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Abstract

The most common type of herpes is Herpes Simplex Virus type 1 (HSV-
1), and it is commonly known to cause oral herpes - cold sores and fever
blisters. Recent studies show that an HSV-1 vaccine was successful in the
lab for animals such as guinea pigs and mice. It is estimated that the vac-
cine will be available for human use in the next couple of years. Encouraged
by those studies, we have formulated a simple SVID model studying the dis-
ease transmission dynamics with treatment and vaccination. In this project
we find the vaccination-treatment reproductive number, the equilibrium so-
lutions, and their stability. We conduct sensitivity and uncertainty analysis
for the reproductive number. We estimate the parameters based on previ-
ous works and perform numerical simulations. Finally, we compare different
types of treatment and vaccination strategies to find an optimal combination
of them and its relative cost in reducing the prevalence of HSV-1 infection in
the population.



1 Introduction

Herpes is a disease caused by the Herpes Simplex Virus (HSV). It is estimated that
60% - 95% of the worldwide adult population is or will be infected with some type of
herpes [2]. There are two types of herpes that are commonly present in the human
population, HSV-1 and HSV-2. HSV-1 is commonly known for causing cold sores
or fever blisters; however, it can infect the genital area as well. According to Lin
et al. [12], HSV-1 infection is “virtually universal,” and up to 90% of adults in the
United States will be infected. On the other hand, HSV-2 occurs particularly on
the genital area and therefore is normally known as genital herpes.

HSV-1 is transmitted from person to person by direct contact with the infectious
individuals’ sores or secretions, such as saliva. The virus enters through the mucous
membranes and is transported to the ganglia, where it remains in a dormant stage [2]
– and sometimes is referred to as latent stage. When the virus becomes active, an
outbreak may occur (presence of symptoms) [2]. A person may show symptoms 2
– 10 days after being infected with HSV-1. Some of the symptoms are mentioned
in [20] and [21], and these include: fever and/or headache, mouth sores, blisters
and/or ulcers (which are frequent in the mouth, lips, or gums), and/or enlargement
of lymph nodes in the neck.

The outbreaks will usually heal on their own in 7 - 10 days. If a person’s immune
system is weak, the infection will be more severe and may last longer [20]. At the
end of the active period, the virus travels to the end of the spine where it remains
dormant until triggered by fever, overexposure to sunlight, stress, or a weak immune
system [20]. The frequency and severity of the outbreaks varies from person to
person, some people may have one or two outbreaks in a lifetime, while others may
have several ones within a single year [21]. One of the features of HSV-1 that
facilitates the transmission of the disease is that about half of the infected people
are asymptomatic. Hence, a person that does not present symptoms can spread the
disease [21].

Since herpes may be asymptomatic, a health care provider would need to do one
of the following tests to detect the virus: a blood test, direct fluorescent antibody
(DFA) test, Tzanck test, or a viral culture of lesion. Once the infection has been
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confirmed and although there is no cure for herpes, there are drugs that reduce the
frequency and duration of outbreaks. The most common drug for HSV-1 is Acyclovir
(Zoviraxr) [20]. Currently, there is an ongoing research for the development of a
vaccine that may be available for humans in the next few years. This vaccine will
prevent people from getting infected from HSV-1, and it is unlikely that such a
vaccine will help people that are already infected.

There has been some work in mathematical modeling of HSV-1 [13], [14], [19];
however, vaccination was not considered. Lipsitch et al. have analyzed the effect
of antiviral treatment on the transmission of HSV-1 and the prevalence of drug
resistance [13]. Additional laboratory work has been done to study the effects of
vaccination on HSV-1; for instance, Itzhaki [10] showed that vaccination prevents
dormant HSV-1 infection of mouse brain. Also, Chang et al. [4] demonstrated that
glycoprotein gC immunization in mice obstructs completely C3b binding, which is
the way that the immune evasion molecule inhibits complement activation in the case
of HSV-1. It is believed that this immunization may also induce blocking antibodies
that modify HSV-1 in humans. Others have studied the effectiveness of an HSV-1
vaccine; for example, Lin et al. [12] proved that HSV-1 was detected in the brain
of 41% of the unvaccinated mice that were infected with HSV-1 versus 7% of the
vaccinated mice. On the other hand, many studies have been done about HSV-2
and the impact of a possible vaccine to control the disease; for instance, Schwartz
and Blower [16].

Since the trial of an HSV-1 vaccination was successful on guinea pigs and more
recently on mice, it leads to believe that a human vaccine for HSV-1 may be avail-
able in the near future. Taking into consideration previous studies and events, we
formulate an SVID model to study the disease transmission dynamics, and estimate
the difference between the cost of treatment and vaccination for HSV-1.
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2 The Model

In this section we introduce an epidemiological model that divides the population of
interest into four epidemiological classes namely S (Susceptible), V (Vaccinated), I
(Infectious), and D (Dormant) as follows:
(i) The Susceptible class S contains all the individuals that are in risk of being
infected.
(ii) The Vaccinated class V contains all the individuals that were susceptible, and
have been vaccinated. Vaccination does not necessary mean complete immunity.
(iii) The Infectious class I includes all the individuals that have the ability to infect
a susceptible or vaccinated individual. An individual in this class may or may not
present symptoms.
(iv) The dormant class D contains all the individuals who are infected but not
infectious.

