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Abstract

An SIS epidemiological household model is studied to understand the dynamics of targeted
treatment. The household model splits the population into households, which may, for example,
represent patches within a landscape or dorms within a school. Interactions between households
typically occur at a much lower rate than intra-household interactions. In an agricultural setting,
households are crop fields that can be infected with insect pests. Plants will recover when
insecticide is applied and the insects on them are killed. Rather than using a fixed per-capita
recovery or treatment rate, an individual’s treatment rate will be a function of the infection level
in that individual’s household. This allows for targeted treatment directed towards households
with larger infections. A model is developed and a moment-closure approximation approach
is used to truncate the resulting infinite system of differential equations. Numerical results
from the truncated system are computed and compared to stochastic simulations. It was found
that targeted treatment does not change the endemic equilibrium when the population-wide
treatment rate is controlled. Surprisingly, targeted treatment decreases the amount of time it

takes to reach the steady state, which could be detrimental during an epidemic.



Introduction

The United States uses over 1.3 billion pounds of insecticide annually to protect its agricultural
crops. Despite this, crop loss due to insects in the United States is estimated to be about two billion
dollars per year [9]. Though insecticide use is currently debated, the past century’s impressive crop
yields owe much to the liberal use of insecticide. Humans have used insecticides for hundreds of
years, but it was not until the twentieth century that cheap and effective chemical insecticides
became available [5]. With these new weapons at their disposal, crop yields skyrocketed as farmers
were able to effectively neutralize the damage caused by insects. Insecticides were introduced at
the same time as a number of other new farming techniques including chemical fertilizers, mono-
cropping and high yield grain breeds. This combined occurrence caused the “Green Revolution,”
the dramatic increase in world food production between 1940 and 1980; it is now possible to produce
enough food to feed every human being [14].

After decades of using artificial insecticides, many insects have gained immunity from once-
effective insecticides. One example is the Colorado Potato Beetle, which was effectively controlled
by DDT until the the species gained immunity in the 1950’s. Once DDT was no longer effective,
other insecticides were used but the beetle continued to develop an immunity to each one [13].
Despite the increasing ineffectiveness of insecticides, many have argued that the insect population
explosion that would result from a nation-wide ban of insecticides in the United States would lead
to higher food prices, food shortages and tremendous economic damage [9, 5]. In fact, since the
mass introduction of insecticides in the 1940s, crop damage due to insects has doubled [9], but
commercial agriculture has evolved to the point where the application of insecticides is no longer a
luxury, but a necessity.

Due to its obvious agricultural, economic, and environmental importance, the application of
insecticides has been modeled by a number of researchers [11, 7]. The objective of much of this
work is to maximize the effectiveness of the insecticide and minimize the cost and environmental
impact. In [11, 7] crop damage caused by insects and the cost of insecticide application are modeled
via a system of differential equations. As was stated in [7] one of the difficulties with modeling the

effects of insecticide is that many factors, like geography and weather, may change the outcome of



a spraying.

The inherent spatial nature of any agricultural system has prompted us to consider a household
model to explore the dynamics of insecticide application [8, 12, 10]. A household model groups
individuals into households, which could be considered towns, dormitories, or, for this model,
agricultural fields. Interaction happens mostly on the local level (within a single field) and less
often between fields or between farms.

Using this framework, our paper specifically studies the dynamics of targeted treatment. Rather
than spreading out a supply of insecticide throughout the entire farm, a targeting strategy seeks
to define a more efficient allocation of resources. This is analogous to other studies on the effects
of patch spraying as applies to herbicide applications [15] and of targeting vaccinations using SIS,
SIR, and SIRS household models [1, 2].

The rest of the paper is organized as follows: in Section 1 the equations for individual households
are stated and explained. From the household equations an infinite system of differential equations
are derived which describe the total proportion of infected individuals across the entire population.
In Section 2 the system is analyzed. Equilibrium points and their stability are derived. The infinite
system of differential equations is approximated using a moment-closure. Attempting to numerically
solve the truncated system led to divergent and/or negative systems which are nonsensical in this
context. A reparameterization is used to force the system to stay within the correct bounds.
The setup of our stochastic simulation of the system is explained. In Section 3 the results from
the stochastic simulations of the model with and without targeted treatment are compared. The
numerical solutions of our truncated system of equations are then compared to the simulation
results. In the conclusion we discuss the implications of our results and possible directions for

future work.

1 Building the Household Model

Our model is a modification of the model developed by Hiebeler [8], a continuous time SIS household
model. The model splits the population into no households each with n; individuals. The popula-

tion within a household is homogeneous, and the rate at which the individuals within a household



interact is higher than the rate at which individuals in different households interact. Hiebeler’s
model assumes a constant per-capita recovery rate of infected individuals. To understand the ef-
fects of targeted treatment, the per-capita recovery within any given household will be changed to
a linearly increasing function of the number of infected individuals within that household.

