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Abstract 

In this study, we investigate different neoadjuvant chemotherapy 
treatment strategies for patients with Stage III breast cancer. We use 
two deterministic models to illustrate the effect of chemotherapy on 
tumor growth and a patient's health. The models consist of a system 
of three differential equations representing (1) the tumor growth rate, 
(2) the change in the patient's health (a variable between 0 and 1), 
and (3) the rate at which the drug combination, cyclophosphamide 
and adriamycin, dissipates after administration. The intrinsic growth 
rate of the tumor is exp<;>nential in model A, and logistic in model 
B. In our numerical solutions, success is determined by whether the 
tumor can be reduced to an operable size (1 x 109 cells) before the 
patient's health falls to a fatal level (0.1). By varying the frequency 
and dosage of chemotherapy, we evaluate the effectiveness of various 
treatment schedules for patients beginning treatment with different 
sized tumors. We observe that patients diagnosed with smaller tumors 
show faster success if the chemotherapy dosages are kept constant. On 
the other hand, patients with larger tumors survive longer when the 
dosage at each chemotherapy session is proportional to the tumor size 
and the patient's health. 
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1 Introduction 

1.1 Epidemiology 

Despite an increased awareness of breast cancer, this disease is currently the 
most common malignancy in women 35 to 50 years of age, claiming one out 
of every four lives that it affects [1]. Estimates of the portion of patients with 
long-term, disease-free status range only from 3% to 20% with the currently 
applied treatments [2]. According to a report published in 1998, one out of 
every nine women will develop breast cancer in her lifetime [3]. With such an 
imminent presence, finding effective treatment plans has become paramount. 

The risk factors associated with breast cancer are related to both physi­
ological traits and lifestyle characteristics. Physiological risk factors include 
late menapause (after age 50), delayed childbearing (after age 30), earlyon­
set of menstruation (before age 12), obesity, and a family history of breast 
cancer [1]. In addition, breast cancer risk increases with age and is higher in 
women over 45 whose mammograms show at least 75% dense breast tissue. 
Risk factors associated with lifestyle include a diet low in Vitamin A, alcohol 
consumption, and taking hormone replacement therapy or birth control pills 
for long periods of time [1],[5],[4] . 

1.2 Physiology 

Cancerous cells characteristically lack responsiveness to the mechanisms that 
control cell growth and proliferation in normal cells. As a result, cancer cells 
accumulate to form a solid mass (a tumor, or neoplasm) which continues to 
grow. Some of these cells, termed metastases, may leave the primary tumor, 
travel through either the ciIculatory or lymphatic system, leave the vascular 
system to enter other tissues, and establish secondary tumors. It is this type 
of breast tumor growth which is life-threatening to so many women [6]. 

Thmor growth is believed to be triggered by multiple genetic mutations, 
either in oncogenes (genes that stimulate cell division) or in tumor suppressor 
genes (genes which inhibit cell division). These mutations, in turn, may be 
triggered by chemical carcinogens, radiation, or (for some types of cancer) 
oncogenic viruses [6] . 
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'Thmor growth rate is dependent upon a number of factors including the 
rate of tumor cell division, the rate of cell loss by cell death or 4iffer~n­
tiation (in general, undifferentiated tumors have higher growth rates than 
well-differentiated tumors), adequate blood supply, and, in some cases, stim­
ulation by molecules called growth factors. Growth factors bind to receptors 
on the cell surface, inducing a series of biochemical changes in the cell that 
lead to cell division. In the case of breast cancer, some tumor cells (termed 
ER-positive) are stimulated to grow in the presence of estrogen [6]. 

Breast cancer is categorized into four stages, each generally determined 
by the size of the primary tumor and whether the tumor has metastasized 
(i.e., spread to other parts of the body). The mathematical models we de­
veloped for this study apply to Stage III (locally advanced) breast cancer, 
which is sub-divided into Stages IlIA and I1IB. In Stage IlIA, one of the 
following is true: a) the tumor is less than 5 centimeters in diameter and has 
spread to the underarm lymph nodes, which are attached to one another or 
to other structures or b) the tumor is greater than 5 centimeters in diameter 
and the tumor cells have invaded the underarm lymph nodes. In Stage IIIB, 
either the tumor cells have spread to tissues near the breast, such as the skin 
or chest wall, including the ribs and chest muscles, or the tumor cells have 
spread to lymph nodes inside the chest wall along the breast bone [7]. 

