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Abstract 

We analyzed the dynamics of an epidemic in a population infected 
with Streptococcal pyogenes (S. pyogenes), the causative agent in strep 
throat, with a Susceptible-Injected-Susceptible (S-I-S) model that in­
cludes an extra class of infectious carriers. Our model represents a 
three dimensional nonlinear differential equation system, which de­
scribes the spread of the disease in a population with three epidemi­
ological classes: susceptible (S), infected (I) and beta-hemolytic car­
riers (C). We focus on the impact that the classes I and C have on 
S, and the rate at which groups move in and out of the infectious 
state. Lastly, we study the long-term dynamics of the disease in the 
population. 
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1 Introduction 

Humans are a natural reservoir for the beta-hemolytic group A Streptococ­
cus; transmission from person to person is frequently associated with an 
asymptomatic carrier who is colonized in the nasopharynx [10]. An asymp­
tomatic carrier is one who carries the infection but does not develop the 
symptoms of the infection.Streptococcaceae is a family made up of gram pos­
itive bacteria: round cocci that usually grow in chains of various lengths. 
Consisting of A, B, C, D, ... ,V groups, of these A, Band D are of great­
est pathogenic significance. Group A streptococcus is classified as the most 
pathogenic to man; the species S. pyogenes causes a variety of infections in 
humans including pharyngitis, tonsilitis, sinuitis, impetigo, rheumatic fever, 
and meningitis [6,10,12]. In 1895, Marmorek observed that some of the strep­
tococci were hemolytic, and Schottmuller in 1903 described pathogenic and 
non-pathogenic streptococci that were not hemolytic [6]. A hemolytic strep­
tococci damages the cell; the process is most easily seen in red blood cells 
in which the hemolytic process liberates hemoglobin from the red blood cell. 
These were divided into three groups depending on the amount of hemol­
ysis produced on blood agar. It is questionable how one might carry such 
damaging cells naturally without any symptoms. 

• Alpha Streptococci produce a zone of greenish discoloration around the 
colony that is 1-2 mm wide and shows partial hemolysis; 

• Beta Streptococci produced a completely hemolyzed, clear colorless 
zone 2-4 mm in diameter; 

• Gamma types produce no change in the medium surrounding the colony 
[6,10]. 

Since the beginning of the use of antibiotics, strep infections have been 
easily controlled. Prior to antibiotics being available, no treatment for strep 
infections prevailed; more serious forms of the infection often occured. By 
the 1920's hemolytic Streptococcus had been established as the causative 
agent of several forms of severe tonsilitis. Prior to this, much of the research 
focused on the tonsils area as "the focus of infection"; this led to widespread 
tonsillectomy to remove the source of infection. Gradually, though, it was 
found that this did not protect against subsequent streptococcal infections: 
colonization and infection can occur throughout the nasopharynx [6]. 
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Therefore we are led to believe that transmission from person to person 
occurs from asymptomatic infected individuals and symptomatic individuals. 
Let the symptomatic group represent an "infected" group; a large percentage 
of individuals will receive treatment by antibiotics for their condition and will 
no longer be infectious. If we let the asymptomatic individuals represent a 
carrier group, healthy individuals possibly ignorant of their infection, this 
group could have a significant impact on an epidemic. This leads us to ask 
an interesting question, such as "what impact does a beta-hemolytic carrier 
group have on a susceptible population? What initial amount of carriers 
must be present in the population to have any significant effect?" 

Streptococcus can be transmitted through direct contact, such as touch­
ing a contaminated hand to the mouth, or inoculation by breathing in in­
fected air droplets. Crowding is a definite factor in the spread of the disease 
since the closer a group is to the infected, the more likely that infected air 
droplets released in a cough or sneeze will successfully infect [2,6,7]. Spread 
is common in families and may be accentuated by crowding in institutions 
such as schools and military barracks [2]. The epidemiology of a group can 
be tested through a simple throat-swab, and plated on blood agar [10]. In­
fections and carrier status is more common amoung younger age groups; half 