Now we explain the meaning of the parameters used in the model.
(a) µ is the per capita death and birth rate.
(b) 1/ρ is the average time until vaccination.
(c) 1/ω is the average duration of vaccine-induced immunity.
(d) β1 is the per capita rate of infection for the susceptible class.
(e) p is the proportion of the infectious individuals that are under treatment
(f) φ is the per capita rate at which infectious individuals under treatment move
into the dormant class. Note that φ = pφ′, where 1/φ′ is the average length of viral
shedding episodes for an individual with treatment.
(g) γ is the per capita rate at which infectious individuals that are not under treat-
ment move into the dormant class. Similarly to φ, γ = (1− p)γ′, where 1/γ′ is the
average length of viral shedding episodes for an individual without treatment and
1− p is the proportion of infectious population under no treatment.
(h) 1/λ is the average length of time an infected person stays in the dormant class.
(i) α is the proportion of vaccinated individuals that are not protected from the
virus.
(i) β2 is the per capita rate of infection for the vaccinated class, where β2 = β1α.

Table 1 summarizes the explanation of the parameters used in the model.

We now discuss the assumptions made in the model. While HSV-1 can be trans-
mitted through oral sex, and consequently causes genital herpes, we are considering
oral HSV-1 only. Hence, HSV-1 is transmitted through direct contact, such as a
kiss, with the sores or secretions of an individual.
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Table 1: Explanation of Parameters.
µ Per capita death and birth rate.

ρ Per capita rate of vaccination.
1/ω Average duration of vaccine-induced immunity
β1 Per capita rate of infection for the susceptible class
β2 Per capita rate of infection for the vaccinated class
φ Per capita recovery rate with treatment
γ Per capita recovery rate without treatment
λ Per capita recurrence rate

Our model takes into account the presence of a vaccine that protects the suscep-
tibles from getting infected. It is not likely that the vaccine will help people that are
already infected with the virus, so we do not consider any movement from I to V but
only from V to I. We assume that the vaccine efficacy is less than 100%. Therefore,
it is possible for vaccinated people to get infected but not at the same degree as the
susceptible people; so β2 ≤ β1. Another assumption is that, on average, the vaccine
induced immunity will wear off in 1/ω years and an average individual stays in the
susceptible class 1/ρ years before vaccination.

We assume that HSV-1 is not drug resistant. A person that has had treatment
does not develop any protection from the virus in the future. Finally, we consider
that the infected people seek treatment only when they are having an outbreak.
Such a treatment consists of ointments and pills that lessen the pain and make the
sores disappear faster.

2.1 Compartmental model

The box diagram in Figure 1 clearly illustrates the flow of individuals as an HSV-1
epidemic progresses.

Using the assumptions, definitons, and the box diagram, we can easily describe
the dynamics of HSV-1 among the human population by the following system of
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Figure 1: Compartmental model of HSV-1 with vaccination

nonlinear differential equations:

dS

dt
= µN − β1S

I

N
+ ωV − (ρ + µ)S (1)

dI

dt
= β1S

I

N
+ β2V

I

N
+ λD − (φ + γ + µ)I (2)

dD

dt
= (φ + γ)I − (λ + µ)D (3)

dV

dt
= ρS − β2V

I

N
− (µ + ω)V, where (4)

N = S + I + D + V (5)

As we can see, equation 5 implies that N ′ = S ′+I ′+D′+V ′. Direct computation
yields that S ′+I ′+D′+V ′ = 0, which shows that N , the population size, is constant.
Also, since N is constant, there is no harm in assuming N = 1. However, we chose
not to do so.
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3 Model analysis

In this section we analyze the system presented in Equations (1) – (5). We first find
the vaccination-treatment reproductive number, R(ρ, φ), and deduce from it the
basic reproductive number R0. We also discuss the relationship between R(ρ, φ)
and R0. R is a function of ρ and φ that fits our goal of evaluating the importance of
vaccination and treatment in the disease dynamics. We analyze the equilibria of the
system, and carry out sensitivity and uncertainty analysis. We perform sensitivity
analysis in order to determine which parameter would have a greater effect on the
vaccination-treatment reproductive number. We also perform uncertainty analysis
in the vaccination-treatment reproductive number because of the uncertainty in
estimating the parameter values.

3.1 Reproductive Numbers

Using standard methods (see Appendix), we calculate the vaccination-treatment
reproductive number R(ρ, φ),

R(ρ, φ) =
1

γ + µ + φ

(
β1

µ + ω

µ + ρ + ω
+ β2

ρ

µ + ρ + ω
+

λ(γ + φ)

λ + µ

)

A possible explanation for R(ρ, φ) is as follows, 1
γ+µ+φ

is the average time that

an infected individual spent in class I. β1(µ+ω)
µ+ω+ρ

is the rate at which susceptible

individuals enter class I. β2ρ
µ+ω+ρ

is the rate at which vaccinated individuals enter

class I. λ(φ+γ)
λ+µ

is the rate at which dormant individuals enter class I and infected
individuals enter class D.

When ρ and φ equal to zero we have

R(0, 0) =
1

γ + µ

(
β1 +

λγ

λ + µ

)

Notice that R(0, φ) does not depend on ω. This is in agreement with our ex-
pectation, that if the population is not vaccinated, the period of immunization is
zero.