In our model, each household represents a field within a farm. The individuals will be single
plants of a given crop. Plants become infected when they are infested by a crop pest that feeds on
them. The plants return to the susceptible class when they are sprayed with pesticide and the pests
are killed. It is assumed that the pests are killed before irreparable harm is done to the plants.
This fits within the framework of the standard SIS model, since plants can move back and forth
between the susceptible and infected states, depending on the presence or absence of the crop pest.
As stated above, the per-capita recovery rate in each household is dependent on the number of
infected individuals in that household. This is a continuous approximation of threshold spraying,
spraying only when the pest density has passed a certain critical value. For example, University of
Maine researchers suggest a form of targeted insecticide application to help combat the blueberry
maggot fly, the chief pest of Maine’s blueberry farms. To implement the strategy, fields are split
into sections, each of which is monitored for pest density. Once the insect population within a

certain plot passes a critical threshold, insecticide is applied to that section [6].

1.1 The Household Equations

Let Ij, be the proportion of infected individuals in the kth household. Each of the households will

be described by the following equation:

dly,
dt

Ii

=

(1)
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for k = 1,2,...,n9, where ¢ is the rate of infection, 0 < a < 1 is the probability that a given
infection event occurs outside of the household, and u is the rate of recovery. Note that when

a = 1 the entire population behaves as a globally-mixed system. E[I] is the expected value of the



I’s: E[I] = niz w2, Ir. It can be interpreted as the probability that a randomly chosen individual
from the entire population is infected or as the expected proportion of individuals infected within
a randomly-chosen household. It should be noted that E[I] is the expected value taken over the
households. @ = %";}] is a normalization constant which allows us to compare our model to the
original model without targeted treatment. In the original model, each infectious individual was
treated at fixed rate p. Because household k has njl; infectious individuals, the total rate of

treatment within household k was therefore pnili, and the total treatment rate of all infectious

individuals in the entire population was then

n2

Z,unlfk = pnina E[I. (2)
k=1

For the model with targeted treatment, a per-capita treatment rate for an individual within
household & of the form f(Iy) = %’“ was chosen, which is a linear function of the proportion of
individuals in the current household. The constant C' was chosen so that the total treatment rate in
the entire population would still be nyngE[I]. Using the new per-capita rate, the population-wide

total rate is

n2
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In order for this latter quantity to equal the value in equation (2) so that the model with targeted
treatment has the same population-wide treatment rate as the previous model with constant per-
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capita treatment rate, we require C' = B =

1.2 Global Behavior: The Moment Equations

In addition to studying the individual households, we are interested in the global behavior of the

epidemic. To do this we derive a differential equation for the proportion of infected individuals



dE[I]

across the entire population, E[I]. To derive =~ we use the definition of expected value:

dE[I] d [1 &
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This equation depends on the second moment of I, E[I?], which is the probability that two

individuals selected within a given household are infected. In general the wth moment of I, E[I"],

is the probability that w individuals picked (with replacement) from a single household are all

infected. In fact, the rate of change of any moment of I will depend on other moments, thus we

derive the equation for the wth moment of I:

1.

dE[I"]
dt

d (1 &,

N9 1 k dt

w| (601 - a) = B0 B - (5 + 601 - 0)) B+ g

This gives us an infinite system of ordinary differential equations describing the moments of

Note that because we are controlling the population-wide recovery rate, equation (3) above

is the same as in the model with fixed per-capita treatment rate [8]. However, equations for the

higher moments differ from the original model, leading to different dynamics for E[I]. For further

discussion of the differences in the moment equations of the two models, see Appendix D.



2 Analysis

2.1 Deriving the Equilibria

To find the endemic equilibrium, we use (1) to get the equations for any two households j and k,

set them equal to 0 and solve for %

" Lo(1—a)(1 - I) + paE[I)(1 - I;)
q 2

B Dd(—a)(1- ) + gaBlI(1 - L)
Q I? '

Setting these two equations equal, cross-multiplying, and combining like terms gives
0=¢(1—a) [LR(1—1;) — LI;(1 - 1)+ ¢aBE[I] [I}(1 — I;) = I}(1 — I,)] .
which we can factor as
0= I —IL))[¢(1 — @) I} + paE[I|(I}, + I; — It 1;)] .

Thus there exists at least one equilibrium where I;, = I; for all k = 1,2,...n0 and j = 1,2, ...,
implying that there exists at least one equilibrium where all households tend towards the same
infected density. This equality can be substituted into any of the ns household equations to solve

for the equilibria in which all households have equal infected populations.

pl?
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0 = Lip(l—a)(1-1;) + dal(1 - Ij) - —5~.
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Ignoring the trivial equilibrium, I; = 0, this reduces to

I
i =1—~-.
! ¢
A proof that the above endemic equilibrium is the unique endemic equilibrium can be found in

Appendix C. Using the value for I, we get the endemic equilibrium for the moments of I

ari ()

when p < ¢. It is easy to verify that this satisfies the equation for the w'® moment. Interestingly,
« has no effect on the long-term endemic equilibrium, implying that the household model tends
towards the mean-field endemic equilibrium. The mean-field assumption states that space does not
matter, each household has an equal proportion of infected individuals. In other words, E[I"] =
(EI])*. So despite the inherent spatial nature of our model, the endemic equilibrium is the same
as the mean-field equilibrium where space is not important. Also, the endemic equilibrium for the
model with targeted treatment is the same as the model without targeted treatment. So targeting

treatment has no effect on the proportion of infected individuals as ¢t — oc.