1.3 'Ireatment 

A number of factors affect the treatment options for a female breast can­
cer patient including her age, menopausal status, breast size, and general 
health. Other physiological determinants of ,treatment include the location 
of the breast tumor, the levels of certain hormone receptors in the tumor 
cells (specifically, estrogen and progesterone receptors), and, most impor­
tantly, the stage of the disease. Treatment regimens for Stage III breast 
cancer have typically involved a combination of local (breast and underarm 
surgery and/or radiation therapy) and systemic treatment (hormonal ther­
apy, chemotherapy, or both) [4]. In some cases, a tumor may be too large 
for immediate surgery, and a physician may choose to reduce the size of 
the tumor by administering neoadjuvant (preoperative) chemotherapy. This 
is especially true for women who wish to have breast conservation surgery 
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instead of a total mastectomy-breast removal [8], [9]. Our mathematical 
models will address treatment strategies for such cases. 

Chemotherapy functions by injuring cells in a certain phase of the cell 
division process. Thus, chemotherapeutic drugs target rapidly dividing cells, 
since the probability that these cells will be in a targeted stage of develop­
ment at any point in time is greater than that for other cells. Unfortunately, 
these drugs also affect some normally dividing cells (in addition to tumor 
cells), such as bone marrow cells, cells in the hair follicles, and cells lining 
the digestive tract. This often results in a number of short-term side effects, 
including hair loss, lowered resistance to infections, anemia, fatigue, loss of 
appetite, nausea, vomiting, diarrhea, and mouth sores. Long-term side ef­
fects are less common and can include heart disease, secondary cancers such 
as leukemia, ovary damage, SYI.llptoms of menapause, or infertility [10],[4]. 
The side effects of chemotherapy vary according to the drugs used for a given 
patient. 

Chemotherapeutic drugs may be used alone or, more commonly, in com­
bination. The parameter estimates of the following models are based on 
a standard regimen of 600 mg/m2 of cyclophosphamide with 60 mg/m2 of 
adriamycin. For example, a patien,t with total body surface area of 2 m2 will 
receive a standard regimen of 1200 mg of cyclophosphamide with 120 mg of 
adriamycin. These treatments are given in cycles of alternating treatment 
and recovery periods, every three to four weeks for up to four to six cycles 
(or whenever the desired end point is reached) [9]. In our models, the desired 
end point is reducing a tumor to an operable size (1 x 109 cells). 

1.4 Clinical Trials 
The efficacy of certain chemotherapeutic regimens appears to be related, at 
least in part, to the relative proliferative rates of the tumor cells. An investi­
gation by Gardin et al. [11] used the tritiated thymidine labeling index (TLI, 
a technique that estimates the fraction of tumor cells in the cell division phase 
and, thus, the cell proliferative rate) to study the relationship between tu­
mor cell kinetics and the effectiveness of neoadjuvant chemotherapy (in this 
study, a regimen of adriamycin, 5-fiuorouracil, and cyclophosphamide was 
used) on tumor regression in a group of 36 patients. The analysis revealed 
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that 83% of those with high TLI had. a decrease in tumor cell proliferative 
rate, compared to 39% of those with low TLI, suggesting that patients whose 
tumors grow more rapidly demonstrate a greater response to chemotherapy 
than those whose tumors grow less rapidly. But the effectiveness of a specific 
chemotherapy also depends on the specific drugs used as well as the dose 
intensity, frequency, and duration of treatments. 

In addition to choosing the most effective drug combination, dosage and 
timing of chemotherapy continue to challenge researchers seeking the op­
timal treatment regimen. . A review of randomized studies of conventional 
dosage of adriamycin for metastatic breast cancer (alone and in combination 
with cyclophosphamide and 5-ftuorouracil) showed higher response rates from 
the high dose versus the low dose therapy (25% for low and 58% for high 
dosage in the adriamycin group, and 39% for low and 70% for high dosage 
in the adriamycin-cyclophosphamide-5-fluorouracil group)[3]. According to 
Cameron and Leanard, however, "all the available data suggest that, in con­
trast to laboratory data, dose increments of the order of 2-fold, as in most of 
these studies, have only marginal effects upon survival" [3],[9]. 