Also, note that ρ = φ = 0 implies that the dynamics of HSV-1 will not be affected
by any external intervention – all the movement of individuals from one class to
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another will only depend on the dynamics of the population and the disease. Hence,
R(0, 0) is the basic reproductive number of the disease. We write it as R0 = R(0, 0).

This number offers the following meaning: β1

γ+µ
is the rate at which susceptible

individuals enter the infectious class in the absence of treatment or vaccination.
Furthermore, λγ

(γ+µ)(λ+µ)
is the contribution that the D class makes to the I class.

The products λγ, and 1
λ+µ

1
γ+µ

, emphasize the cycle of in-flow and out-flow between

I and D, as 1
λ+µ

is the average time spent in the D class and 1
γ+µ

is the average
time spent in I, without treatment or vaccination.

3.2 Disease-free equilibrium

The model has the following disease-free equilibrium,

E0 =

(
N(µ + ω)

µ + ρ + ω
, 0, 0,

ρN

µ + ρ + ω

)

The computation of this equilibrium point is included in the Appendix.

According to previous work [8], E0 is locally asymptotically stable whenever the
vaccination-treatment reproductive number of the system is less than one.

3.3 Endemic equilibrium

We now show the existence of at least one endemic equilibrium, when R(ρ, φ) > 1.

Proposition 1. If R(ρ, φ) > 1, then the system described in (1) – (5) has a unique
endemic equilibrium point.

Proof. See the Appendix. ¥

In the proof included in the appendix, we define

a =
β1β2

N

(
1 +

φ + γ

λ + µ

)
,

b = β1

(
(µ + ω)(1 +

φ + γ

λ + µ
)− β2

)
+ β2

(
(φ + γ + µ)− λ

φ + γ

λ + µ
+ ρ

(
1 +

φ + γ

λ + µ

))

c = N(γ + φ + µ)(µ + ρ + ω)(1−R(ρ, φ)).
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With this in mind, one has

Proposition 2. Let b and ∆ be defined as before, then if b > 0 and R(ρ, φ) < 1
there is no endemic equilibrium point.

Proof. Since R(ρ, φ) < 1 we have that c > 0. So, from the Vièta relations, we have
that r1r2 > 0 and r1 + r2 < 0. Thus, both non-zero roots of (7) are negative. ¥

Proposition 3. Let b and ∆ be defined as before, then if b < 0, ∆ > 0, and
R(ρ, φ) < 1 there are two endemic equilibria points.

Proof. If R(ρ, φ) < 1, then c > 0. This implies that r1r2 > 0 and r1 + r2 > 0. In
this case, there are two positive solutions to (7), and so two endemic equilibria. ¥

Since R(ρ, φ) > 1 ⇐⇒ c < 0, in this case ∆ > 0. Hence, the positive solution
to (7) is given by

−b +
√

b2 − 4ac

2a

Similarly, whenever the conditions of Proposition 3 are given, the two endemic
states are

−b±√b2 − 4ac

2a

Whenever the conditions of Proposition 3 are satisfied, the model defined in (1)
– (5) presents a backward bifurcation behavior. This implies that, depending on
the initial conditions, R(ρ, φ) < 1 is not enough to control the prevalence of HSV-1
infection. Figure 2(b) is a schematic representation of a backward bifurcation be-
havior; in contrast with Figure 2(a) which represents a forward bifurcation behavior.

Note that in the case of Figure 2(a) there is only one bifurcation point to know,
R(ρ, φ) = 1. On the other hand, in the case of Figure 2(b), we have two bifurcation
points to know, R(ρ, φ) = C, where C < 1, and R(ρ, φ) = 1. We summarize the
results of propositions 1 – 3 in Table 2. We use the expression “NA” to indicate:
(1) that once some conditions have been fixed to certain parameters, the rest can be
inferred; (2) that the conditions on the parameters that have been assigned “NA”
do not matter for the result to hold. For instance, in the second row of Table 2,
once we have R(ρ, φ) < C, the conditions upon b and ∆ do not matter. Also, in
row 4, one only needs R(ρ, φ) > 1 for a unique endemic equilibrium to exist.
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1 R (ρ,φ)

I

C R (ρ,φ)

I

1

Figure 2: (a) Forward bifurcation (b) Backward bifurcation

Table 2: Existence of Equilibria.
R(ρ, φ) b ∆ Number of Equilibria

R(ρ, φ) < C NA NA One: DFE only
C < R(ρ, φ) < 1 < 0 > 0 Three: DFE and two endemic equilibria
R(ρ, φ) = C NA = 0 Two: DFE and one endemic equilibrium
R(ρ, φ) > 1 NA NA One: Unique endemic equilibrium

Proposition 3 only gives conditions for the existence of two endemic equilibria
points. However, one usually uses the term “backward bifurcation” to refer to the
case of Figure 2(b). In order to guarantee that, we use Theorem 4.1 in [3] .