2.2 Stability of Equilibria
2.2.1 Stability of Disease-Free Equilibrium
Due to @, evaluating the Jacobian for the household equations (1) is difficult. To help make this

easier to analyze we first scale time by the sum of the squares of the household infection levels

dt

N ?

The equations then become
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From the transformed system it is clear that I; = Iy = ...I,, = 0, the disease-free equilibrium, is
an equilibrium point of our system that exists for all parameter values. We are unable to evaluate
the stability of this equilibrium using standard linearization methods since the Jacobian of (6)
evaluated at the disease-free equilibrium results in the zero matrix. Therefore this point is non-
hyperbolic; the Jacobian has at least one eigenvalue equal to zero. In fact, all eigenvalues at this
point are zero. For ny = 2,3 we can analyze the stability of the disease-free equilibrium numerically
using phase-plane portraits. For the phase portraits of a two household system, see figure 1. We
have omitted the portraits for ne = 3, as they are very similar to the portraits for the ny = 2 case.

For more analysis of the disease-free equilibrium see Appendix B.
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Figure 1: Trajectories for a two-household system are shown for two different parameter settings,
and for a variety of initial conditions. (a) Initial conditions had either I or I» equal to 0 or 0.9,
with the other varying between 0 and 0.9, with parameter values ¢ = 2,4 = 1, and o = 0.1. All
trajectories approach the endemic equilibrium I{ = I3 = 0.5. (a) Initial conditions had either I; or
I3 equal to 0 or 0.8, with the other varying between 0 and 0.8, with parameter values ¢ = 1, u = 2,
and o = 0.1. All trajectories approach the disease-free equilibrium I7 = I35 = 0.



2.2.2 Stability of the Endemic Equilibrium

To analyze the endemic equilibrium, we applied the blowing up transformation [4, 3] to (6)

L = I

I, = W

L, = V.,

L, = Vy,Ii

This transformation is one to one for all I; > 0, I, > 0 for all k¥ = 2, 3...ny. Therefore we can
analyze all relevant equilibria except the disease-free using this system. Now for each Vj, we solve

for ili_‘l/f' Using the definition of the above transformation and the product rule

I A gy,
Sk _ A Sk,
ar dly = g, T

from which we get
Vi _ —Vi(G) + G
T

dn, (4

Using (6) and letting V7 = 1 it directly follows

n2

I <¢<1 —a)VkZV,?) + i—jf}%f}ﬁ kafj%
=1 i=1 i=1

i=1

I =1 [(1—11>Zv,-2 <¢(1—a)+i—32%>—u2%
i=1 i=1 i=1

Vi = (1-Vi)

The Jacobian of this system evaluated at the endemic equilibrium is
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[ n(—¢+ ) EQ-8)(¢+20a—p) 5Q-5)(+20a—p) ... E(1-5)(+ 200 —p)
0 —n(¢ + ap) 0 0
J = 0 0 —n(¢ + ap) 0
i 0 0 0 0 —n(¢p + ap)

and since it is upper triangle, has eigenvalues of Ay = n(—¢+u), Ao = n(—p+u), ..., An, = n(—d+p).

Therefore we have proven the following:

Proposition 1. The endemic equilibrium is asymptotically stable if and only if u < ¢.

2.3 Moment-Closure Approximation

To learn more about our model, we studied the infinite system of differential equations describing
the moments of I. But integrating an infinite systems of differential equations is generally a
daunting task. It is often necessary to use approximations to truncate at some order w. We will
use the conditional closure approximation from [8]. The conditional closure approximates the wth
moment using the w — 1 and w — 2 moments.

(B

E[I¥] = B

To derive this approximation, we first break E[I*] into two pieces

E[Iw} = P(ﬁrst w — 1 individuals infected) * P(last individual infected‘ﬁrst w — 1 individuals infected)

~ P(ﬁrst w — 1 individuals infcctod) * P(last individual infcctod‘w — 2 before wth are infcctcd)

_ gy BT
= E[I" '« BT
(B[])?
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So we are assuming that the state of the last infected individual does not depend on the first
selected individual, but still depends on the w — 2 individuals selected ahead of them.

We use this closure to truncate our infinite system to three equation and approximate E[I].
In the paper on which this work was based [8], the approximation was sometimes done using two
equations. We are unable to do that here; truncating at two equations with the conditional closure
approximation reduces the targeted treatment system to the original model with constant per-
capita recovery. Therefore we must use at least three equations to explore differences in dynamics

between the two models.