A treatment variation involving increased dosages beyond conventional' 
limits - high dose chemotherapy, followed by a bone-marrow transplant -
continues to receive a gr-eat deal of attention. Data from the Autologous 
Blood and Marrow Transplant Registry show, for patients with Stage III 
breast cancer, a 3-year progression-free survival of 60% (95% confidence in­
terval: 53% - 67%) and an overall ~urvival of 70% (95% confidence interval: 
63% - 77%). One should note that long-term, disease-free survivors accepting 
either conventional dosage or. high-dose chemotherapy tend to be younger, 
healthier individuals who have a smaller tumor burden than the overall pa­
tient population [2]. Hence, clinicians are often faced with the delicate bal­
ance between' the beneficial effects of chemotherapy and its toxicity to the 
patient when determining an appropriate dosage. 

Some studies of optimal chemotherapeutic timing, such as those con­
ducted by Bonadonna et al. [12], have addressed the order of drug delivery, 
suggesting that alternating administration of drugs in multi-agent regimens 
is not a superior approach to delivery of a set of cycles of one drug followed 
by that of another [3]. 
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1.5 Previous Mathematical Models 

A number of mathematical models have been proposed to simulate the be­
havior of tumor growth and the effects of chemotherapy on breast cancer, 
in order to evaluate a variety of chemotherapeutic protocols. For example, 
a study by Shochat et al. considered three different modes of tumor cell 
growth (exponential, Gompertz, and power laws) to find the effects of three 
neoadjuvant chemotherapeutic protocols on tumor regression. The results 
suggested that high dose chemotherapy cannot eliminate metastatic breast 
cancer, but this treatment method may lead to a complete response if ad­
ministered early in the progression of the disease. In addition, the computer 
simulations achieved higher success rates for very high doses compared to 
conventional dosages [14]. Some models account for the fact that chemother­
apy targets a specific phase of the cell development cycle. Aroesty et al. [15] 
propose one such "compartment" model [15]. In our models, we will not only 
measure the effects of chemotherapy on the tumor growth, but also take into 
consideration the patient's health over time. In this approach, the patient's 
health is affected by both the chemotherapy and the invading tumor. 

2 Methodology 

2.1 Modeling Tumor Growth and Patient Health 

Our approach is to model the effects of different chemotherapeutic treat­
ment strategies on a growing tumor and a patient's health. The general 
model consists of two equations, one to represent the rate of tumor growth 
and the other to represent the change in the patient's health. The tumor has 
an intrinsic growth rate (which may depend on the patient's health), and an 
external decay rate due to chemotherapy treatment. The patient's health has 
an intrinsic recovery rate (affected by the size of the tumor) and an external 
decay rate due to chemotherapy treatment. We have our general model: 

'Thmor 
Rate 

Growth = Intrinsic 
Growth Rate 

Health Recovery - Intrinsic Re-
Rate covery Rate 
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2.2 The 2-Equation Explicit Time Model 

We first attempted to model a periodic chemotherapy treatment schedule by 
using a sinusoidal treatment function. In this model, we have two differential 
equations representing the growth rate of the tumor and the recovery of the 
patient. The tumor size, g, is given in units of 1010 cells, where 9 = 1 is equiv­
alent to a tumor with 3-cm diameter. The health, or vitality, of the patient, 
h, is an abstract variable that ranges from 0 to 1. Any value of h lower than 
0.1 is interpreted as the death of the patient. A value of h = 1 represents a 
completely healthy patient. The interpretation of h as a biological measur~ 
ment is not completely defined, but the concept of health is based on quan­
titative measures that are checked before administering each chemotherapy 
treatment, including white blood cell count, hemoglobin/hematocrit, platelet 
count, renal function tests, liver function tests, and tests for organ specific 
drug effects [16]. The variable h is a normalized function of these measures. 
The two variables, 9 and h, affect each other over time according to the 
following system: 