.. the children have been shown to carry group A streptococci in their throats 
during a particular school year [2,3,6]. A study on Malaysian school children 
in 1982 took specimens from 432 symptom-free individuals mixed from 5 dif­
ferent schools, and included various races and socio-economic groups. Carrier 
rates averaged 9% (39/432). In Japan, 2,527 specimens were taken from pri­
mary and middle school children; 686 group A carrier/infecteds occured; and 
66.2% of these experienced cases of pharyngitis [8]. We can conclude that 
33.8% must be aymptomatic carriers [8]. We are assuming for our model of 
the disease that approximately 6% of the population may occur as carriers; 
this takes into account that carrier rates are much higher amoung children 
and rare amoung adults. Even though carriers seem to represent a small 
portion of the population, we must take into account their significance in the 
spread of the disease. S. pyogenes may be harbored for years in a carrier 
unnoticed, yet this individual may infect others on a daily basis. 
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2 The Model 

Now, we are going to present two models that describe the dynamic of the 
population with streptococcus. The first model presents three groups: sus­
ceptible (B), infected (1) and carriers (e). The second one includes four 
groups. Instead of just one infected group, the second model has two in­
fected groups, infected susceptible ( Is) and infected carriers (Ie). 

2.1 Introduction to the model 

A 

1 f3 S I +'YSC 
N N , C!J.--PI S .... 

0"1 

JlS 61 EC 

Figure 1: Flowchart describing the First Model. 

The equations that describe our first model are the following: 

dB Bl Be 
dt - A + 01 - (13 N + 'YJii) - Ji's 

dl Bl Be 
13 N + 'Y N - (a + J1 + 8)1 + Ee dt 

de 
dt 

- 81 - (E+J1)e 

(1) 

(2) 

(3) 

where B refers to the susceptible class, 1 to infected and e to carriers. N is 
the total population, where N = B + 1 + e. 
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N is not necessarily constant since a constant number of new recruits 
are added to the susceptible class only and death naturally occurs out of all 
classes. 

In our second model, susceptibles move into and out of Is after being 
infected by an infective or carrier; a carrier will still move into the "sick" 
infectious class if their immune system weakens; an individual can move 
from Ie to susceptible when the symptoms have been noticed and treated by 
antibiotics; or as mentioned earlier, a small percentage can recover naturally 
to the susceptible class. An individual can move from Is to carrier status if 
the infection goes untreated by antibiotics; some infections go unnoticed at 
all, and this movement between classes occurs rapidly. Also, in this model, 
carriers C are not infectious. 

J-L Ie J-L C 

r r 
~ p6Ie ~ 
~ -.. -"""---=-=----~ 

EC 

(l-p) 6 Ie (l-q) 0- Is 

f3 SIs + Y S Ie lliJ -.. _N __ N ___ [lJ 
i l q 0- Is l 
AJ-LS J-Lb 

Figure 2: Flowchart describing the Second Model. 

497 



The equations that describe our second model are the following: 

dS SIs SIc (4) 
dt 

A + qo-Is + (1 - p)8Ie - (f3 N + "IN) - J.1's 

dIs SIs SIc (5) - - f3- + "1- - (0- + J.L)Is 
dt N N 
dC 

(1 - q)o-Is + p8Ie - (f + J.L)C (6) 
dt 

-

dIe 
fC - (8 + J.L)Ie (7) - -

dt 

where S is susceptible, Is infected susceptible, C carriers and Ie infected 
carriers. N is the total population, where N = S + Is + C + Ie. 

From both models we get that 

dN 
A - J.LN 

dt 
-

=? N(t) ( A) t A - No-- e-J.L +-
J.L J.L 

Then, 

. A 
hmN(t) =-. 
t->oo J.L 

2.2 Discussion of the Parameters 

We have the following parameters: 

1. J.L: natural death rate out of all classes. 

2. A: recruitment rate into susceptible class. 

3. infection rates 

(a) f3 = cpPl: rate at which an infected can infect a susceptible. 

(b) "I = cpP2 : rate at which a carrier can infect a susceptible. 

( c) cp is the contact rate per person per unit time. 
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(d) PI is the probability of infection given a contact with an infectious 
(usually very big) and P2 is the probability of infection given a 
contact with a carrier (usually very small). 

4. recovery rate (n) 

(a) (J' = nQ: rate at which the infectious individual recovers to the 
susceptible class. 

(b) 8 = 0(1 - Q): rate at which infectious moves into carrier class. 

(c) Notice that 0 = (J' + 8. Usually (J' > 8, that is, Q> !, since there 
are more individuals in I going to S than to C . 