2.4 Numerical Analysis

As stated above, the conditional closure approximation allows us to reduce our infinite system to a
system with three equations. MATLAB’s ode45 function was first used to attempt to numerically
solve the system of three differential equations. However, the resulting solutions included negative
and/or divergent values for the various moments of I. It was speculated that this was in part
due to the vastly different magnitudes of the state variables E[I], E[I?], and E[I?] in the three
equations. We therefore studied a modified system of three equations, involving the derivatives of
E[I], E[I?]/E[I], and E[I®]/E[I?], which were more likely to have similar magnitudes. However,
this change did not resolve the problem. The problem was then assumed to be due to inherent
instabilities in the numerical methods used. Therefore the higher moments were reparameterized
in such a way that they were unable to diverge or become negative. This reparameterization was
developed by Hiebeler in [8] to deal with the same type of ill-behaved system.

To start, we use Holder’s Inequality
1 1 1 1
E[|XY]|] < E[|X?|]?» E[|[Y?]]« where — + - = 1. (8)
p q

We can neglect the absolute values, as all of our random variables are non-negative. Substituting

in the values of p = w,q = %~ with X =1 and Y = IV~! yield

w—1

(BE[I"~1)»=1 < B[I"). 9)
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We also use the fact that all expected values are taken over proportions:

ng ng
Spos yon
k=1 k=1

1 & 1 &

o Vo< = Iw—l
k=1 k=1
E[I*] < E[I“Y.

This gives us bounds on E[I"], so it can be written as

B[] — (B[I" ']
1+ 9(Buw) '

E[I"] = B[V - (10)

where

2, if B >0
g(ﬁw): o

0, otherwise

Therefore when 3, = 0, E[I"] = (E[Iw_l])ﬁ and when (3, — oo, E[I*] — E[I*"!]. We can

solve for (3,, using the above equation for E[I*]

. Wuw]_wm—l])&
v E[Iv-1] - E[Iv]

We can now differentiate to obtain a differential equation for G,

dfw 1 dE[I"] . L
e o B[ Y1 — E[e—Yw
dt 2B (E[Iv-1] — E[I“f})Q( dt [ I [ =)
dE[Iv] L, w 1 .
— = (E[IY w1 E[I"Y] — ——FE[IV""] — E[I"]))).
P gyt (Bl - B - L))
dgtm, dEd[tIZ], db;[tm can now be rewritten, using (10) and (4), as a function of E[I], B2, and fs.
With (10), dd—ﬂf can be rewritten in terms of 32, E[I], and E[I?]. Using (10) and the moment closure

approximation, % can be rewritten in terms of 33, F[I?], and E[I3]. Therefore we have a closed
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system in E[I], B2, and (3 which can be solved numerically. This system does not give completely
accurate values for E[I]. If more accuracy is desired, the process done here can be generalized to

a truncation at the w'® moment.

2.5 Stochastic Simulations

Stochastic simulations were run for the model both with and without targeted treatment. Both
models were run using the same parameters. We used these simulations to evaluate the numerical
results from our moment closed system. In order to reduce stochastic variability, all simulations
results were averaged over twenty runs. A table displaying the parameter values used in our simu-

lations is shown below.

Parameter | Value used for simulations

ny 200

N9 200

ho 5

Co 6

0] 2

n 1

o .001, .01, .05, .1, 1
maxtime 60

It should be noted that maxtime = 300 was used for a = 0.001, as it took much longer for the
system to reach equilibrium in that case. hy and ¢y are the initial number of infected households
and the initial number of infected individuals in each infected households, respectively.

As can be seen above, ¢ and p were constant throughout all of the simulations. We assumed
1 < ¢ as the disease-free equilibrium is stable otherwise, a situation we were not interested in.

The code for the simulations can be found in Section A of the Appendix.

14



3 Results

3.1 Numerical Solutions

By truncation and reparameterization we were able to numerically solve our system using MAT-
LAB’s ode45 function. The system was solved numerically and plotted against the average of 20
stochastic simulations, all with matching parameters and initial conditions. Figures (2) and (3) are

graphs of the system with o = 0.1 and a = 0.01 respectively.

0.7h —o—ODE Approx. 0=0.1 ||
—+— Simulation 0=0.1

0 5 10 15 20 25 30

Figure 2: Comparing the Results of Numerical Solution and Stochastic Simulation for ¢ = 2, =1,
and « = 0.1. Error bars show +1 Standard Error of E[I].

In Figure (4), time taken to reach 5% of equilibrium for both the numerical solution and the
simulations is plotted for varying a.. For « sufficiently large, the system truncated by the conditional
closure does an excellent job of predicting the simulated results. For smaller «, the truncated system
is not a good predictor of the stochastic simulation. The reason for which we can get from Hoélder’s
inequality (8).

Let X = J¥/2 Y =J%/2 ! p=2 and g=2. So XY =¥ XP=1]% and Y? = Jv 2.

Using Holder’s inequality,

B < (BIM)VA(BI )Y

(B[Y~1)?

IA

E[I*]|E[I*7?]
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0.7¢ —o— ODE Approx. ¢=0.01 ||
—+— Simulation 0=0.01

20 25 30

Figure 3: Comparing the Results of Numerical Solution and Stochastic Simulation for ¢ = 2, =1,
and o = 0.01. Error bars show +1 Standard Error of E[I].