(1) 

dd
h 

= [r (1-~) -d2g(cos2k (T7r t)] h, 
t 1+(6g)2 

(2) 

In equation (1), the primary tumor, g, follows an exponential growth 
pattern where the intrinsic growth rate is dependent on the health of the 
patient. The parameter 'Y represents the maximal intrinsic growth rate, and 
the factor (1 - e-Ah) represents the effect of the patient's health on the tu­
mor's ability to grow. When a patient's health is very low or nearing death, 
the tumor growth slows down due to lack of nutrients in the body [9]. Thus, 
when h is very small the intrinsic growth rate of the tumor becomes small as 
well. The second t~rm dIgcos2k (~t) represents the effect of chemotherapy 
on the tumor growth. The periodic administration of chemotherapy is rep­
resented by an even powered cosine function, which allows for small periods 
of dosage time with large periods of rest. Here, T is the number of days 
between chemotherapy sessions, and dIg denotes the amplitude (or dosage 
level) which is prop.ortional to the size of the tumor. 
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Equation (2) represents the change in the patient's health, h, over time. 
The normal recovery rate of a patient, i.e. the rate at which h grows from 
an initial value toward to 1, in the absence of chemotherapy or a tumor, is 
given by a logistic equation. Here, the health carrying capacity is limited 
by the size of the tumor. AB the tumor grows large, the carrying capacity, 
1+(~g)2' decreaSes. The administration of chem<?therapy is included just as in 
equation (1), but a different constant of proportionality is used to evaluate 
the effect of a chemotherapy dosage on the patient's health. 

This model presented several problems (see Figure 1). First, the poten­
tiated cosine curve caused such a steep spike, that the numerical integration 
process became unreliable, as the heights of the spikes were often measured 
with an error of 30% or above. Second, a cosine function makes time ex­
plicit, and the analysis of the equation becomes difficult. Third, and most 
importantly, the sinusoidal function does not accurately match the actual 
administration of chemotherapeutic drugs. According to the model, the con­
centration of the drug in the body smoothly increases and then decreases, 
while in actual practice, the drug is administered instantaneously and then 
decays over time. For this reason, we modified our model to a 3-equation 
system which more accurately represents how chemotherapy is admjnistered 
and how it decays once it is in the patient's bloodstream. 

2.3 The 3-Equation Implicit Time Models 

In these models, we keep the same intrinsic growth rates for 9 and h, but we 
model the change in the amount of drug effect, c, with a separate differential 
equation. We assume that. the drug effect decays at a particular rate A. To 
represent the periodic administration of the drug, we reinitialize the value 
of c at the beginning of each period, using two different protocols. In the 
first protocol, the reinitialized value is always the same, and in the second 
protocol, the reinitialized value is proportional to the health and tumor size 
at the end of the previous period. 

Using this new chemotherapy equation, we set up two models, Model A 
and Model B, where the intrinsic tumor growth rate is exponential and lo­
gistic, respectively. 
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2.3.1 Model A 

dg Ah] dt = h(l- e- ) - dlc g, . 

dc 
-=-AC 
dt ' 

(3) 

(4) 

(5) 

. In equation (3), the tumor size, g, follows an exponential growth pattern 
where the intrinsic growth rate is dependent on the health of the patient. 
The parameter 'Y represents the maximal intrinsic growth rate and the factor 
(1- e-Ah) represents the effect of the patient's health on the tumor's ability 
to grow. In this system, the chemotherapy factor is introduced as an expo­
nential decay with coefficient dl . 

In equation (4), the change in patient's health, h, over time is represented. 
The normal recovery rate of a patient, i.e. the rate at which h grows from 
an initial value toward to 1 in the absence of chemotherapy or a tumor, is 
given by a logistic equation. Here, the health carrying capacity is limited 
by the size of the tumor. AB the tumor grows large, the carrying capacity, 
which is given by 1+(~g)2' decreases. The chemotherapy cycles are included 
just as in equation (3), but a different constant of proportionality, d2, is used 
to determine the effect of a chemotherapy dosage on the patient's health. 

