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Abstract 

In the United States, lung cancer is the leading cause of cancer deaths. As of 
today, cigarette smoking causes 85 percent of lung cancer deaths. In this study, a non­
linear system of differential equations is used to model the dynamics of a population 
which includes smokers. The parameters of the model are obtained from data published 
by cancer institutes, health and government organizations. The average number of 
individuals who become smokers and the reduction of this average by an education 
program are determined. The long-term impact of educating a susceptible class before 
they enter the population model and the effect it has on the epidemic is also studied. 
Simulations using realistic parameters are carried out to illustrate our theoretical results. 
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1 Introduction 

Lung cancer, also referred to as bronchogenic carcinomas, is a major contributor of 
cancer deaths in the United States, accounting for 28 percent of such deaths [8]. The de­
velopment of lung cancer occurs on the lining glands, which contains damage cells that are 
located in our lungs and broncheal airways known as the tracheobronchial system [3]. This 
part of a human being is important because this system is susceptible to being contaminated 
by inhaled air, which is a major factor in the development of lung cancer. Scientists believe 
that the major cause of lung cancer is due to cancer-causing agents known as carcinogens, 
such as asbestos and-radon. However, research and statistics show that the major agent of 
lung cancer is tobacco smoke, which contains over 60 carcinogens. 

Today, cigarette smoke is responsible for a great proportion of deaths within tobacco 
smoke. Each year in the United States, approximately 400,000 people die from cigarette 
smoke, which accounts for one in every five deaths in the United States [14]. The likelihood 
that a smoker will develop lung cancer from cigarette smoke depends on many aspects; 
such as the age at which smoking began, how long the person has smoked, the number of 
cigarettes smoked per day, and how deeply the smoker inhales [10]. In 1988, the Surgeon 
General established the addictive potential of cigarette smoking by stressing that nicotine 
and other agents in cigarettes were just as addictive as cocaine [8]. The ability of a smoker 
to quit is very difficult because of the addiction to nicotine. In fact, 90 percent of smokers 
would like to quit but can not [12]. Based on data of current smokers, only 34 percent of 
smokers attempt to quit, but only 2.5 percent succeed every year [8]. The use of cigarettes 
and the toxic air it creates has been labeled as the single most preventable cause of prema­
ture death in the United States. 

The relationship between cigarette smoke with respect to lung cancer has been es­
tablished in 85-90 percent of all lung cancer cases (146,000 case/year). Furthermore, an 
estimated 3,000 non-smokers per year die from lung cancer due to second-hand smoke (also 
known as environmental tobacco smoke, ETS) [14]. The number of deaths of non-smokers 
may be lower than active smokers, but according to the U.S. Environmental Protection 
Agency, it is quite large when compared to those associated with other indoor and outdoor 
environmental pollutants. This data has had a great impact on public policies that protect 
people from second-hand smoke [9]. 

Based on the relationship between lung cancer and cigarette smoke, we want to show 
the reduction of contact between non-smokers and smokers, and how to decrease the rate in 
which non-smokers and smokers progress towards lung cancer. The arrangement of seven 
different classes will assist us to define the total population we want to analyze. How­
ever, the best way to detail the transition of each class is to use a mixture of parameters, 
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probabilities, and rates. Based on the behavior of each class, seven non-linear differential 
equations are created. One of the main purposes of the nonlinear equations is to obtain 
the equilibrium points. The Jacobean Matrix is use to find the basic reproductive number, 
Ro, which represents the rate that people get infected. The role of Ro is to determine if 
smoking will die out or increase. Through simulations, the model is analyzed to obtain 
different situations that produce interesting results among the specific classes. Using real 
life data, the model is believed to show how the increase of the educated class can lower 
the probability of being diagnosed with lung cancer. 

Our nonlinear diferential equation model that focuses on the impact of peer pressure 
on non-smokers and the progression to lung cancer via first and second-hand smoke. The 
dynamics of addiction are shown to be governed by a single non-dimensional parameter, 
RD. Ro denotes the number of secondary addictions generated by the first (small) class of 
smokers in a population of (mostly) non-smokers. Obviously, Ro > 1 shows how the as the 
prevalence of addicts to nicotine is high. Our analysis then focus on the role of education 
at various levels of the progression chain (to lung cancer) in the long-term reduction oflung 
cancer. Our results show that the most important factor in preventing individuals from 
becoming smokers os education; while the second most important measure is to convincing 
heavy smokers to quit. Our results partially agree with those recently published by Ithaca 
Journal. However, we disagree on the recommendation of focusing education on smokers. 
The prevention of smoking is most effective in the long run, if it is focused on non-smokers. 