Proposition 4. The system described in (1) – (4) presents a backward bifurcation
when R(ρ, φ) < 1 and

(β1 − β2)ρ

ρ + µ + ω

(
1 +

β2

µ + ω + ρ
+

φ + γ

λ + µ

)
− β1

(
1 +

φ + γ

λ + µ

)
> 0

Proof. See the Appendix. ¥

3.4 Sensitivity Analysis of R(ρ, φ)

We calculate the sensitivity index of R(ρ, φ) with respect to all our parameters, as
can be seen in Table 3. The values of all the parameters were fixed to determine
their sensitivity index. A negative sensitivity index means that an increase in the
value of parameters, in our case γ, µ, φ, and ρ would decrease R(ρ, φ). On the
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other hand, a positive sensitivity index means that an increase in the value of a
parameter, in our case, β1, ω, and λ, and β2 would increase R(ρ, φ). We notice
that the sensitivity index of our parameters are small in value, and as a result, a
perturbation in the values of our parameters would have little effect on R(ρ, φ).

Table 3: Calculated sensitivity index of R(ρ, φ) with respect to the parameters.
Parameters Sensitivity Index

γ −0.003529
µ −0.006736
φ −0.003395
β1 0.005047
ω 0.001642
ρ −0.001993
λ 0.006386
β2 0.002510

Since we are interested in the combination of vaccination and treatment to control
the prevalence and incidence of HSV-1 in the population, we focus on the sensitivity
analysis of ρ and φ. These are the only parameters that can be influenced by exterior
forces, such as vaccination and treatment policies.

Let Sq be the sensitivity index of R(ρ, φ) with respect to the parameter q. We
are going to compare Sρ and Sφ. For that, we fix all the other parameters using
values from Table 4 except for ρ and φ. Since R0 ≥ R(ρ, φ), Sρ and Sφ must be
both negative. This is confirmed experimentally. Furthermore, as expected, the
relation between Sρ and Sφ depends heavily on the chosen parameters. In figure 3
we plot Sρ = Sφ in the ρ − φ plane. We notice that |Sφ| ≤ |Sρ| below the curve
meaning that, in that region, an increase in the value of ρ would have a slightly
greater impact in decreasing R(ρ, φ) compared to φ. On the other hand, |Sρ| ≤ |Sφ|
above the curve meaning that, in that region, an increase in the value of φ would
have a slightly greater impact in decreasing R(ρ, φ) compared to ρ.

In Figure 4 we graph Sφ = Sρ in the ρ − φ plane with different values of β2.
Note how the curve dividing the two regions changes in each case. One verifies the
dependence of the sensitivity index on the parameters given.

Figure 5 represents the equation R(ρ, φ) = 1. R(ρ, φ) is greater than 1 below
the curve. R(ρ, φ) is less than 1 above the curve.
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Figure 3: Sφ = Sρ
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Figure 4: |Sφ| = |Sρ| in the ρ – φ plane with different values of β2. From bottom
up, β2 = 0.0435, 0.094, 0.1305

4 Numerical Simulations

We now present the numerical results obtained. The first experiment that we per-
formed is to see the long-time behavior of our model when ρ = φ = 0. Using the
parameters estimated in Table 4, we get the the graphs presented in Figure ??.

In the simulation, V = 0, as there is no in-flow to V . Also, the infectious and
dormant class attain a steady state quite fast. Furthermore, the susceptible class
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Figure 5: R(ρ, φ) = 1

decays almost linearly. Figure 6 shows that HSV-1 infection is more or less stable
with the current parameter values, which is in agreement with the information found
in current literature [5], [13], [15], [16], [22].

4.1 Parameter Values

To run the numerical simulations, we use estimations included in previous works
(See Table 4). We now explain the values given to the parameters.

1. µ. The life expectancy of an American individual is estimated to be between
70 – 77.2 years. We use the estimation for United States in 2001, provided by
the National Center for Health Statistics [13], and [22].

2. ρ. This parameter does not depend on the epidemiology of the disease or the
dynamics of the American population. In our model, 1/ρ is estimated to be
between 5 – 20 years.

3. 1/ω. It is estimated to be between 10 – 20 years. Since HSV-1 and HSV-2 are
closely related, we use the same estimations as in [16].

4. λ. Recurrent oral herpes affects about 20% of the adult population in the
United States [17]. Most people have two to three sores a year [5]. Since our
class I includes people that may or may not show symptoms, we consider that
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Figure 6: Dynamics of HSV-1 with ρ = φ = 0.

the virus becomes active (whether it shows symptoms or not) between two and
three times a year. Hence, λ is in the range between 1/(0.5 year) and 1/(0.4
year)

5. β1. As pointed out by Malkin [15], due to the asymptomatic infection in
certain individuals, it is difficult to estimate the rate of infection. We follow
Malkin’s suggestion and let β1 range from 5% to 24%.

6. γ′. It is estimated that when active, the virus remains so from 1 to 2 weeks.

7. φ′. With treatment, the virus remains active in average one day less than
without treatment. This data is available for users of Valtrexr, and we assume
that other treatments such as ointments have a similar effect.
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8. p. This is the effective treatment rate. The numerical simulations performed
in 6 suggest that p varies between 23% and 3% of the whole population. We
were not able to obtain real data for this parameter.