In equation (5), the drug effect c undergoes exponential decay with rate 
A. We note that the actual drug in the body is eliminated within a day, but 
the effect on both the tumor and the patient's health lasts for several days. 

2.3.2 Model B 

(6) 
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dc 
-=-AC 
dt ' 

(7) 

(8) 

This model is based on Model A, with the difference that the tumor 
growth is logistic, to account for the fact that a tumor actually slows down 
its growth when the patient is dying. The carrying capacity term l~h de­
pends on h as follows. When h is large (or 1), the carrying capacity is very 
large (or 00) allowing exponential growth of the tumor. When h is small 
(close to 0), the carrying capacity approaches K (the tumor size correlated 
with the death of the patient). Other models have also used a logistic growth 
rate for tumors [14]. This modification prevents the tumor from growing in­
finitely, whereas this is allowed in Model A. For this reason, Model A may 
be a more appropriate model for small tumors, while Model B can model 
treatment of both small and large tumors. 

2.4 Parameter Values 

In each of the two models we analyzed (Model A and Model B), there are 7 
parameters. We note that the units of 9 are in'lOlO cells, the units of C are 
grams, and the unit of time is one day. For model A, we have parameters "I, 
A, d1, r, 0, d2 , and A, For model B, we have parameters "I, K, db r, 0, d2, 

andA. 

"I is the maximal intrinsic growth rate of the tumor. From the data in 
E. Shochat's simulations [14], we found the average doubling time for 
Stage III tumors to be approximately 200 days (although the variance 
is very high). Therefore, the value of "I = l~g; = 0.0035. 

Ais a factor controlling the dependence of the tumor growth rate on the 
health of a patient. The higher the value of A is, the lower the health 
must be in order to slow down the tumor. We choose a value of 3.5. 

d1 is the strength of the chemotherapy effect on the tumor growth. Data 
suggests that a normal chemotherapy dosage (1 gram = 910 mg of 
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cyclophosphamide + 90 mg of adriamycin) will result in approximately 
15% reduction of the tumor [14]. By solving the system numerically 
with constant health value of 1, we determine that d1 = 0.08. 

r is the intrinsic logistic growth rate of h, the patient's health. We lmow 
that the recovery time from a normal chemotherapy dosage (1 gram) 
is approximately 28 days, the period between chemotherapy sessions 
[9]; By starting with a health value of 0.5, we find this recovery time 
is best matched with a value of r = 0.1. 

{j is the factor that controls the tumor's effect on health. We remark 
that in breast cancer, the local tumor itself does not kill the patient. 
Instead, the metastases associated with tumors of a certain size affect 
the patient's health and eventually lead to death. Still, since we are 
measuring only the local tumor, we interpret the local tumor as the 
indicator of the extent of the disease. We determine the value of {j by 
letting a tumor of size 1.2 x 1011 cells (note: 9 = 12 is equivalent to a 
tumor with diameter of 7 cm) reduce the health to h = 0.1 (the point 
at which we consider the patient's .chance of survival to be zero). This 
constraint leads to a value of {j = 0.3. 

d2 is the strength of the chemotherapy effect on the patient's health. We 
estimate the value of d2 by looking at the lethal dosage, which in healthy 
patients is approximately 2g/m2 (c = 3.2). By forcing this dosage to 
bring the value of h from 1 to 0.1, we interpolate that the effect of a 
normal dosage (c = 1) should bring the patient's health down from 1 
to about 0.7. The numerical solution produces in a value of tk = 0.3. 

). is the decay rate of the chemotherapy effect from the body. We esti­
mate that the remaining drug effect after 7 days is approximately l~ of 
the original dosage, and obtain a value of). = 0.35. 

K is the lower limit of the tumor's carrying capacity. We take this value 
to be 1.2 x 1011 cells, or K = 12. 

2.5 Stability Analysis· 

In order to analyze Model A or Model B mathematically, we consider only one 
dose of chemotherapy, which decays exponentially. The equilibrium points 
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are determined and the Jacobian matrix (J) of the system of equations is 
evaluated at each equilibrium point to determine the local stability of the 
points. If the real part of all the eigenvalues is negative, the point is stable. 
Otherwise, the point is unstable. 