100 ;i :
4 —+— ODE Approximation
90 —=— Targeted Treatment Simulatiol

Time to 5% Equilibrium 0.05*(1-mu/phi)

Figure 4: Comparing time to reach 5% of equilibrium for numerical solutions and stochastic simu-
lations of targeted treatment. Clearly as o becomes smaller, the numerical solutions do not predict
the dramatic increase in time need to reach 5% of equilibrium predicted by the simulations.

which gives us
(BlI1)? w
W < E[IY]. (11)

This shows that conditional closure underestimates E[I*], which means our three equation system

truncated by the conditional closure is underestimating E[I*]. But a multiple of E[I4] is subtracted

16



. dE[I3] o . . . dE[I3)]
from the equation for —;—, thus the conditional closure is subtracting too little from ——. So

E[I*] under conditional closure is growing too quickly. But, by the same logic, E[I?] is now growing
too slowly as a multiple of E[I®] that is growing too quickly is being subtracted from d—b:itlzl. So
E[I?*] under the conditional closure is growing too slowly. Applying the same logic again we see
that %y] has a too-small multiple of E[I?] being subtracted from it, thus E[I] is growing faster
than it should, which is the behavior that we observe.

The higher moments are a measure of clustering, which occurs at a higher rate for smaller a.
But the moment that has the most impact on the magnitude of E[I], E[I?], is underestimated by

the conditional closure approximation. For small enough « the truncated system does not place

enough importance on clustering and consequently grows too quickly.

3.2 Simulation Results

Due to the inaccuracy of the numerical solutions of the truncated system we used simulation results
to compare the differences between the original model and the model with targeted treatment. The
simulations were used to understand the effects of varying a. Though « has no effect on the steady-
state, it does affect the speed at which the equilibrium is approached. We first compare the model
with and without targeted treatment for varying «.

Figure 5 and 6 show that, for both models, time to equilibrium is significantly increased for
smaller and smaller values of a. The largest difference between the two models is clear: targeted
treatment approaches equilibrium noticeably faster for all « < 1. When « = 1, which is shown
in Figure 7, there no noticeable difference between the original model and the targeted treatment
model.

When o < 1 the model with targeted treatment reaches equilibrium faster than the model with
constant per-capita treatment. To further exhibit this difference, simulations of the two models for
the same « are plotted on the same axes, which can be seen in Figures 8, 9, and 10. To summarize
the difference between the two models, Figure 11 shows the time to 5% of equilibrium for both

models for varying values of a.
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0.5
——o =1
0.4l ——0=0.1
——0=0.05
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& 0.3f ——0=0.001
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0 : ‘ ‘ ‘ ‘
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Figure 5: Each curve is the average of 20 simulation runs with o = values of 1,0.1,0.05,0.01,0.001
and with constant per-capita recovery. This is a reproduction of the simulation results in [§8]. Runs
with a = 0.001 leveled off after approximately 120 timesteps. Error bars show +1 Standard Error
of E[I].

0.7¢
0.6
0.5
= 04f
w
0.3
——u=1
0.2 oo
—6—0=0.05
01 ——0=0.01
' —o— 0=0.001
0 ‘ ‘ ‘ ‘ ‘
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time

Figure 6: Each curve is the average of 20 simulation runs with « values of 1,0.1,0.05,0.01,0.001
and with targeted treatment. Runs with a = 0.001 leveled off after approximately 60 timesteps.
Error bars show +1 Standard Error of E[I].
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0.7+ —o— Old Model
' —+— Targeted Treatmen

0 10 20 30 40 50 60
time

Figure 7: Constant Per-Capita Recovery and Targeted Treatment Models with o« = 1. Error bars
show +1 Standard Error of E[I].

07h —e— Old Model
—*— Targeted Treatmen!

0 10 20 30 40 50 60
time

Figure 8: Constant Per-Capita Recovery and Targeted Treatment Models with a = 0.1. Error bars
show +1 Standard Error of E[I].
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0.7+ —o— Old Model
' —+— Targeted Treatmen

0 10 20 30 40 50 60
time

Figure 9: Constant Per-Capita Recovery and Targeted Treatment Models with o = 0.05. Error
bars show +1 Standard Error of E[I].

07h —e— Old Model
—*— Targeted Treatmen!

0 10 20 30 40 50 60
time

Figure 10: Constant Per-Capita Recovery and Targeted Treatment Models with a = 0.01. Error
bars show +1 Standard Error of E[I].
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—2— Targeted Treatment Simulation
180 —e— Per—Capita Treatment Simulatio

Time to 5% Equilibrium 0.05*(1-mu/phi)

Figure 11: Time needed to reach 5% of equilibrium for model with constant per-capita treatment
and with targeted treatment.

21



4 Conclusions

The lesson we learn from this model is simple: targeted treatment increases the speed at which
a population reaches the endemic equilibrium. Since in most cases it would not be desirable to
reach an endemic equilibrium quickly, targeted treatment is actually a harmful strategy. There
are several ways to intuitively understand why targeted treatment decreases time to equilibrium.
First, the targeted treatment reduces variance between households more quickly than the constant
per-capita model. Households with higher infected densities are hit hardest, but as this happens the
houses with lower infected densities are allowed to grow. Thus the system tends quickly toward the
mean-field equilibrium, which has no variance. Secondly, assuming relatively small values of a;, most
infection attempts in a household with a high infected density are wasted. If most contacts are intra-
household, then high infected households will often have infected-infected interactions, resulting in
no change in the infected population. But in the households with lower infected densities, most
infection attempts result in a new infected individual. Therefore targeting households with higher
infected densities ignores the spreaders that can do the most damage.