(d) Q is the probability that recovered infectives go to Sand 1 - Q 
the probability that recovered infectives go to C. 

( e) ~ yr: average time it takes to be recovered if you are sick. 

5. E: rate at which a carrier moves into the infectious class. 
~ yr: average time for carrier relapse into infectious class. 

The susceptible class is completely free of streptococcus, and will fall 
prey to infection by direct inoculation, which occurs by close contact with 
an infected or carrier who is colonized in the nasopharynx. A susceptible can 
obtain an infection by a strain found in an infected or a carrier; naturally, an 
infected individual is more contagious than a carrier since their throat area 
carriers a much larger density of bacteria to transfer. A strain found in the 
infected individual may also be a more contagious and virulent serotype. An 
individual that carries streptococcus as part of their natural flora may be 
able to do so because of a lowered virulence in the strain they carry; their 
immune system can hold it in check [11]. However, we must consider that a 
carrier or infected individual may be ignorant of their status and so take no 
precautions against spreading the disease. A member of the infectious class 
moves to the susceptible class by antibiotic treatment or a natural recovery 
that kicks out the streptococcus completely. However, natural recovery may 
lead to a colony established in the nasopharynx; this condition results in 
carrier status. 

Next we study how the carrier class moves into the infectious class. A 
carrier is already infected and so needs no outside inoculation; this class 
moves into the infectious "sick" category when the immune system is com­
promised by inadequate nutrition and sleep, stress, or an infection by a virus 
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that diverts the immune system's recources. Within 24 hours the colony can 
grow out of control and the individual can move to the infectious class; the 
individual can recover without treatment back into the carrier class, or with 
antibiotic treatment will move into the susceptible class. First, we make the 
assumption that a great majority of infectious that recover to the susceptible 
class do so by antibiotic treatment. Second, the assumption that a carrier 
that moves to the infectious class can recover without antibiotics to the sus­
ceptible class, but a carrier must move through the infectious class first; the 
movement of carriers directly into susceptibles will not be studied in this 
model. We may attribute this necessary step into the infectious class first to 
higher levels of antibodies acquired through a bout of illness to defeat the 
streptococcus infection entirely. However, we hypothesize that the carrier 
has a greater tolerance to the streptococcus and can move into the infectious 
class and recover out quickly; a susceptible individual will need more time 
to recover since their immune system is not familiar with streptococcus. 

For the second model we are going to use the same parameters, the only 
difference is that in this model we have two more parameters p and q de­
scribed as follows: 

1. p: proportion of Ie that recover to C class, then, 1-p is the proportion 
of Ie that recover to S class; 

2. q: proportion of Is that recover to S class, then, 1- q is the proportion 
of Is that recover to C class. 

2.3 Estima~ion of the Parameters 

Parameter values vary for different outbreaks. The average estimates we will 
be using are: 

1. fJ = 7~ yr-1
. That means that on average it takes 70 years for an 

individual to die. 

2. A = fJNo, where No is the initial size of the population. 

3. infection rates 

(a) f3 = </JP1 . 

(b)ry = </JP2 . 
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(c) ¢>: approximately from 1 to 10 times a day. 

(d) g: from 0.89 to 0.99 
P2: from 0.001 to 0.05. 

4. recovery rate(S1) 

(a) (7 = 364 yr-1 . 

(b) 8 = 1 yr-1. 

5. E: from 1 yr-1 to 4 yr-1• 

2.4 Determining Ro 

2.4.1 First Model 

The average number of infecteds that one infected individual produces during 
the entire infectious period in an entirely susceptible population is known as 
Ro. In order to find the Ro for our first model, we have to find values or 
equilibrium points for S, 1, 0 in the following algebra equations 

( 
S1 SO) A + (71 - f3 N + '"Y N - J-LS = 0 

S1 SC 
f3 N + '"Y N - ((7 + J-L + 8)1 + EC = 0 

81-(E+J-L)C=0. 

One of the solutions is 

We will call (SO, [0, CO) the Disease Free Equilibrium (DFE) point, be­
cause it represents the dynamics of the population when t ----7 00 and 1 = 

C = 0, meaning that there are only susceptibles in the population. The DFE 
is important for the analysis of the dynamics of the population because we 
can calculate Ro with it. 