Table 4: Estimation of parameters.
Parameters Minimum value Maximum value

µ (1/77.2) yr−1 [22] (1/70) yr−1 [13]
ρ 1/20 1/5
ω 1/20 [16] 1/10 [16]
β1 0.05 [15] 0.24 [15]
φ′ (1/0.0356) yr−1 (1/0.0164) yr−1

γ′ (1/0.0384) yr−1 (1/0.0192) yr−1

p 0.2 0.25
λ 1/0.5 yr−1 [5] 1/0.4 yr−1 [5]
α 0.3 [16] 0.9 [16]

5 Uncertainty Analysis

We perform uncertainty analysis in R(ρ, φ) to estimate the variability of R(ρ, φ) as
a result of the uncertainty in estimating the parameter values. We use the values
for β1, β2, ω, φ, γ, ρ, µ, and λ from Table 4 and use Monte Carlo simulations (simple
random sampling) to determine the uncertainty of R(ρ, φ). We assume that

µ ∼ exp(µ = 1/70) λ ∼ Unif(a = 2, b = 3)

ω ∼ exp(µ = 1/20) φ ∼ exp(µ = 0.04)

β1 ∼ Unif(a = 0.05, b = 0.24) β2 ∼ Unif(a = 0.01, b = 0.21)

γ ∼ exp(µ = 0.04) ρ ∼ exp(µ = 1/5)

We compute R(ρ, φ) by sampling the parameters 10000 times from different
probability distributions. This sampling generates a histogram of the frequencies
from the different values obtained for R(ρ, φ). Figure 7 collects the results for one
realization, which looks like a Gamma distribution.
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Figure 7: Histogram of R(ρ, φ) for one realization of 10000 samplings.

6 Estimating the Cost of Vaccination and Treat-

ment

Taking into consideration the work done by Daley et al. [6], we formulate a cost
function that can be used to compare the cost of the vaccine and the treatment over
a certain time interval,

Cost(ρ, φ) = PvρS(∞) + PtrφI(∞) (6)

where Pv is the price of the vaccine, ρS(∞) is the flow from susceptible to vaccinated
per unit time, Ptr is the amount of money that is spent on treatment per infected
per unit time, and φI(∞) is the flow from infectious to dormant who go through
treatment per unit time.

The details of computing the cost function Cost(ρ, φ) are described in Algorithm
1, which is included in the appendix. One detail to notice is that our goal is to reduce
R0 by 1%. At first glance, such a goal does not seem an ambitious one. However,
considering the sensitivity analysis performed on R(ρ, φ), one sees that changing ρ
and φ actually exerts little change to R(ρ, φ). Therefore, 1% is an achievable goal.

We perform three different kind of experiments to graph the cost function.
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In the first case, we look at the trivial vaccination strategy of vaccinating all
the susceptible. This is optimal when, for instance, Ptr ≈ 50% of Pv. We can see
in Figure 8 that Cost is minimal when ρ = 1. The same behavior occurs when
Ptr ≥ 0.5 × Ptr. In this case, one observes that the higher the vaccination rate,
the lower the treatment rate, and the lower the cost obtained. This means that the
majority of the resources should be devoted to vaccination.

0.60.40.20

Cost

16

14

rho

12

10

1

8

0.8

Figure 8: Cost when Ptr = 0.5× Pv

In the second case, we look at the vaccination strategy of not vaccinating any
individual. This is optimal, for instance, when Ptr equals 10% of Pv. We can see
in Figure 9 that Cost is minimal when ρ = 0. The same behavior occurs when
Ptr ≤ 0.1× Pv. This implies that all resources should be spent on treatment rather
than vaccination.
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0.40.20
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Figure 9: Cost when Ptr = 0.1× Pv

In the third case, we study 0.1 × Pv < Ptr < 0.45Pv. Here we obtain a non
trivial vaccination-treatment strategy. For instance, Ptr ≈ 25% of Pv. We can see in
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Figure 10 that the optimal vaccination-treatment strategy in this case is to vaccinate
about 24% of the susceptible population. Table 5 presents different values for this
case. Note that the optimal vaccination-strategy – in terms of cost – depends on
the actual price of the vaccine, which is difficult to estimate at this time, since it is
not available yet.

0.6 0.80.40.20

Cost

10

9.5

9

8.5

8

7.5

rho

1

Figure 10: Cost when Ptr = 0.25× Pv

Table 5 presents different optimal vaccination-treatment strategies depending on
the relationship between Pv and Ptr.

Table 5: Optimal values of vaccination and treatment.
Ptr percentage vaccinated Percentage treated

10% of Pv 0 ≈ 23%
11% of Pv < 0.01 ≈ 22%
25% of Pv 0.23 ≈ 7%
42% of Pv 0.85 ≈ 3.3%
43% of Pv 0.91 ≈ 3.2%
44% of Pv 0.97 ≈ 3.1%
45% of Pv 1 ≈ 3%

As one can see from Table 5, there are two trivial vaccination-treatment strate-
gies – either vaccinating the whole susceptible population or none. This happens,
approximately, when Ptr ≥ 0.45 × Pv, and Ptr < 0.11 × Pv, respectively. For other
values of Ptr, Table 5 presents the approximate optimal solution.
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7 Discussion and Conclusions

The purpose of this study was to develop a mathematical model for HSV-1 with a
combination of treatment and vaccination. This model is a “future model” and will
be more accurate for the population in the next couple of years, when the vaccine
becomes available. We want to show with a function of cost, what vaccination-
treatment strategy will be more effective to reduce R0. To do this we formulated
an SVID model which has φ as the treatment rate and ρ as the vaccination rate.