Our paper is organized as follows: section 2, explains the population model, while sec­
tion 3, explains the analysis of the smoke-free equilibrium, the basic reproductive number, 
and endemic equilbrium. In section 4, we have an estimation of parameters and numerical 
solutions; section 5, the conclusion; and section 6, the future work. 

2 A Population Model for the Risk of Getting Lung Cancer 

We divide the total population into two sub-populations, which consists of individuals 
who have never smoked that respond to prevention education and those who did not. The 
educated population is denoted by individuals who never become smokers, E(t). The less­
educated population, is made up of six classes. The non-smoker class, N(t), includes the 
individuals who do not smoke but are susceptible to smoking; the light-smoker class, h(t), 
includes those who smoke 15 or less cigarettes per day; and the heavy smokers I2(t). There 
exists three additional classes in the less-educated population: Q(t), the quitter class, con­
sists of individuals who used to smoke but stop permanently; S(t), who used to smoke and 
are likely to smoke again; and the lung cancer class, L(t), individuals who have developed 
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lung cancer. We treat the people that smoke as an infected group, in order to show the 
transmission at which the infection of smoking occurs. 

An individual can enter the population in two different ways. One way is proceeding 

into the educated class, E, with a probability of q, or into the non-smoker class, N, with 
a probability of (l-q). Individuals in all classes may develop lung cancer because of the 
impact of second-hand smoke. 

Individuals in the non-smoker class can become a light smoker (h) due to lack of edu-

cation and peer pressure of smokers. Once they become a light smoker, they can not move 
back to N or E. Therefore, a light smoker may become a heavy smoker (12), or they may 
stop smoking temporarily (8) or permanently (Q). We assume that in order for them to 
become a heavy smoker, they must start off as a light smoker. 

Once an individual becomes a heavy smoker, s/he may quit temporarily (8), perma-

nently (Q), or develop lung cancer. In the 8 class, the individuals can either go back to 
smoking, in which we assume they start off as light smokers; or they can develop lung can­
cer (L). The Q class represents the number of individuals who stop smoking permanently. 
However, they have a higher probability of developing lung cancer than a non-smoker. 

We let the natural death rate (per capita), J-t, be the same for all the classes except for 

the L class, which is considered to have higher death rate. 
Our mathematical model is given by the following non-linear system of ordinary differ­

ential equations. 

dN 

dt 
d11 

dt 
d12 

dt 
dQ 

dt 
d8 
dt 
dL 
dt 

dE 

dt 

(1 - q)A - (3N(I~ + h) - J-tN, 

((1 - Pn)(3N + (1- Ps)(38)(h + h) ( 8)1 
T - (II + ')'1 + 1 + J-t b 

')'lh - (')'2 + 82 + J-t)h, 

P2')'212 + P1O"1h - (8q + J-t)Q, 

(38(h + h) 
(1 - PI)(l1h + (1 - P2)')'212 - T - J-t8, 

(Pn(3N + Ps(38 + (3eE )(h + h) 8 I 8 I 8 Q 
T +11+22+q 

- (J-t + d)L, 

A (3eE(h + h) E 
q - T -J-t, 

where T = E + N + h + 12 + Q + 8 + L, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

the parameters and their expected values are listed in Table 1 and Table 2, respectively. 
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Figure 1: Diagram of the effects of smoking on a population. 
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3 Analysis 

3.1 Smoke-Free Equilibrium and the Basic Reproductive Number 

In this section we analyze the non-linear differential equation model. We solve the system 
of non-linear differential equations to find the equilibrium points, with the assistance of the 
mathematical program Maple 6. First, we solve for the smoke-free equilibrium, which is: 

(
A(l-q) 0 0 0 0 0 ~). 