Now, we are interested to know whether the small deviations away from 
the equilibrium points will grow larger (instability) or decay (stability). We 
have to recall that in a continuous model, an equilibrium point will be stable 
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provided that all the eigenvalues (X s) of J are negative (if real) or have 
negative real parts (if complex) [5]. That is to say that, 

Re Ai < 0, Vi. 

As the reader can see, we are studying a model with constant recruitment 
rate and logistic total population size K. Then, by (8), we can set K = ~. 
Now, we have the following limiting system: 

d1 
dt 

dC 
dt 

f3 (K-1-C)1 (K-1-C)C ( 8)1 C 
- K +')' K - O"+J.L+ +c 

81 - (c + J.L)C. 

(9) 

(10) 

Using the Castillo-Chavez, Thieme Theorem [1], we say that the 
dynamical behavior of the systems (1) - (3) and (9) - (10) is identical. So, 
to determine the stability of the DFE point we first calculate the Jacobian 
matrix of the system (9) - (10). This leads to 

To prove that the other two eigenvalues are negative, the following conditions 
must be satisfied: 

Trace(JL) < 0 

Det(JL) > 0 

Thus we need to have 

Trace(JL) 

Det(JL) 
- (f3 - (J.L + 0") - 8) - c - J.L < 0 

')'8 + f3(c + J.L) - (J.L(8 + c + J.L) + O"(c + J.L)) > 0 

{:} ')'8 + f3(c + J.L) < 1 
J.L(8 + c + J.L) + O"(c + J.L) 

From the latter condition we get that 

Ro = ')'8 + f3 (c + J.L) 
J.L (8 + c + J.L) + 0" (c + J.L) 
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for our first model. Notice that Ro can be rewritten as 

Ro = (3(E + p,) + "18 
(p, + a)(E + p,) + p,8 

(11) 

Thus, Ro < 1 implies (3-(p,+a)-8~ < 0, which implies Trace(JL ) < O. 
So, (S°,1°, CO) is locally stable when Ro < 1; this will be explained 

biologically in section 3. 
Only when Ro > 1 does there exists an equilibrium point (S*, 1* , C*) 

where 

A 1 -.-
p, Ro 

S* 

1* A (1 1) P, + E 
- P, - Ro . p,+E+8 

C* A( 1 ) 8 
- p, 1- Ro . p,+E+8 

(S*, 1*, C*) will be known as the Endemic Equilibrium (EE) point, be­
cause it represents the dynamics of the population when t ----+ 00 and I or C 
are positive numbers, meaning that there are infected or carriers individuals 
in the population. 

2.4.2 Second Model 

To obtain the Ro for the second model we will study the stability of the DFE 
point. First we have to solve the following system: 

A + qaIs + (1- p)8Ic - ((3S~s + "IS~c) - p,S = 0 

SIs SIc 
(3 N + "IN - (a + p,)Is = 0 

(1 - q)aIs + p8Ic - (E + p,)C = 0 

EC - (8 + p, )Ic = o. 
From this we get that the DFE is 

(SO, Is, CO, IN) = (~, 0, 0, 0) 
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In this case, to determine the stability of the DFE we will consider differ­
ent values for p and qj and use the Routh-Hurwitz Criteria. Now, following 
the same steps that we did determining the stability for the DFE in the first 
model, we get that 

-J-l -13 + q(J a -')' + (1- p)8 

A a j3-p,-(J a ')' 

J(-,O,O,O) = 
p, a (1 -q)(J -(E + p,) p8 

a 0 E -(8 + p,) 

Also, this matrix reduces to a simpler system since it is easy to see that 
one of the eigenvalues, Al = -p, < o. From this point, we will analyze the 
following matrix: 

j3-p,-(J a 

B = (1- q)(J -(E+ p,) p8 

a E -(8 + p,) 

Now, we will calculate Ro for different values of p and q. 

l.q=l. 
In the first case, p = q = 1, the interactions between Ie ---7 S and Is ---7 

C disappear. That is, we will have two separate and closed interactions 
between S ---7 Is and C ---7 Ie. Since there are no born carriers and the 
carrier status is always an acquired condition, C has no recruitment 
rate. This means that biologically, when t ---7 00, C is always zero 
because of the death rate. The second case, a :::; p < 1, q = 1 is similar 
to the first case and we obtain the same results. This leads to the 
standard Ro for an 8-1-8 model 