The other interesting product of this research is the development of a spatial recovery term.
With the simple function we explored, we found the process of recovery can impede the dynamics
that a creates in the system. Not only are the simulations and numerical solutions predicting that
targeted treatment will push a population to equilibrium faster, they also increased show localized
contact (i.e. small values of a) cannot slow the time to equilibrium in the targeted treatment
system as much as it did in the original model with constant per-capita recovery.

The application to our general insecticide model is clear. Targeted spraying of insecticide on
fields with the highest insect pest density could actually serve to decrease farmers’ yields. To
better understand the the dynamics of this type of spraying strategy, several modifications should
be studied. Insecticide offers a period of immunity to the plants that are sprayed. Our model
assumed that the instant the insects were removed from the plant, they could potentially return.
Also, it would be interesting to change the model to SIR. In our model, once the insect pest was
removed from a plant, it returned to susceptible (healthy). Actually, sometimes a plant will become

so damaged by the insects that it will either die or become worthless to the farmer. There are many
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ways to expand on this model to better understand the dynamics of insect pest control.

From the results of this work, it is possible to hypothesize that reversing the targeted treatment
to attack smaller infections and ignoring large infections could be the best solution for this problem.
Using the same logic as above, targeting houses with lower density would in all likelihood increase
variance. ‘Reverse-targeting’ would let households with high proportions of infected individuals
continue to grow while stamping out the infections in houses with low proportions of infection. Of
course, one need not only consider linear functions. A per-capita treatment rate of I—k% would
target households with lower infected densities, like the strategy described above, but would not
completely neglect the households of high infected density. It could also be possible to consider a
compound recovery term where infections are treated according to a function, yet infections also

recover naturally at some rate.
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A MATLAB Code

%SIS Household Simulation with Targeted Treatment

%Filename: targetSim.m

%Written by: Isaac Michaud

%#Created on 7-6-07

%Last Edited on 7-13-07

#Description: This matlab script simulates an SIS household epidemic with
%targeted recovery

numSim = 20;
for y=1:numSim

%%h%h Initalizations %A%

%Population Variables

nl = 200;
Ynumber of individuals in a household
n2 = 200;

Ynumber of household to simulate

totalPop = nil*n2;

%total population size

Ivec = zeros(n2,1);

%Ivec stores the total number of infected individuals in each household
Inl = 6;

%initial infection per "infected household"

In2 = 5;

%initial infected households

%Model Parameters

phi = 2;

%phi is the per-capita infection rate
mu = 1;

%#mu is the per-capita recovery rate
alpha = 0.1;

%alpha is the proportion of inter-household infections
death = mu/(mu+phi) ;
%death is the probability of a death event

%Time Variables

maxTime = 300;

Jmaximum time the simulation will run for

currentTime = O;

J/the current or initial time the simulation starts with
maxDt = 0.5;
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% how often to record data

#Data Collection

chunksize = 500;

%Grow EI and et by this number of entries when they are full

EI = zeros(1l,chunksize);

%EI vector stores the total population size at each time-event

et = zeros(1,chunksize);

%et vector stores the time of each event

vectorlengths = chunksize;

%vectorlenghts is used to keep track of the lengths of the EI and et
%vectors during the simulation

%0ther

mycolors = [0 0 0 ; O 1 0];

f%mycolors is the color scheme for displaying the household image
%[black;green]

counter = 1;

%counter is used to keep track of the number of events

graph = 1;

%set to 1 for graphs, 0 for no graphics

Y%x*xPart 1x*x), Initialize the Infected households

[s,idx] = sort(rand(n2,1));

%create n2 indexes randomly

p = 1idx(1:In2);

%place randomly selected indexes into a vector

Ivec(p) = Inil;

%initialize the selected households with Inl infected individuals

totall = sum(Ivec);

%totall is the total population of infected individuals in all households

EI(counter) = totall;

%initlize the first entry of EI to the total population of infected
%individuals at currentTime

et (counter) = currentTime;

%initlize the first entry of et to currentTime
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Y%x*xxPart 2x*x) Simulate the Model
while(currentTime < maxTime)

lambda = totall*(phi+mu);

%lambda is the total rate of the poisson process

deltaTime = exprnd(1/lambda);

J%calculate the time to the next event

currentTime = currentTime + deltaTime;

%increment time by the time it took to get to the next event

%hh**kxx*xCode Used To Simulate Original Modelkskkx**%,%%

%pIvec = Ivec./totall; %Method used to fine random recovery
%pvec = plvec; %Method used choose random infection

%lhlx**xxCode Used To Simulate Targeted Treatment***%%%

pvec = Ivec./totall;