For Model A, the equilibrium points are: (g = 0, h = 1, c = 0) which 
represents a healthy patient with no tumor, and (g, h = 0, c = 0) which 
represents a dead person with a sitting tumor of size g . 

(

,(1- e-A) 

J(O, 1, 0) = ~r ~r 
o ~), 

-,\ 
(9) 

(
0 ,gA -dIg) 

J(g, 0, 0) = 0 r 0 , 
o ° -,\ 

(10) 

Both of these points are unstable because at least one eigenvalue from 
each Jacobian has a positive real part. 

For Model B, the equilibrium points are: 

K 1 
(0,0,0), (0, 1,0), (K, 0, 0), (1- R' 1 + (..§K. )2,0), 

I-R 

1. 
The Jacobians for the first three equilibrium points are: 

J(O,O,O) = (~ 0 

~). r 

° -,\ 
(11) 

J(O, 1,0) = G ° -~.). -r 

° -,\ 
(12) 
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(

-f 
J(K, 0, 0) = ~ (13) 

All of these points are unstable because at least one eigenvalue from each 
Jacobian has a positive real part. 

For the Jacobian of the fourth equilibrium point, see the appendix. 

2.6 Simulations 

We obtained numerical solutions to the system of equations using the appli­
cation Matlab 5.2.0. To test the efficacy of different treatment protocols, we 
ran approximately 500 simulations, and varied four factors simultaneously 
in Model A and Model B: the period length between chemotherapy dosages, 
the initial chemotherapy dosage, the initial tumor size, and the method of 
choosing the reinitialized value of c. The period length varied between 20 
and 40 days, with four-day intervals. The initial chemotherapy dosage varied 
between 0.6 grams and 2.6 grams, with O.4-gram intervals. The initial tumor 
sizes were 3 x 109 cells, 1 x 1010 cells, 4 x 1010 and 1 x 1011 cells. Finally, there 
are two methods of choosing the reinitialized value of c. In the first, the fixed 
dosage scheme, the initialized value of c is kept fixed for every administration 
of chemotherapy. In the second, the adaptive dosage scheme, the initialized 
value of c at each period is proportional to the current value of 9 x h (i. e. 
proportional to the tumor size and health of the patient) and the constant 
of proportionality is 90~ (the initial conditions of the simulation). 

We run each simulation for a certain maximum number of periods such 
that the total length of time is approximately one year. After each run, we 
determine one of five possible events: 

(1) success - the tumor was reduced to a size of 1 x 109 cells, or 9 = 0.1; 
(2) death - the patient's health, h, was reduced to a value of 0.1; 

and in the cases where neither success nor death occurs, we identify 
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(3) progress - h was increasing over time by the end of 
one year; 

(4) deterioration - h was decreasing over time; and 
(5) steady state - h was oscillatmg over time, without any 

upward or downward trend. 

When success occurs, we note the time at which the tumor reached g = 0.1 
and the minimum value of h in the simulation. When death occurs, we note 
the time at which h reached 0.1 and the value of g at that time. When 
progress, deterioration, or steady state occurs, we note the minimum value of 
h (if it ever got below 0.2), and the g and h values at the end of one year. 
For a few examples of simulations, see Figures 2 and 3, where we compare 
the effect of a fixed dosage scheme (Figure 2) to an adaptive dosage scheme 
(Figure 3). For a complete list of the simulation results, see the tables in the 
appendix. 

3 Results 

We divide our observations into three sections. In Section 1, we observe how 
varying the initial dosage and period length proportionally affects the success 
rate. In Section 2, we vary initial dosage and period length proportionally, 
but compare how the.progress cases were affected. In Section 3, we describe 
the most effective treatment strategies for patients beginning treatment with 
different sized tumors. 