13 Ro=-­
p,+(J 

We will not study this case, because we are interested in dynamics in 
which there are at least one carrier when t ---7 00. 
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2. p = 0,0 ::; q < l. 
Then, 

13 - ((7 + 1-") o 

(l-q)(7 -(E+I-") o 

o E -(8 + 1-") 

In order to have (SO, Is, Co, Ie) stable in this case, using the Routh­
Hurwitz Criteria, we have to show that all the coefficients ai, i = 1,2,3 
of the characteristic equation of BI are positive and al a2 > a3 [5]. 

(a) Suppose that 

(b) 

a3 = -Det(BI) = ((7 + I-" - j3)((E + 1-")(8 + 1-")) - ')'E(l - q)(7 > O. 

Notice that to have a3 > 0 it is necessary that 

13 < I-" + (7. (12) 

As it turns out, a3 > 0 implies that aI, a2 > 0, by means (12). 

= ((7 + I-" - 13) ( E + 1-") + (E + 1-") (8 + 1-") + ((7 + I-" - 13) (8 + 1-") 

By using (12), we get that a2 > 0 

(c) al = -Trace(BI) = ((7 + I-" - 13) + (E + 1-") + (8 + 1-") 

Also, by (12), we have that al > O. 

(d) To show that aIa2 > a3 we will write a2 as follows, 

a2 = ((7 + I-" - j3)((E + 1-") + (8 + 1-")) + (E + 1-")(8 + 1-"). 

We get 

aIa2 = ((7 + I-" - j3)2((E + 1-") + (8 + 1-")) + ((7 + I-" - j3)(E + 1-")(8 + 1-") + 
((7 + I-" - j3)((E + 1-") + (8 + 1-"))2 + ((E + 1-") + (8 + I-"))(E + 1-")(8 + 1-"). 

Now, it is easy to see that aIa2 > a3. 
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Now, to obtain a3 > 0, 

a3 - (0" + J.t - ,8)((E + J.t)(8 + J.t)) - ')'E(1- q)O" > 0 

- (J.t + o")(E + J.t)(8 + J.t) - ,8(E + J.t)(8 + J.t) - ')'E(1 - q)O" > 0 

,8(E + J.t)(8 + J.t) + ')'E(1- q)O" 1 
=} (J.t + 0") ( E + J.t) (8 + J.t) <. 

Hence, when p = 0, 0 ~ q < 1 

Ro = _,8_ + (1 - q)O" . _E_ . _')'_ 

J.t+0" J.t+0" J.t+E J.t+8 
(13) 

3. 0 < p ~ 1, 0 ~ q < l. 
Following the steps above, we find that Ro is calculated to be 

Ro = _,8_ + (1 - q)O" • ')'E 
J.t + 0" J.t + 0" J.t(J.t + 8 + E) + (1 _ p)& (14) 

Then, if Ro < 1, the only equilibrium point is (80 '!8' Co, Ie). On the 
other hand, if Ro > 1, the EE exists. 

3 Biological Analysis 

In this section we are going to analyze biologically each one of the Ro's that 
we have obtained in the previous section. 

3.1 First Model 

We recall the Ro for our first model, 

Ro = ,8(E + J.t) + ')'8 
(J.t + 0") ( E + J.t) + J.t8 

From this Ro we can see many different characteristics. For example, if 
we take E ---700 or 8 = 0 we obtain the standard Ro for an 8-1-8 model: 

,8 
Ro=-­

J.t+0" 
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That is, when E -+ 00, an individual carrier relapses very rapidly to the I 
class. When 8 = 0 there is no interaction going from I to C, and C has no 
recruitment rate. 

Notice that we can write (11) as follows, 

Ro = (3+'Y~ 
8 . 

f-L + ()" + f-L €+J.L 

Notice that 8 is the rate into C. On the other hand, E+ f-L is the rate out of C. 
Thus, €~J.L gives the "strength" of the C class contribution to an epidemic. 

Assuming that 'Y is greater than f-L, let €~J.L be small. Ro will reduce to 

....fL+ • However, if we let +8 be large, then the Ro will reduce to 'J.., and this p a € J.L J.L 
by assumption is greater than 1. Therefore, if carriers spend enough time 
in the C class, Ro > 1 and the carrier class is sufficient to propagate the 
epidemic. 