We only consider oral HSV-1 that causes blisters and cold sores on the lips. We
take under consideration that only a susceptible person can be vaccinated and that
the vaccine is not a 100% efficient. Vaccine induced-immunity waines after 1/ω
years and HSV-1 is not drug -resistant. We consider that the infected people are
under treatment only when they have an outbreak. We computed the reproductive
number, our equilibria, which are the DFE and the endemic, and discussed their
stability.

From the sensitivity analysis, we saw that if we change our vaccination and treat-
ment rate, R(ρ, φ) does not change dramatically. From our uncertainty analysis, by
choosing mostly exponential or uniform distribution for the parameters which appear
in R(ρ, φ), we obtain the histogram presented in Figure 7. From such a histogram,
it seems as though R(ρ, φ) has a Gamma distribution.

Our results are similar to the ones obtained by [16] that the vaccine will have
limited impact on the prevalence of the infection. In fact, in some cases, the treat-
ment is more effective. These results were obtained from a simpler model than the
one presented in [16]. Some of the possible reasons why HSV-1 cannot be easily
reduced are: (1) it is a disease that is already widespread, (2) the fact that HSV-1
is an asymptomatic disease does not help to reduce its spread, as a person may
transmit the disease without knowing, and (3) the disease is life-lasting, and so once
a person is infected, he or she will carry the disease all his or her life.

We plotted the cost function given in Equation (6) for certain parameter values,
and as a result we conclude that the optimal vaccination-treatment strategy depends
on the relationship between Pv and Ptr. When Ptr ≈ 50% of Pv, the optimal strategy
is to vaccinate 100% of the susceptible population. When Ptr ≈ 10% of Pv, the
optimal strategy is to use treatment. Finally, when Ptr ≈ 25% of Pv, the optimal
strategy is to vaccinate about 20% of the susceptible population.
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8 Future Work

As future work we would like to compare our results with similar ones obtained for
HSV-2.

Also, a bifurcation analysis needs to be done on the system.

Since there is no vaccine nowadays, it would be interesting to see the effect of
increasing the length of the dormant period on the disease by improving treatment.
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10 Appendix

Sensitivity index of the parameters

Table 6 presents the sensitivity index of R(ρ, φ) with respect to all the parame-
ters.

Finding the disease-free equilibrium

We now find the disease free equilibrium (DFE) of the system, which we represent
by (S0, I0, D0, V0), where I0 = 0. Under this condition, from (3) we get that

(λ + µ)D0 = 0, or D0 = 0
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Table 6: Sensitivity Analysis of R(ρ, φ).
Parameters Sensitivity Index

γ γ
γ+µ+φ

+ λγ(µ−φ)
R(ρ,φ)(γ+µ)2(γ+µ+φ)

µ µ( −1
γ+µ+φ

+ β1

(µ+ρ+ω)(γ+µ+φ)R(ρ,φ)
− λ(γ+φ)

(γ+µ)2(γ+µ+φ)R(ρ,φ)
− β1(µ+ω)−β2ρ

(µ+ρ+ω)2(γ+µ+φ)R(ρ,φ)
)

φ φ( −1
γ+µ+φ

+ λ
(γ+µ+φ)(γ+µ)R(ρ,φ)

)

β1
β1(µ+ω)

(γ+µ+φ)(µ+ρ+ω)R(ρ,φ)

ω ω( β1

(µ+ρ+ω)R(ρ,φ)(γ+µ+φ)
− β1(µ+ω)+β2ρ

(µ+ρ+ω)2R(ρ,φ)(γ+µ+φ)
)

β2
ρβ2

(γ+µ+φ)(µ+ρ+ω)R(ρ,φ)

λ (γ+φ)λ
(γ+µ+φ)(γ+µ)R(ρ,φ)

ρ
ρ(− β1(µ+ω)

(µ+ρ+ω)2
+

β2
µ+ρ+ω

− β2ρ

(µ+ρ+ω)2
)

(γ+µ+φ)R(ρ,φ)

Now, from equations (1), and (4), we get that

ωV0 − ρS0 − µS0 = −µN

ρS0 − ωV0 − µV0 = 0

One can solve the system above using Cramer’s rule to obtain

S0 =

det

[−µN ω
0 −(ω + µ)

]

det

[−(ρ + µ) ω
ρ −(ω + µ)

] =
N(µ + ω)

µ + ρ + ω

V0 =

det

[−(ρ + µ) −µN
ρ 0

]

det

[−(ρ + µ) ω
ρ −(ω + µ)

] =
ρN

µ + ρ + ω

and so, the DFE state is E0 = (S0, 0, 0, V0).

The Jacobian of our system is

J =




−β1
I
N
− ρ− µ −β1

S
N

0 ω
β1

I
N

β1
S
N

+ β2
V
N
− φ− γ − µ λ β2

I
N

0 φ + γ −(λ + µ) 0

ρ −β2
V
N

0 −
(

ω + β2
I
N

+ µ

)



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Evaluating the reproductive number

We will use the second generation operator method, as described in van den
Diekmann and Heesterbeek [7], and van den Driessche and Watmough [8]. Let X
be the vector whose components are the functions that represent the classes that
are not infected; Y be the vector whose component is the dormant class, and Z be
the vector whose component is the function representing the infectious class. In the
case of this model

X =

[
S
V

]
, Y =

[
D

]
, Z =

[
I
]

the disease-free equilibrium is
(

N(ω + µ)