J.t ' , , , , , J.t 

Throughout of this paper we consistantly use I:1 an I:2 which are: 

The Jacobian Matrix at the smoke-free equilibrium is: 

-p -,6(1- q) -,6(1 - q) 0 0 0 0 
0 (1 - Pn),6(l - q) - I:1 (1 - Pn),6(l - q) 0 0 0 0 
0 1'1 -I:2 0 0 0 0 
0 PW1 P2'Y2 -(8q + p) 0 0 0 
0 (1 - P1)0"1 (1- P2)')'2 0 -p 0 0 
0 Pn,6(l - q) + ,6eq + 81 Pn,6(l - q) + ,6eq + 82 8q 0 -(p + d) 0 
0 -,6eq -,6eq 0 0 0 -p 

This matrix has 5 negative eigenvalues, which are: 

-p, -(8q + p), -/1, -(/1 + d) -/1. 

The rest of the eigenvalues are from the sub-matrix: 

526 



Table 1: Table of Parameters 

Parameter Dermition 
A Recrui tm ent rate. 

IJ. Mortality rate (per-capita). 

i3 Transmission rate. 

i3e Rate in which the educated class develops 
lung cancer due to second-hand smoke. 

D! II-Rate for developing lung cancer. 

fu 12 - Rate for developing lung cancer. 
Cq Q -Rate for developing lung cancer. 

'YI Rate in which light smokers become heavy 
smokers. 

'Y2 Rate in which a heavy smoker quits 
smokin,g. 

Ol Rate in whi ch a light smoker stops 
smokin,g. 

d Mortality rate in which a person dies of 
lung cancer. 

q Probability that an incoming individual 
enters into the educated class. 

(l-q) Probability that a non-educated individual 
enters the non-smoker class. 

Pn ProbabiIi ty that a non -sm oker develops 
lung cancer. 

(l-P,v Probabili ty that a non -sm oker becom es a 
light smoker. 

Ps Probability of getting lung cancer via 
secondary smoke, ifvou go in S. 

(l-Ps) Probabili ty in whi ch a pers on who stopped 
smoking temporarily becomes a light 
smoker. 

PI Probability that a light smoker quits 
smoking permanently. 

(l-pI) Probability that a light smoker quits 
smoking temporarily. 

p2 Probabili ty that a heavy smoker quits 
smoking permanently. 

(1-p2) Probability that a heavy smoker quits 
smoking temporarily. 
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Local asymptotical stability is guaranteed provided that the determinant is greater than 
zero, that is, if 

which is equivalent to 

Hence, we define: 

1 > (1- q)(1- Pn ){3('Yl + ~2) 
(~2)(~1) 

R _ (1 - q)(1 - Pn ){3(-Yl + ~2) 
o - (~2)(~1) , 

(8) 

(9) 

(10) 

and conclude that if Ro < 1, then the smoke-free equilibrium point is locally asymptotically 
stable. Ro implies a smoke-free population. Note that Ro can be rewritten as: 

(11) 

Hence, the basic reproductive number, Ro, gives the number of the secondary smokers 
produced by a typical smoker during his life as a smoker. 

Observe that il is the average amount of time a person stays in the light smoker class 

(h); i2 is the average amount of time that a person stays in the heavy smoker class (12); 
(1 - Pn ){3 is the rate in which a nonsmoker become a light smoker per unit of time; and, 
(1 - q) represent the probability of a non-educated person entering the non-smoker class. 
Hence, (l-q)~;Pn),B represents the new smokers from light smokers; ~ is the proportion of 

a light smokers who become from heavy smokers; while (~) (l-q)~;Pn),B) represents new 
smokers from heavy smokers. Ro < 1 implies a non-smoker society. 

Looking at the Ro, we can analyze the sensitivity of the system by observing the para­
meters that can drastically change the value of Ro. The value of q, which is the probability 
of getting into the educated class, would have an important effect, particularly if it is closer 
to one. If we make it approximately equal to one or close enough, we get the Ro to be less 
than one, that is, our population becomes smoke-free. If q is close to zero, then most of the 
population will go to the N class. 

Other parameter that greatly affect Ro is {3, since this is the transmission rate between 
classes. It is obvious by looking of Ro that if we increase the amount of {3, Ro will increase, 
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reducing the contact with smokers. 