From the flowchart of the first model (1) we gather that 

(15) 

Here, the term 

i+1 i 

(J.L+!+8) (J.L~€)' Vi = 0,1,2, ... 

is the probability that an infected goes to C given that this infected have 
been i times in the C class. It is easy to see that, 0 < J.L+!+8 . J.L~€ < 1, 

00 (8 € )i ?= J.L+a+8· J.L+€ 
2=0 

, is a geometric series. So, (15) reduces to 

RO-( (3 +_'Y. 8)( 1 ) 
- f-L + ()" + 8 f-L + E f-L + ()" + 8 1 - J.L+!+8 . J.L~€ 

Notice that the above Ro is equal to (11). 
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3.2 Second Model 

In the previous section we calculated two Ro's when we considered different 
values for p and q. Then let 

1. P1s->c = (~~ql(T: the probability that a member of Is goes to the C 
class instead of the 8 class or dying. 

2. PC->Ic = J.£~€: the probability that a carrier goes to the Ic class before 
dying. 

3. P1c->c = J.£~8: the probability that a member of Ic returns to the . 
C class instead of going to 8 or dying (just for the case in which 
0< p ~ 1, 0 ~ q < 1). 

Now we are going to study the two cases. 

1. P = 0, 0 ~ q < 1 
By (11), we can rewrite Ro as follows, 

where 

(a) L+ : this acts like an "Ro" for the Is class. J.£ (T 

(b) JLh: this acts like an "Ro" for the Ic class. 

Here, if we take E ~ 00, then PC->Ic ~ 1. This means that a member 
of the Is class moves very rapidly to the I c class. If we take both 
E ~ 00 and 8 ~ 00, then PC->Ic ~ 1 and ~ ~ O. This obtains the 
standard Ro for an 8-1-8 model. Therefore, a member of the Is class 
returns rapidly to 8 after passing through the C and Ic classes. 

2. 0 < p ~ 1,0 < q < 1 
In this case, having values for p and q between 0 and 1 will give us 
some particular characteristics for the Ro in this model. Notice that 
o < p ~ 1 implies an interaction of Ic ~ C. There is a considerable 
difference between the first case of this model and the second one. If 
an individual is a member of the Ic class, there is a possibility that 
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this individual will return to the C class many times before going to 
the S class or dying. Directly from the flowchart of the second model 
(2) we gather that 

Ro __ (3_+ 
Jl+a c.: 8' PIs~C' PC~IC) t, CI': €) . (I' ~ 8))' (16) 

The term 

( )
i+1 ( 8)i p,~€ ~, Vi = 0, 1,2, ... 

in (16) is the probability that a carrier visits Ie given that this carrier 
has visited i times in the Ie class. 

S· 0 € ~ 1 mce < (p,+€) • (P,+8) < , 

is a geometric series. Then (16) reduces to 

Ro = _(3_ + (1 - q)a . _'Y_ . 1 
Jl + a Jl + a Jl + 8 1 _ (_€ _ . ~) 

(p,+€) (P,+8) 

Notice that the above Ro is the same one we obtained analytically in 
the previous section. 

Now, if we consider E ---7 00 and p ---7 0, then Pe-4I c ---7 1 and P1c-4e ---7 

O. Biologically, this means that a carrier will go rapidly to the Ie class 
and from there very rapidly to the S class. If we take 8 ---7 00 then 
it follows that ~ ---7 O. This gives us the standard Ro for an 8-1-8 
model, and consequently the dynamics of Ie ---7 C and Ie ---7 S are very 
rapid. 
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4 Simulations 

f = 1.5, (J' = 364, 6 = 1 
s 

c 

Figure 3: Dynamics considering 2 contacts with infected people per day. 
(First Model) 

Here, even though carriers start as the majority of the population, when 
the carriers move to the I class, it is very likely that they will recover to the 
S class, since (T is large. Notice the stabilization of these three groups over 
the 3-year period. 

f= 4, (J'= 364.999, 6 = 0.001 

Figure 4: Dynamics considering 2 contacts with infected people per day. 
(First Model) 

Notice here that the E large causes carriers to cycle into the I class quickly. 
Once there, only a minute fraction (8 small) may recover back to C. Therefore 
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the large contribution of the C class causes S and I to stablize to the EE 
majority. 