µ + ω + ρ
, 0, 0,

Nρ

µ + ω + ρ

)

From equation (3) we know that

D =
I(γ + φ)

λ + µ

and so

Y ∗(X∗, Z) =
I(γ + φ)

λ + µ

Now, we obtain

∂

∂Z

dZ

dt

∣∣∣∣
X=X∗,Y =Y ∗(X∗,Z)

= β1
µ + ω

µ + ρ + ω
+ β2

ρ

µ + ρ + ω
+

λ(γ + φ)

λ + µ
− (γ + µ + φ)

We find that

R(ρ, φ) =
1

γ + µ + φ

(
β1

µ + ω

µ + ρ + ω
+ β2

ρ

µ + ρ + ω
+

λ(γ + φ)

λ + µ

)

When ρ and φ equal to zero we have

R(0, 0) =
1

γ + µ

(
β1 +

λγ

λ + µ

)

Proof of Proposition 1
Proof. Since we know that N is constant, we ignore equation (1) and express (3)
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and (4) in terms of I∗. From equation (3) and (4), we get that

D =
φ + γ

λ + µ
I, V =

ρ(N − I −D)

β2
I
N

+ µ + ω + ρ

Substituting V and I into, we get a cubic equation that can be factored as

I(aI2 + bI + c) = Ip(I) (7)

where p(I) = aI2 + bI + c.

a =
β1β2

N

(
1 +

φ + γ

λ + µ

)
,

b = β1

(
(µ + ω)(1 +

φ + γ

λ + µ
)− β2

)
+ β2

(
(φ + γ + µ)− λ

φ + γ

λ + µ
+ ρ

(
1 +

φ + γ

λ + µ

))

c = N(γ + φ + µ)(µ + ρ + ω)(1−R(ρ, φ)).

Note that a is always positive and R(ρ, φ) > 1 implies c < 0. Also note that D∗

and V ∗ exist and are positive whenever I∗ exists and is positive, since we managed
to write them in terms of I∗. We considered the case I∗ = 0 in Section 3.2, so we
assume that I∗ 6= 0; this implies that ax2 + bx + c = 0. Now, if r1, r2 are the roots
of ax2 + bx + c, by Vièta’s Theorem, one has r1 + r2 = −b/a and r1r2 = c/a. Let
∆ = b2 − 4ac, and note that ∆ ≥ 0 whenever R(ρ, φ) > 1. So when R(ρ, φ) > 1
r1, r2 would be real numbers. Hence, from r1r2 < 0 we get that there is exactly one
positive root, and so there is a unique endemic equilibrium point. ¥

Proof of bifurcation

We verify the conditions of Theorem 4.1 in [3]. First,

dI

dt
= β1(N − I −D − V )

I

N
+ β2V

I

N
+ λD − (φ + γ + µ)I

dD

dt
= (φ + γ)I − (λ + µ)D

dV

dt
= ρ(N − I −D − V )− β2V

I

N
− (µ + ω)V

In those equations we substitute the following, I = X1, D = X2, V = X3. So our
equations are f1 = β1(N − X1 − X2 − X3)

X1

N
+ β2X3/N + λX2 − (φ + γ + µ)X1,
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f2 = (φ+ γ)X1− (λ+µ)X2, and f3 = ρ(N −X1−X2−X3)−β2X3/N − (µ+ω)X3.
The Jacobian Matrix of the system is

A =




β2
X3

N
+ β1

N−2(X1)−X2−X3

N
− φ− γ − µ −β1

X1

N
+ λ −β1

X1

N
+ β2

X1

N

φ + γ −µ− λ 0
−ρ− β2

X3

N
−ρ −ρ− ω − β2

X1

N
− µ




and now we will use the DFE, which is

(
0, 0,

Nρ

µ + ω + ρ

)

and substitute X1 = 0, X2 = 0, X3 = Nρ
µ+ω+ρ

in A to obtain

B =




β2
ρ

µ+ω+ρ
− 2β1

ρ
µ+ω+ρ

+ β1 − φ− γ − µ λ 0

+φ + γ −µ− λ 0
−ρ− β2

ρ
µ+ω+ρ

−ρ −ρ− ω − µ




We find the eigenvalues y1, y2, and y3 of A. Simple inspection shows that y1 =
−(ρ + ω + µ), and y2, y3 are the eigenvalues of

[
β1 − (φ + γ + µ) + (β2−β1)ρ

µ+ω+ρ
λ

φ + γ −µ− λ

]

when R(ρ, φ) = 1, i.e.,

β1
µ + ω

ρ + ω + µ
+

β2ρ

ρ + ω + µ
+ λ

λ(γ + φ)

λ + µ
= γ + µ + φ

β1 − (φ + γ + µ) =
(β1 − β2)ρ

ρ + ω + µ
− λ(γ + ω)

λ + µ

We get that y2 = 0 and y3 = −β1 − (φ + γ + µ) + (β2−β1)ρ
ρ+ω+µ

− (λ + µ). Note that
y3 is negative. So one has a simple zero eigenvalue and two negative ones.

Now we find the right and left eigenvector corresponding to y2 = 0.

