibjninj(1− ωi)(1− ωj)

(bini(1− ωi) + bjnj(1− ωj))2
− bibjninjωiωj

(biniωi + bjnjωj)2

ψij =
b2in

2
i (1− ωi)(1− ωj)

(bini(1− ωi) + bjnj(1− ωj))2
− b2in

2
iωiωj

(biniωi + bjnjωj)2

Which, plugging in, and multiplying by ωi

r0
, results in equations for SIω1

and SIω2
as follows:

SIω1 =
ω1

r0

∂r0

∂ω1

=
ω1

2r0

(
b2β

∂φ22

∂ω1
+ b1β

∂φ11

∂ω1
+ 2(b2β

∂φ22

∂ω1
+ b1β

∂φ11

∂ω1
)(b1βγ12 + b2βγ21)

α

)

−
4
(
b1b2β

2 ∂φ22

∂ω1
γ12 − b1b2β2φ21

∂φ12

∂ω1
− b1b2β2 ∂φ21

∂ω1
φ21 + b1b2β

2γ21
∂φ11

∂ω1

)

α2
/


2

√(
b1βγ12 + b2βγ21

α

)2

− 4

(
b1b2β2γ12γ21 − b1b2β2φ21φ12

α2

)
 (32)
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SIω2
=
ω2

r0

∂r0

∂ω2

=
ω2

2r0

(
b1β

∂φ11

∂ω2
+ b2β

∂φ22

∂ω2

)
+ 2

(
b1β

∂φ11

∂ω2
+ b2β

∂φ22

∂ω2

)
(b1βγ12 + b2βγ21)

α

−
4
(
b1b2β

2 ∂φ11

∂ω2
γ21 − b1b2β2φ21

∂φ21

∂ω2
− b1b2β2 ∂φ12

∂ω2
φ21 + b1b2β

2γ12
∂φ22

∂ω2

)

α2
/


2

√(
b1βγ12 + b2βγ21

α

)2

− 4

(
b1b2β2γ12γ21 − b1b2β2φ21φ12

α2

)
 (33)

138