E = 1.5, (T= 364, 0 = 1 

Ie 

c 

S Is 
tl.Ololl/YJI

U 
I I 

Figure 5: Dynamics considering 2 contacts with infected people per day. (Sec­
ond Model with p = 0, q = 0.9) 

First, notice that a large will cause new recruits to cycle through the Is 
class quickly, and a large portion of Is will move to C. There is a build up 
when C contributes to the Ie class, with the absence of the contribution of 
Ie to C (p = 0). Over a 20-year span the Ie and C classes will stabilize to 
the majority. 

f = 4, (T = 364.999,6 = 0.001 

Figure 6: Dynamics considering 2 contacts with infected people per day. (Sec­
ond Model with p = 0, q = 0.9) 

Notice in this simulation, /5 is extremely small and contribution of Ie to 
S is unlikely. E large cycles all carriers into Ie, such that a member of S is 
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likely to cycle to Is, and from there rapidly to C and then rapidly Ie and 
stay there. Our EE shows Ie as the majority over a 5-year span. 

Pcpllhtim 

E = 1.5, (]" = 364, 0 = 1 

flOO Ie 

c 

S Is 

Figure 7: Dynamics considering 2 contacts with infected people per day. (Sec­
ond Model with p = 0.25, q = 0.5) 

Here we consider values of p and q between 0 and 1. Notice that a member 
of Is is equally likely to move to C as it is to move to Is, (q = 0.5). We 
may see this condition only in a population that does not have antibiotics 
readily available, and strep colonies are not immediately killed. Eventually, 
a majority of the population stays in the Ie and C cycle; this occurs over a 
5-year span. 

Popalation 
E = 4, (]"= 364.999, 0 = 0.001 

leon 

Ie 

Is 
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Figure 8: Dynamics considering 2 contacts with infected people per day. (Sec­
ond Model with p = 0.25, q = 0.5) 

Members of S move to Is and eventually up to C. Here, € large cycles C 
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quickly to Ie with little chance of recovery to C. Since 8 is so small, a minute 
fraction will leak from Ie to S. We see that Ie stabilizes to the majority 
over a 5-year span. 

5 Conclusions 

According to Robert W. Quinn, many recent studies indicate that strepto­
coccal infections are much more common than streptococcal disease [6]. It 
appears that most children who are carriers and presumably have streptococ­
cal infections do not develop disease. Theoretically, this leaves only a small 
proportion of susceptibles available for aquisition of the disease, probably 
too few to result in an epidemic. The strains usually found in children would 
appear to be moderately contagious, since about half the children have been 
shown to carry group A streptococci in their throats during a school year. 
The situation described here seems to have a fairly high initial amount of 
carriers; yet an epidemic in the population does not follow. The question 
we may need to ask may be "what effect does a group of susceptibles have 
on a beta-hemolytic carrier population?" We can partly answer some of this 
question from the simulations with high initial carrier groups and low sus­
ceptible groups. Since the infectiousness of the carrier group was constant, 
and antibiotics available keep the flow of infecteds recovering to susceptibles, 
the population was always likely to stabilize to susceptibles larger than both 
carrier and infected groups. Still, fluctuations may appear in a one or two 
year span, as expected in a seasonal disease. Still, we can study a population 
that does not have antibiotics readily available, or is limited only to severe 
cases [7]. "What impact would the absence of antibiotics have on the carrier 
class? Would it grow as a sort of natural immune response?" Absence of 
antibiotics might dramatically increase the recovery rate to the carrier class, 
and decrease the rate to the susceptible class. One might see a situation 
similar to this in a region where antibiotics are not readily available. Since 
medical treatment is readily available to most U.S. schoolchildren, carrier 
rates may be lower. A carrier in a healthy environment does have an advan­
tage in not contracting infections; could this be a selective force? Here we 
will discuss options and further work that can stem from our research. 