/%pvec holds the proportions of the total infected population each

%household has

pIvec = (pvec. 2)*(sum(pvec)/sum(pvec.”2));

%compute the new pIvec that targets higher infection densities
Wohlxx*xkxEnd of Modified Codex****}%l,

%%Choose What Event Happensi/

if ( rand < death )
%test if the event was a recovery

house = nvalsrnd(pIvec);

Y%selects a household to have an individual recover in; note: this

%is using a weighted average
Ivec(house) = Ivec(house) - 1;

Jisubtract the infected individual from the household’s infected

%list

totall = totall - 1;

Yisubtract the infected individual from the total infected
%population

else
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if ( rand < alpha)
%test to see if the infection is inter-household

%select a random household to have the infection targeted at
targetHouse = floor(rand+*n2)+1;

if( rand < ((nl-Ivec(targetHouse))/nl) )
%test to see if the infection is successful

Ivec(targetHouse) = Ivec(targetHouse) + 1;
%if the infection is successful, increment the appropriate

Y%variables
totall = totall + 1;
end

else

house = nvalsrnd(pvec);

if ( rand < ((n1-Ivec(house))/nl) )
/%test to see if the in household infection was successful
Ivec(house) = Ivec(house) + 1;
%if the infection is successful, incremment the appropriate
%variables
totall = totall + 1;

end
end

end
if (currentTime - et(counter) > maxDt)
% time to record data
[currentTime totall/totalPop std(Ivec/nl) min(Ivec/nl) max(Ivec/nl)]
counter = counter + 1;
%increment the counter because the event has accured
if (counter == vectorlengths)
%if there has been enough events to full the data arrays, then
%augment them to make more space
vectorlengths = vectorlengths + chunksize;
EI = [EI zeros(l,chunksize)];
et = [et zeros(1,chunksize)];

end

EI(counter) = totall;

%record the current population of infected individuals in the EI
%hvector
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et (counter) = currentTime;
%record the current time in the et vector
if ( graph == 1)
imageArray = zeros(nl,n2);
%construct the image array which will allow the user to see the
%status of the households after each event
for k = 1:n2
imageArray(1:Ivec(k),k) = 1;
end
figure(1);
pcolor(imageArray), shading flat, colormap(mycolors);
%display the image array
drawnow
end
end
if ( totall == 0)
%breaks Loop if there are no more infected individuals
break;
%the simulation does not need to run if there are no infected
%individuals to infect others
end

end

et = et(1:counter);

%truncate data vectors to only contain recorded data
EI = EI(1:counter);

save("EI.txt’, ’EI’, ’-ascii’,’-append’);
%export the results to a text file
save(’times.txt’, ’et’, ’-ascii’,’-append’);
end

B Stability Analysis of Disease Free Equilibrium

Our model is

9B wf(9(1 - o) - Elt]ga) 1] - (% o1 - a)) Bl + gaB[T B[],

gE[IwH} is

At the disease free equilibrium (DFE), Q = B[] is not defined; however, the term
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uniformly bounded whenever E[I] > 0. To see this, note that

E[Iw—H] _ E[I]E[Iw-i-l]
Q Bl

E[IE[I"]
B[]

< (12)

For w = 2,3,..., the fact that E[I”] < E[I?] implies that the above quantity is < E[I], and

therefore < 1. For w = 1, the rightmost quantity in (13) by inequality (8) above is (gg]z)]z, which

is also < 1. Thus E[%H]

<1 for all w =1,2,.... Therefore, our system of ODEs is well defined,
but the DFE is a removable singular point. We show that applying the stability analysis of a
nonsingular equilibrium to a singular point results in the wrong conclusion.

We consider three cases which are small deviations from the DFE: (A) ¢0/nl ~ 0, (B) h0/n2 ~ 0,
and (C) ¢0/nl ~ 0 and h0/n2 ~ 0. For case (A) and (C) the Jacobian is undefined, while for case

(B), the Jacobian matrix evaluated at h0/n2 — 0 is

¢—p —¢(1 — ) 0
J=1 —2u2 2(p(1 — @) + p) —2(¢(1 — @) + p25)
=3u(9)? 3(p(1—a)(F)*+2u) 3(s(1—a)(1—29) —2u)

This Jacobian matrix always has at least one positive eigenvalue, even for the case when the recovery
rate is greater than the infection rate. But our numerical solutions and stochastic simulations show
that the DFE is asymptotically stable.

In the hope that the positive eigenvalue was only important to a system that considered negative
values of F[I], we studied the reparameterized system mentioned in the Numerical Analysis section
since this reparameterization forced all values to be positive. The Jacobian for this system of three

ODE:s is

¢—p —o(1 - ) 0
=1 2ug 2060 -a)+u3) 2p(1 - a) — p)
“3u(3)? -Be(l-a)f  B(e(1 - a)(1- ) - 2n5p)
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Even for ¢ < u, the above Jacobian has a positive eigenvalue. The stability analysis of a singular

equilibrium is beyond our scope for now and is a subject we plan to study in the future.