3.1 Section 1 

First, we look at successful simulations (Le. simulations where the tumor 
sinks to below 0.1 before the health does). We focus on period lengths and 
dosages that remain proportional. Specifically, we look at dosages of 1 gram 
with period 20 days, 1.4 grams with 28 days, and 1.8 grams with 36 days. 
Only simulations done with the fixed dosage scheme (FDS) produced success 
for these treatment schedules . .Ail seen in Figure 4(A), an increase in dosage 
with equivalent increase in period length causes a decrease in the time to suc­
cess (A). Although the minimum health the patient sustains also decreases 
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(Figure 4(B)), the overall effect may be desirable. 

3.2 Section 2 

Next, we observe the simulations in which neither death nor success occurs 
by the end of the first year. We focus on simulations using the adaptive 
dosage scheme (ADS). We use the same proportional treatment schedules 
as previously mentioned. Figures 5(A) and 5(B) show that, as in the above 
case, an increase in dosage with equivalent increase in period length has ben­
eficial results for the patient. Specifically, these patients end the year with 
lower tumor sizes and higher health value, even though the cumulative drug 
administered is the same as in the patients with lower dosages and shorter 
period lengths. 

3.3 Section 3 

For patients diagnosed with small tumors, we find overall that the FDS is 
more beneficial than the ADS. Specifically, patients with initial tumor sizes 
of 9 = 0.3 (x 1010 cells) showed an 86% success rate under the FDS and only 
a 50% success rate under the ADS. However, it must be noted that 3% of 
patients in the FDS died due to chemotherapy toxicity while none of the 
patients in the ADS died. 

In contrast, patients diagnosed with large tumors show higher survival 
when treated with an adaptive dosage scheme. Specifically, patients with 
initial tumor sizes of 9 = 10 (x 1010 cellS) show a 100% death rate under the 
FDS. On the other hand, 47% of patients under the ADS survive after one 
year of treatment. 

4 Limitations of the Models 

The main difference between the models developed in this project and other 
existing chemotheraputic treatment models is our inclusion of a health vari­
able. Health is a difficult concept to quantify because there are too many as-
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pects of a woman's physiology that affect her health. Also, since chemother­
apy affects the patient in so many ways, and since people's responses are so 
varied, it is difficult to estimate the effect of chemotherapy on our variable 
h. Thus, the parameters in the second differential equation (4) and (7), es­
pecially the parameter d2, cannot be accurately estimated. 

Our model excludes several relevant physiological features of breast can­
cer. We do not include the age of the patient, which is one of the factors 
affecting tumor doubling time. We do not consider the role of. estrogen re­
ceptors, in order to exclude the effect of hormone therapy. Furthermore, we 
do not take into account the heterogeneity of a tu.:rnor. Another difficulty we 
encounter is that tumor measurements during the treatment of breast can­
cer are not reliable, due to the extensive scar tissue that surrounds the tumor. 

Finally, in our model, we measure only the local tumor size, and from 
this deduce the extent of metast~is. We do not specify the exact location 
of the primary tumor, nor do we specify where metastases will colonize and 
produce secondary tumors. These locations are crucial in determining the 
patient's prognosis. 

Despite all of these limitations and assumptions, our model may offer 
insight into a variety of treatment strategies. Adaptive dosage schemes were 
shown to be beneficial to patients with certain tumor sizes, and detrimental 
to others. In the future, more adaptive dosage schemes can be formulated 
for the model and tested for efficacy. 
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Appendix 

Here, we present the raw data tables and the source code for our Matlab 
programs. 

5.1 Raw Data Tables 

Each table page presents the simulations for a particular beginning tumor 
size, a particular model (A or B), and a particular dosage scheme (constant 
or varying). The first two columns are the quantities we vary in each page: 
the period length (from 20 to 40 days with 4-day intervals) and the initial 
chemotherapy dosage (from 0.6 to 2.6 grams with O.4-gram intervals). The 
third column has a letter code (s=success, d=death, n=neither). Next we 
record whether there was progress (p), deterioration ( det), or steady state (ss) 
in the health variable. The next column shows the duration of the simulation 
in days. The next shows the final tumor size, the final health value, and the 
minimum health sustained during the entire simulation. 

5.2 Programs 

The chemo..model* files are ODEFILES which describe the differential equa­
tions pertaining to our models. chemo..model.m has the equations for Model 
A (exponential tumor growth) and chemo..modeUog.m has the equations for 
Model B (logistic tumor growth). 