Even though at birth one is sterile and free from bacteria, an individual 
will gradually colonize different types of bacteria throughout a lifetime; age 
and exposure, hormonal changes, genetics, and environment play a role in 
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the natural bacterial flora of an individual throughout their lifetime. At any 
given time, the natural flora of a percentage of the population may be colo­
nized with streptococcus. Given the following evidence, it seems more likely 
that a group of susceptibles introduced into a population of beta-hemolytic 
carriers is more likely to cause an epidemic than vise-versa. U.S. Navy records 
from WWII show susceptible recruits were introduced at weekly intervals into 
training centers where there were large numbers of infected individuals. In 
the years 1942 to 1945, at least a million cases of streptococcal infections 
occured. Navy recruits, 18 to 21 years of age, came from widely separated 
regions, many from rural areas. Serotypes 19, 17, and 3 are known pre­
dominantly as Army and Navy strains and rarely are they found in civilian 
populations [6J. We can assume that the recruits represented the suscepti­
ble population, and when introduced at intervals into a infected and carrier 
population, produced a large epidemic amoung them. 

A susceptible population introduced at intervals seems to play a role; 
though Quinn explains that even when opportunity for spread and epidemic 
are ideal when a new strain of streptococcus is introduced, the epidemics 
are self-limited because new susceptibles are not introduced periodically [6J. 
One may ask why an epidemic in a group of susceptibles and beta-hemolytic 
carriers is limited, and an epidemic in a periodically-introduced population 
is severe? K. Ryan gives an example with "ping-pong" infections: "Recur­
rent infections are sometimes seen in families when prompt antimicrobial 
therapy has prevented the development of type-specific immunity. This situ­
ation allows reinfection from other infected of colonized siblings when antimi­
crobial treatment is stopped. Such "ping-pong" infection-reinfection cycles 
sometimes require simultaneous treatment of the entire family to prevent 
continued transmission" [2J. Therefore, epidemics can be controlled with si­
multaneous infection and treatment of the disease in a group; however, a 
group introduced on intervals to the disease will theoretically propagate the 
epidemic. We were unable to study this periodic recruitment epidemic, and 
normal initial starting values for the C, I, and S classes proved to be a self­
limited epidemic; susceptibles always stabilized as the largest amout. We 
believe the key to finding periodic infection cycles is to recruit by week or 
month, not by year, since strep throat is a seasonal disease. 

We could also address the issue of "what is the critical 'waiting' time for 
an infectious person?" It has been shown that the longer an infectious indi­
vidual holds out on antibiotics, the more likely they will develop antibodies 
that are immune to the particular serotype of the disease. This would help 
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prevent the "ping-pong" infections mentioned above, but how many more 
new infections would occur in the contagious waiting period? 'Critical time' 
allows for natural immunity to the serotype to occur, otherwise the individ­
ual may be reinfected as soon as they go off antibiotic treatment. One main 
assumption we used in our model is that susceptibles never gain immunity 
to any serotypes; an individual is ready to be infected as soon as he/she 
reaches the susceptible class [6,9,13]. How necessary are antibiotics with this 
disease? The use and possible over-use of antibiotics leads us to studying 
resistant strains. Drug-resistant strep bacteria are becoming more common; 
up to 25% of cases of infections were not killed by penicillin in 1997, and 
another 25% had some resistance to penicillin [4]. What effect does resis­
tance have on the population, and on the carrier class? Continually, new 
antibiotics must be made each year with an approximate cost of $30 million. 
Can anything be done to slow antibiotic resistance? 

It is possible to make still two more models out of our originals. We 
assumed in our models that direct movement between the susceptible and 
carriers classes does not occur. But suppose that maybe a percentage of 
asymptomatic individuals do move directly to the carrier class, and after 
some time lose thier carrier status without an infection? The assumptions 
we made were that an individual must move to the infectious class from the 
carrier class to build up anitbodies to rid him/her from all bacterial colonies 
in the nasopharynx. We did not take into account that a carrier may simply 
lose carrier status with changes in bacterial flora in which the strep colony 
is out-competed. This model may be more accurate to use in an age defined 
simulation, where bodily flora matures. Lastly, we can use a version of our 
model rearranged such that the carrier class is an incubation period. Suscep­
tibles move to carrier class, and can either move on to full infection or cure 
the body before that stage. The infectious class can recover to susceptibles 
or move on to another matured carrier stage. The "matured" carrier box can 
move to the first incubation carrier box. This probably represents a more 
realistic view of the disease, since it allows for an age simulation as well as 
a probable epidemic model. We are opening this questions and applying to 
our research, hoping to continue in this direction. 
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