The other parameter that seems important is Pn ; however Pn , is very small. In the case 
of Ro < 1, increasing Pn leads to the increase of people developing lung cancer. As t gets 
larger, the number of lung cancer cases goes to zero. 

3.2 Endemic Equilibria 

The previous subsection shows that if Ro < 1, then the smoker-free equilibrium is locally 
asymptotically stable, meaning eventually that there will be non-smokers. To look at the 
case Ro > 1, we solve the following algebraic equations in order to find out whether or not 
a positive equilibrium is possible. 

o = (1 - q)A _ (3N(I~ + h) - j.lN, 

o 
o 
o 

o 

o 

o 

((1 - Pn){3N + (1 - Ps){3S) (II + 12) ( 8)1 
T - 0"1 + 1'1 + 1 + j.l 1, 

I'lh - (')'2 + 82 + j.l)12 , 

P2'Y212 + PIO"lh - (8q + j.l)Q, 
(3S(h + 12) 

(1 - Pl)O"lh + (1 - P2)')'2h - T - j.lS, 

(Pn{3N + Ps{3S + (3e E )(h + 12) 8 I 8 J. 8 Q 
T +11+22+q 

- (j.l + d)L, 

A (3eE(h + 12) E 
q - T -j.l, 

where T = E + N + h + 12 + Q + S + L. 
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(15) 

(16) 
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If we let: 

Then using (14) and (15), we can represent 12 and Q in terms of h, respectivly, 

(19) 

(20) 

Multiplying equation (12) by S and equation (16) by N, we find a linear relationship 
between Sand N, namely 

S- OhN 
- (1- q)A" 

Using equations (13) and (21), we can solve for !j., 

N ( ~l ) ((1- q)A) 
T = ,B(1 + A) <P(Il) " 

Using equations (12) and (22), we can solve for N, 

N = (1- q)A _ (~l) (h(1- q)A)" 
~ ~ <p(h) 

By using equation 22, we solve for T explicity in terms of II, 

To solve for E and ~, we use equation (18), 

E 

E 
T 

qAT d 
( ) 

, an 
,Bell 1 + A + ~T 

qA 
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(22) 

(23) 

(24) 

(25) 
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And using equations (21) and (22), we solve for ¥, 

S I:lhO 
T ,8(1 + A)cp(Il) 

(27) 

Adding equations (12) through (18), allows us to solve for L in terms of T, 

A - J-lT 
L= d . (28) 

Substituting equations (19) through (28) into (17), we have an equilibrium equation for II: 

Once we solve for F(O) and F(oo), we obtain: 

F(O)=(Jt!d)A(Ro - 1) and F(oo) = -00 

Using the Intermediate Value Theorem (IVT), we obtain that if Ro > 1, then if: 

81 + 82A + 82B + (Jt!d) ,8(1 + A) + (i-~) < f.I!d ,B(~~A) (1 - Ps)O and 

,8e - ,8 + fl (1 - Ps)O > 0 

or 

This shows that there exists at least an endemic equilibrium solution. 

We have shown the existence of an endemic. Which means that the smoking popu­
lations are present. It is hard to determine its stability since we do not have the explicit 
formula for the endemic. Our numerical simulations support our conjecture that this en­
demic is locally asymptotically stable. 
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4 Estimation of Parameters and Numerical Solutions 

4.1 Estimated Parameters 

We first estimated the parameters by available data, then used Matlab to numerically solve 
the system of ordinary differential equations (1)-(7). 

Estimated Values By Data 

J-L - mortality rate, is estimated by the average life span ~. 
P1 & P2 - probability given by data that 2.5% of smokers quit permanently[8]. 
1'1 - probability given by the data that 60% of smokers are in the 12 class [17]. 
0"1 - given by the data that individuals in the Ir class quit at a higher rate [18]. 
1'2 - given by data that individuals in the h class quit at a lower rate [18]. 
d - mortality rate, given by data that people who develop lung cancer have a mortality rate 
of 7 years less than J-L [11]. 