To find the right eigenvalue we calculate




−λγ+φ
λ+µ

λ 0

φ + γ −µ− λ 0

−φ− β2ρ
ρ+ω+µ

−ρ −(ρ + ω + µ)







u1

u2

u3


 =




0
0
0



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So the right eigenvector is

U =




1
φ+γ
λ+µ

− ρ
ρ+ω+µ

(1 + β2

µ+ω+ρ
+ φ+γ

λ+µ
)




To find the left eigenvector we calculate


−λγ+φ

λ+µ
φ + γ −ρ− β2ρ

ρ+ω+µ

λ −µ− λ −ρ
0 0 −(ρ + ω + µ)







v1

v2

v3


 =




0
0
0




So the left eigenvalue is

V =




1
λ

µ+λ

0




Now we find a and b

a =
n∑

k,i,j=1

vkwiwj
∂2fk

(∂)(xi)(∂)(xj)
(0, 0)

b =
n∑

k,i=1

vkwj
∂2fk

(∂)(xi)(∂φ)
(0, 0)

It is easy to see that b > 0. So whenever a > 0 we have backward bifurcation.

We have five nonzero terms in a,

a = v1u2u1
δ2f1

δx2δx1

+ v1u1u1
δ2f1

δx1δx1

(0, 0) + v1u2u1
δ2f1

δx2δx1

(0, 0)+

+v1u3u1
δ2f1

δx3δx1

(0, 0) + v1u1u3
δ2f1

δx1δx3

(0, 0)

Finally we have

a = −β1

N
− β1(φ + γ)

N(λ + µ)
+

ρ

N(ρ + µ + ω)

(
1 +

β2

µ + ω + ρ
+

φ + γ

λ + µ

)
(β1 − β2)
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By theorem 4.1, [3], one has backward bifurcation if a > 0. ¥

Calculating C for the backward bifurcation

We can analytically compute C by noting that at this point, we only have one
positive solution to (7). Since R(ρ, φ) < 1, to guarantee a unique positive solution,
one needs ∆ = 0 and b < 0. Assuming that these conditions holds, we find that

C = 1− 1

N

β1Φ1 + β2Φ2

4β1β2

(
1 + φ+γ

λ+µ

)
(γ + φ + µ)(µ + ρ + ω)

where

Φ1 = (µ + ω)(1 +
φ + γ

λ + µ
)− β2 and Φ2 = φ + γ + µ + ρ

(
1 +

φ + γ

λ + µ

)
− λ

φ + ω

λ + µ
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MATLAB code for the uncertainty analysis

%ÃuncertaintyÃanalysisÃforÃbasicÃrepruductionÃnumberÃofÃsvid-model

clearÃall

dim=1e4;Ãreali=150;Ãfname=’sis-logistic_uncrt.mat’;

%matricesÃstoringÃdata

r0im=zeros(dim,reali);

forÃj=1:reali

%distributionsÃforÃparametersÃandÃsampling

%namesÃofÃdistributionsÃtoÃbeÃused

name1=’exponential’;Ãname2=’uniform’;

par1=1/70;Ãmu=random(name1,par1,dim,1);

par2=2;par14=3;Ãlambda=random(name2,par2,par14,dim,1);

par3=1/20;Ãommega=random(name1,par3,dim,1);

par5=0.04;Ãphi=random(name1,par5,dim,1);

par6=0.05;Ãpar7=0.24;Ãbeta_1=random(name2,par6,par7,dim,1);

par8=0.01;Ãpar9=0.21;Ãbeta_2=random(name2,par8,par9,dim,1);

par11=0.04;Ãgamma=random(name1,par11,dim,1);

par12=1/5;Ãrho=random(name1,par12,dim,1);

%basicÃreproductiveÃnumbers
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r0im(:,j)=(1./(gamma+mu+rho)).*(beta_1.*(mu+ommega)./(mu+rho+ommega)+

beta_2.*(rho./(mu+rho+ommega))+lambda.*(phi+gamma)./(lambda+mu));

end

%forÃloopÃoverÃrealizations

%mean,median,std,iqr

mean_r0i=Ãmean(r0im)’;Ãmedian_r0i=median(r0im)’;Ãstd_r0i=std(r0im)’;

forÃk=1:length(r0im(1,:))Ãt1=r0im(:,k);

pg1r0i(k)=1-length(t1(find(t1<=1)))/length(t1);Ãend

pg1r0i=pg1r0i’;

%saveÃsampledÃdata

save(fname,’r0im’)

%histogramsÃforÃr0

nbins=100;Ãedg=linspace(min(r0im(:,end)),max(r0im(:,end)),nbins);

bar(edg,histc(r0im(:,end),edg),’histc’)Ãxlabel(’r0’)

ylabel(’frequencyÃr0’)Ãaxis([0,25,0,3000])
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Algorithm 1 Finding the cost function
Input
parameters Pv, Ptr, µ, γ, β1, β2, ω, λ such that R0 > 1.
Output
Cost function

Cost(ρ, φ) = PvρS(∞) + PtrφI(∞)

1: Solve R(ρ, φ) = 0.99×R0. This gives an expression for φ in terms of ρ; that is,
φ = F (ρ).

2: Substitute φ = F (ρ) into p(I) and solve p(I) = 0. This will give a unique
positive solution, as R(ρ, φ) > 1. This solution is I(∞).

3: Find S(∞).
4: Plot Cost(ρ, φ) = PvρS(∞) + PtrF (ρ)I(∞).
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