The chemo_therapy* files compute the chemo..model trajectories. These pro­
grams allow the periodic reinitialization fo the variable c. chemo_therapy.m 
computes the trajectories for Model A, with varying chemotherapy. chemo 
_therapy Jog.m computes the trajectories for Model B, with varying chemo­
therapy. chemo_therapy _const.m computes the trajectoreis for Model A, with 
constant chemotherapy. chemo_therapy Jog_const.m computes the trajecto­
ries for Model B, with constant chemotherapy. 
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Figure 1: Using a value of k =. 500, we can see the numerical errors in 
evaluating the even powered cosine function (above) and in integrating the 
effect of chemotherapy on the tumor dynamics (below). 
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Figure 2: Using a fixed dosage scheme, this patient dies (the health variable 
h reaches below 0.1). 
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Figure 3: Using an adaptive dosage scheme, the patient survives and the 
tumor is reduced to an operable level (the variable g reaches below 0.1). 
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Figure 4: The effects of increasing the dosage and period length proportion­
ally on the time to success (A) and minimum health (B), using a fixed dosage 
scheme. , 
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Figure 5: The effects of increasing the dosage and period length proportion­
ally on the final tumor size (A) and final health after one year of treatment, 
using an adaptive dosage scheme. 
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stability2.nb 

. Clear [ ", a, K, h, G, H, c, r, d1, d2] 

dH. = r*H* [1- -~H-I-d2*C*H; 
1+(61.9)2 

de = -A*C; 

a = (c5dQ2; 

h = ((.:.:. *a+ 2- *a*-Y (ha + 27) *Vi) A':'_ 
2 18 3 

.:. *a/ (.:.:. *a + 2- *u-y (4 *a+ 27) *Vi) A':' + 1); 
3 2 18 3 

Simplify [ 

MatrixForm[J = {{OG1 dG, AU dG, Oc dG}, {OG1 dB, AU dB, Oc dB}, {OG1 dc, AU dc, Oc de}}]] 

( 

-cd1K+(2G~(-1+Hl+K)Y G1~Y -d1G1] 

o -c d2 + r - 2 H r - 2 g2 H r 152 -d2 H 

o 0 -A 

K 1 
FullSimplify[J1 = J /. {G1-. -, H -. , e -. o}] 

1-h 1+ (!!!.)A2 
l-h 

{{ - y ,. ( ( ~ ) 2/3 K Y (K2 152 (- 9 + {3 V 27 + 4 K2 152 ) ) " (2 /3) ) / 

(K2 152 _ (K2 62 (-9 + {3 127 + 4 K2 152 )) " (2/3) j (22/3 3113 ») "2, 

( ( ~ f/3 d1 K (K2 6 2 (-9 + v'3 127 + 4 K2 152 )) " (1/3) ) / 

(_K2 6 2 + (K2 c52 (-9 +Y3 127 + 4 K2 152 ))" (2/3) j (22/3 3113 »)}, 

{O, ; r (_3_6g2 6 2 + (221/332/3K2c52 (1+g262»j(K2 c52 (-9+V3V27+4K262 ))"(1!3)-

22/3 3113 (1 + g2 152) (K2 62 (-9 + (3 127 + 4 K2 152 )) " (1/3»), 

-d2/ (1 + ( ( ~ ) 2/3 K2 152 (K2 62 (-9 + V3 V27 + 4 K2 152 )) " (2/3) ) / 

(K2 6 2 - (K2 152 (-9 + v'3 V27 + 4 K2 152 )) " (2/3) j (22/3 31/3
) ) "2)}' 

{O, 0, -A}} 

FullSimplify[Eigenvalues[J1]] 

{; r (-3 - 6 g2 152 + (221/332/3 K2 6 2 (1 + g2 ( 2» j (K2 62 (-9 + V3 V27 + 4 K2 152 )) " (1/3) - . 

22/3 31/3 (1 + g2 152) (K2 62 (-9 + V3 V27 + 4 K2 152 )) " (1/3»), -y, 

-A} 

471 

1 



472 