Assumed Values 

81 - assuming that 15 out of 1000 Ir individuals develop lung cancer. 
82 - assuming that 30 out of 1000 12 individuals develop lung cancer. 
8q - assuming that 5 out of 1000 Q individuals develp lung cancer. 
Ps - assuming that the probability of developing lung cancer due to previous smoking or 
secondary smoking is low. 
Pn - assuming that the probability of developing lung cancer due to secondary smoke is 
very low. 
f3e - assuming that the transmission rate between the E population and Ir and 12 is very 
low. 
A - assuming that there is a constant population that enters our model; it has to be greater 
than 1. 
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Table 2: Estimation of Parameters 

Parameters Values 
f\. 14+ 

1.1. 0.014 * 

P ':':2'" 

Pn 0.00001+ 
(1-Pn) 0.99999+ 

01 0.015* 

~1 0.60* 
p1 0.025* 

(l-pl) 0.975* 
p2 0.025* 

(l-p2) 0.975* 
cr1 0.50* 

12 0.25* 
Ps 0.0001 + 

(l-Ps) 0.9999+ 

o~ 0.005* 

02 0.03* 
d 0.016* 
q "0.25" 

(1-q) "0.7 y' 

Pe 0.00001+ 

The data was obtained from different organizations such at the CDC (Center for Disease 
Control), American Lung Cancer Society, National Cancer Institute (NCI), and other non­
profit and government agencies. 

* Estimated by the use of data, + Free Parameters = values assumed in order to try to make the model 

realistic, "-" Values that will be randomly changed to see the behavior of our model. 
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4.2 Numerical Solutions 

We simulated our model in order to obtain the cases when Ro < 1 and Ro > 1. Results 
show that when Ro < 1, the population of susceptibles to the infection would eventually die 
out. This agrees with our anaylsis in section 3. The results of our simulations show that 
when Ro > 1, an endemic stable state is established. The two simulations shown describe 
graphically what we have explained on the behavior of Ro. 

Figure 2: Graph shows the simulation for Ro < 1. The smoke-free equilibrium is stable. 
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Figure 3: Graph shows the simulation for Ro > 1. The endemic equilibrium is stable. 
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5 Results of our Deterministic Model 

To obtain a realistic representation on the effects of smoking on a given population, we 
formulated a deterministic model. Simulations of our model were conducted using parame­
ters and estimations from real life studies. We mainly varied two parameters to study the 
sensitivity of our results due to smoking within a population; these were q, the probability 
that incoming individuals would enter our educated class(E); and j3, the transmission rate. 

We produce several simulations showing the effects of smoking. Based on the analysis 
of Ro in the previous section and our endemic-equilibrium point, we established that the 
epidemic of smoking will establish itself, provided that Ro > 1. Otherwise, smoking will 
die out in our population. When Ro > 1, we got q = 0.25 and 13 = 2, which allowed us to 
obtain Ro = 4.04(Figure 3). By looking at the seven classes, we can see that when Ro > 1, 
then all seven classes will establish themselves. If we make q = 0.85 and 13 = 2, then Ro = 
0.808(Figure 2). In this simulation, the population of smokers and ex-smokers eventually 
die out. The sum of the non-smoker class, N, and the educated class, E, reaches the ap­
proximate q-dependent equilibrium values. This simulation shows that for the given values, 
there will be no smoke-induced population. 

When 0"1 and 'Y2 consists of high values, that is when light and heavy smokers quit 
permanently and at a faster rate then likely smokers becoming smokers, then Ro should 
eventually be less than 1. If individuals from the light-smoking class quit at a higher rate 
than individuals that become heavy smokers, then we will be left with a smaller population 
of smokers in general. If we make Ro > 1, but close to 1 in the simulations, then the smok­
ers (II and h) will have a small population, but still have a very large portion of the total 
population in the temporary quitters (S), meaning that individuals are still susceptible to 
smoking again. If we make 0"1 high enough so that Ro < 1, then the total population will 
be concentrated in the likely-smoker class (N) and the educated population (E). 

Simulations were 'Y2 is varied can affect the values of Ro significantly, if we let 'Y2 ---t 00, 

then the Ro equation could be less than 1. This effects the equation by eliminate the con­
tribution of heavy smokers, but, since we still have the contribution of light-smokers, we 
can not necessarily say that the equation for Ro will be lower than l(Figure 6 and 7). 