C Proof of Uniqueness of Endemic Equilibrium

From (9) we know that
E[I’] = (E[)*. (13)

Next, setting the differential equation for dE[I]/dt equal to 0 gives

E[1)(6(1 — aB[I]) = u) — 6(1 = ) E[I’] = 0

which can be solved for

(14)

and finally
B[] _ ¢ —p—gaBll]
E[I] o(1 —a)

(15)

Note that we are assuming E[I] > 0 in the above, as we are looking for an endemic equilibrium.

Inequality (13) and (15) imply
¢ — p— gaE[l]

> FE|I],
iy =
which can be solved for
Bn<1-£ (16)
¢
Next, from (11) we know that
(B[] w
E[Iw_z] — E[I }7
which we can rewrite (using w = 3) as
E[F] _ B[]
>
B = B 1o
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Setting the differential equation for dE[I%]/dt equal to 0 gives

(601 - )~ aBUDEL] + oa(El1)? ~ (o1 - a) + Sl 1) ~o

which can be solved for

B[] _ (¢(1—a) = paE[I)E[I*] + pa(E[1])?
E[1?] ¢(1 — a)E[I?] + pE[l]

Using equation (14) to substitute in for E[I?] in the above equation gives

B3] (9(1 — ) — gaB[1]) FHCHemED 4 do(E)*

E[IQ] ¢(1 _ a) E[I](¢¢—(lli_—j)aE[I]) + ,uE[I]

Some algebra reduces this to

E['] _ (1-a—aB[I)(¢—p—¢aB[l]) + ¢a(l — a)E[I] (18)
E[I?] ¢(1 —a)(1 - aE[l)) ’

Using inequality (17), we know that

Using equations (15) and (18) to substitute into the above inequality gives

E’) B[Pl _ (1-—a—-aE[I)(¢—p—¢aB])+da(l—-a)E[I] ¢—p—¢ab[l]
E[I?]  E[] ¢(1 —a)(1 - aE[l]) ¢(1—a)
(1 —a—aB[I)(¢ — p—¢aE[l]) + ¢l = ) E[l] = (¢ — p = ¢aB[I])(1 — aE[I])

¢(1 —a)(1 - aE[I])

a(SE[T] — 6+ )
o1 —a)1—aBm) ~

Observe that the denominator in the last expression above is positive, assuming 0 < a < 1 and

¢ > 0, so the above inequality will be satisfied precisely when ¢E[I] — ¢+ p > 0. This occurs when
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Together, inequalities (16) and (19) imply that E[I] =1 — p/¢.
This, together with equation (15) then implies that E[I?]/E[I] = 1—pu/¢,i.e. E[I?] = (1—u/$)%.
Now assume that

BI")/BI" Y =1~ p/¢ (20)
for some particular w. Setting the equation for dE[I"]/dt equal to zero and rearranging shows that

B[+ 61— o) — gaE[I) + gaE[l) S

_ B[]
EIv] p(l—a)+ g ’

Substituting in equation (20) and reducing then implies that

E[Iw—H] L 'l_j’
E[*] ¢’

which by induction then shows that

forallw=1,2,3,....

D Differences Between Original and Targeted Treatment Models

We know from (11) that:

(Bl 1)?
-~ < F[IY
E[[v=2] — ),
which we can rewrite as
E[IY] B[
>
E[[v-1] = E[Iv—?]
When applied repeatedly, we get
E[IY] E[IY]
> f ) 21
Eqe-1 = E[v-y] Ot v (21)

We already know that the equation for dE[I]/dt is the same in the old and new models.
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Next, in the original model, the equation for dE[I"]/dt has a recovery/treatment term of the
form —pE[I"]. In the new model, this term is now —uE[I*!]E[I]/E[I?] (assuming this is not the

last equation, which has had the conditional-closure approximation applied to it). But because

E'[Iw-l-l} E[IQ}

E[Iv] — El]
by inequality (21), then
B[ E(T] w
Bl > E[I"],

which means we are subtracting a larger term from the equation for dE[I*]/dt in the targeted
model than the original model. So if all moments start out equal, E[I*] will start to become
smaller in the targeted model than the original model. In particular, E[I?] will become smaller in
the targeted model, giving smaller variance between households.

Finally, in the original model, if we approximate E[I**!] and truncate at the w*™ moment, then
the original equation for dE[I"]/dt has a treatment term of the form —uFE[I"]. In the new model,
this term is now —uE[TY T E[I]/E[I?] which we then approximate by —u(E[I%])?E[1]/(E[I?|E[IT¥1]).
We can rewrite this factor multiplying —u as

< E[I*]E[]

e A )

The factor inside of parentheses can then be rewritten as

E(Iv]/ B[

E[?)/E[]
which by inequality (21) we know is > 1. This means that the coefficient of —pu in the treatment
term of the targeted model, given by expression (22), is > FE[I"], the coefficient in the original
model. So even including the last equation which has the conditional closure included, all moments
E[I*] for w > 2 are initially decreasing more quickly in the targeted model than in the original
model, assuming the two models start out with the same initial conditions (and therefore the same

moments). However, the moments of the two models begin to differ quickly and the above argument
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no longer applies.
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