When we ran simulations varying 13, we found out that if we made 13 high enough, then 
the smoking populations would establish themselves and the prevalence of smokers (II ~h ) 
grows. Also, when 13 is a high value, the smokers will convert faster the likely smokers; then, 
our Ro and the risk of lung cancer increases(Figure 4). If we decrease 13 to a point where 
it is close enough to zero, then less individuals will start smoking due to peer pressure. 
Eventually, Ro could be less than l(Figure 5). 
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The parameters that we need to change in order to reduce the prevalence of smoking 
and lung cancer are q, {3, (Jl, and 1'2. Ideally, one must concentrate on the most sensitive 
parameters, which are q and {3. We say that because shown by the data of the parameters 
(Jl, and 1'2, it is much harder to affect individuals since there is a high percentage of smokers 
tht would like to quit, however, only 2.5 percent of those do it. 

From our simulations, we observed that Pn (0.00001) does not have a big effect at the 
population level of lung cancer. For Pn to have a significant change in Ro, the value would 
have to change dramatically; however, the data indicates the opposite. 

6 Conclusion 

In our model the use of non-linear differential equation was crucial to study the dynam­
ics of lung cancer at the population level caused by smoking and second-hand smoke. By 
building this population, we found an important aspect of mathematical biology, Ro, which 
controls the dynamics of our model. 

On August 5, 2000, an article based on lung cancer was pulished in the Ithaca Journal, 
which came from a British Journal of Medicine. This article stated that if we decrease the 
education on non-smokers and concentrate on smokers, than the prevalence of a smoker 
developing lung cancer is low. However, using our model along with our simulations, we 
argue that when there is an increase of the number individuals that are educated, than 
their probability of becoming smokers decreases and eventually we will have a smoke-free 
population (Ro < 1). However, if Ro > 1, then our population of light and heavy smokers 
will establish themselves. By changing {3, we found that it had a significant effect on the 
number of individuals that were infected. However, the greatest difference ocurred where 
the value of q changed and when we educated a high number of individuals in our population. 

In conclusion, the best way to lower the number of smokers and individuals who develop 
lung cancer is by increasing the number of individuals that are well-educated on the effect 
of smoking. 

7 Future Work 

Even though we considered the total population of smokers in our model, we can add 
to our conditions a number of variations. An age structure and ethnicity diversification 
can be added that will study and analyze the prevalence of lung cancer. This is due to 
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the fact that smoking and its consequences are different if we take into account age, sex, 
and ethnicity. Also, studying a more realistic model that deals with the impact of smoking 
and the behavior it has on the prevalence of lung cancer. One example is studying certain 
brands of cigarettes. Also, we could build a model that would incorporate the recovery rates 
for lung cancer, meaning to add another class, a recovery class (R), were the population 
of the lung cancer class (L) could go. Looking into the development of lung cancers, we 
could take into consideration creating a model that looks at the effects of two types of lung 
cancers,since once an individual recovers from lung cancer the first time ,Type 1, then they 
have a chance of getting a new type of lung cancer, Type 2. Finally, we could forward 
our research by looking at the effects of reducing the impact of peer pressure on likely new 
smokers, such as current smokers and the mass media. 
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9 APPENDIX 

In order to work on the simulations, we needed to create a program in MATLAB that 
was composed basically of the differential equations, the data we found, and the plotting of 
the graphs. 

In MATLAB, we needed to build two programs in order to run the simulations. 
Program 1 
tspan=[O 1000]; 
xO= [500 200 200 200 200 200 200]; 
yO=[250 100 100 100 100 100 100]; 
zO=[750 350 350 350 350 350 350]; 
q = 0.25; 
p = 0.014; 
(3 - 2· - , 
81 = 0.015; 
82 = 0.03; 
8q = 0.01; 
A= 14; 
Ps = 0.0001; 
Pn = 0.00001; 
PI = 0.025; 
P2 = 0.025; 
')'1 = 0.6; 
')'2 = 0.25; 
d = 0.016; 
(3e = .00001; 

[t, x] = ode45('lung', tspan, Xo, [], p, (3, 81, 82, A, Fs, Fn,p1, P2, ')'1, (J'l, ')'2, 8q , d, q, (3e); 
[s, y] = ode45('lung', tspan, Yo, [], p, (3, 81, 82, A, Fs, Fn,P1,P2, ')'1, (J1, ')'2, 8q , d, q, (3e); 
[r, z] = ode45 ('lung' ,tspan, Zo, [], p, (3, 81, 82, A, Fs, Fn,P1,P2, ')'1, (J1, ')'2, 8q , d, q, (3e); 
Ro = (1- q) * ((((1- Pn ) * (3)/(')'1 + 81 + (J1 + p)) + ... 

+ ((')'1 * (1- Pn) * (3)/((')'1 + 81 + (J1 + p) * (')'2 + 82 + p)))); 
figure 
subplot(231) 
hold on 
plot(t,x(:,l), 'c') 
plot(s,y( :,1), 'b') 
plot(r,z(:,l), 'm') 
title(['Ro = ',num2str(Ro)]); 
xlabel('time') 
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ylabel('# Individuals (N)') 
hold off 
subplot (232) 
hold on 
plot(t,x(:,2), 'r') 
plot(r,z(:,2) ,'g') 
plot(s,y(:,2), 'b') 
title(['q = ',num2str(q)]); 
xlabel(,time') 
ylabel('# Individuals (II)') 
hold off 
subplot (233) 
hold on 
plot ( t,x( :,3), 'r') 
plot(s,y(:,3) ,'b') 
plot(r,z( :,3), 'g') 
xlabel(,time') 
ylabel('# Individuals (I2 )') 

title( [',8 = ' ,num2str(,8)]); 
hold off 
sUbplot(236) 
hold on 
plot ( t,x( :,4), 'g') 
plot(s,y(:,4),'m') 
plot(r,z(:,4), 'y') 
xlabel(,time') 
ylabel('# Individuals (Q)') 
hold off 
subplot (235) 
hold on 
plot ( t,x( :,5), 'g') 
plot(s,y( :,5), 'm') 
plot(r,z( :,5), 'b') 
xlabel(,time') 
ylabel('# Individuals (8)') 
hold off 
subplot (234) 
hold on 
plot ( t,x(:,6), 'g.') 
plot (s,y(: ,6), 'y.') 
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plot (r,z( :,6), 'k. ') 
plot (t,x(:, 7), 'r') 
plot(s,y(:,7), 'm') 
plot(r,z(:, 7), 'b') 
xlabel('time') 
ylabel('# Individuals (E & .L.)') 
hold off 

Program 2 

function 
dx=lung(t, x, flag, j.L, /3, 81, 82, A, Fs, Fn,Pl,P2, 'Y1, 0"1, 'Y2, 8q , d, q, /3e) 

N = x(I);Il = x(2); h = x(3); Q = x(4); S = x(5); L = x(6); E = x(7); 
T = N +Il +I2+Q+S+L+E; 
eql = (1- q) * A - /3 * N * (II + h)/'I - j.L * N; 
eq2 = (1 - Pn ) * /3 * N * (II + I2)/'I + (1 - Ps ) * /3 * S * (II + I2)/'I - (0"1 + 'Yl + 81 + j.L) * II; 
eq3 = 'Yl * II - b2 + 82 + j.L) * h; 
eq4 = P2 * 'Y2 * h + PI * 0"1 * II - (8q + j.L) * Q; 
eq5 = (1 - PI) * 0"1 * II + (1 - P2) * 'Y2 * 12 - /3 * S * (II + h)/'I - j.L * S; 
eq6 = Pn * /3 * N * (II + h)/'I + Ps * /3 * S * (II + I2)/'I + /3e * E * (II + h)/'I + 81 * II + 82 * h + 8q * Q­
eq7 = q * A - /3e * E * (Il + I2)/'I - j.L * E; 

dx = [eql; eq2; eq3; eq4; eq5; eq6; eq7]; 
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In this section, we will show some other simulations that will explain the behavior of 
our model if we vary some other parameters that were supposed to changed the value of Ro 
significantly. 

Figure 4: This graph is with j3 = 4. 
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Figure 5: This graph is with (3 = .25 
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Figure 6: This graph is with "/2 = 0.25. 
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Figure 7: This graph is with 1'2 = 3. 
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Figure 8: This graph is with 0"1 = 0.5. 
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Figure 9: This graph is with (T1 = 4. 
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