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Abstract 

Autism's cause is unknown, but suggested causes are often attributed to genetic or environmental factors. This 
research examines whether advancing maternal age contributes to the increasing prevalence of autism. To test 
our hypothesis, we create a deterministic model. Values are generated representing the proportion of offspring 
expected to be diagnosed with autism, provided their mother belongs to a specific age class. The results show 
that women of the age class consisting of ages 40-44 are more susceptible, by nearly 20 percent, to having a 
child who will be diagnosed with autism. Using our model, projections are made about the prevalence of autism 
in future populations, specifically, for the United States and California. These projections predict a continued 
increase in the prevalence of autism. A linear regression model is also used to statistically confirm that maternal 
age is affecting the increase in the prevalence of autism. 

A Introduction 

A.1 Characteristics and Symptoms of Autism 

Autism belongs to a class of behavioral disorders known as autism spectrum disorders (ASDs). ASDs affect 
people from all backgrounds, regardless of race, ethnicity, or socioeconomic status, but appear four times more 
often in boys than in girls [?, ?]. Children diagnosed with an ASD typically learn, focus, and react in ways 
contrary to unaffected individuals. The symptoms of autism (characterized as high or low functioning) typically 
manifest themselves prior to 18 months, providing for earliest diagnosis at the age of two [?]. While the disorder 
lasts the duration of a person's life, autistic individuals vary greatly in their capacity for interaction and learning. 

Deficiencies in learning and interaction lead to the enrollment of many autistic individuals in special education 
classes. Autistic people tend to learn in a systematic manner; repetition is crucial to maintaining a relaxed 
environment conducive to processing information [?, ?]. This systemizing quality has been suggested as an 
explanation for why many autistic individuals possess innate mathematical talent. According to psychologist 
Simon Baron-Cohen, autistic people are very logical and good at processing things governed by rules [?]. They 
are good at dealing with order and if this order becomes disrupted, behavioral outbursts are triggered. Autistic 
individuals generally exhibit more left-brained characteristics than right [?]. Because of this, individuals are 
deficient in traits governed by the right brain, such as the capacity for sympathy, emotional connection with 
others, interaction, and expression. Autism can severely hinder an individual's ability to progress within society. 
Their abilities however, can be astounding, as supported by the existence of autistic savants [?]. 

A.2 Treatment 

As of yet, no absolute cause for autism has been determined. Despite the lack of certainty regarding cause, 
treatments are available to lessen the severity of symptoms and medication can suppress the occurrence of 
outbursts. Behavioral and educational aids exist for therapists to help autistic patients improve social and 
language skills in a structured learning environment. Occupational therapy benefits autistic individuals by 
improving the quality of their social life; it provides an environment fit for developing fine motor skills and the 
capacities for sympathy, coping, and self-help. Sensory Integration Therapy is used to facilitate the development 
of the nervous system's ability to process sensory input in a "normal" way. Many forms of autism-specific 
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therapies exists, but most have improved relationship-building skills and vocalization of needs and desires as 
their primary goal [7]. 

Aside from medication and therapy, life-style changes have become an increasingly popular method for treat­
ing autism. The Gluten-Free, Casein-Free Diet is based upon the hypothesis that proteins in foods containing 
gluten and casein are absorbed by an autistic individual's body in such a way that they act as false opiate-like 
chemicals. Eliminating these foods seems to regulate the behaviors of autistic individuals [7]. 

A.3 A Review of Current Research 

Autism research is presently focused on a psychological, neurological, and genetic aspect. Most research is not 
focused on cause, but rather regulation. However, this focus has not limited research analyzing autism's cause(s) 
and many mathematical models have been created to improve the understanding of this complex disorder [7]. 

Some research related to our own has been done. A study in Northern California, consisting of a small 
sample size of singleton children at a local hospital, used proportional hazard regression to determine the risk 
associated with increasing age in having an autistic child [7]. The data supported that greater maternal and 
paternal age increased the risk of having a child with autism. To be more specific, an Israeli study focused only 
on paternal age [7]. The categorical measure used allowed for the modeling of the effects of paternal age on 
autism through a system of nonlinear equations. A sensitivity analysis was used and the relationship between 
paternal age and autism was determined to be monotonically increasing. Like the Northern California study, 
Israel used a small sample size and were unable to find an impact due to maternal age. Instead, they concluded 
that increased paternal age was more likely to contribute to autism-prevalent mutations. 

Aside from those that consider genetic factors and analyze risk ratios, other mathematical models have tried 
to find autism-specific triggers. For example, a paper by Janusonis detailed a regulation model analyzing the 
role of serotonin blood levels in autistic individuals [7]. It is speculated that there is a link between autism 
and statistically higher 5-hydroxytyptamine levels. A mathematical model was constructed to see if failure of 
molecular mechanisms of 5-HT could account for autistic abnormalities. However, studies failed to find a link 
between autism and serotonin-levels within the brain of autistic individuals. Glutathione has also been studied 
[7]. The model examined the properties of glutathione metabolism and it's regulations of enzymes by simulating 
a metabolic profile of autism under increased oxidative stress levels. 

Research done in California used multivariate models to calculate risk estimates in a sample of 4381 children 
[7]. It was found that a higher autism risk existed for boys, the children of African American women, and 
multiple births. Mothers of higher education and greater age were shown to be more susceptible to having a 
child with the disorder. The study also concluded that children born to immigrant mothers (of California) had a 
lower-risk for being diagnosed with autism than others born in California. Connections between environmental 
factors and the disorder were made. 

Another recent study included statistical analyses of spontaneous mutations that occur in autistic males of 
families who are considered low-risk (high risk families consist of the offspring of unaffected females who carry 
a new causative mutation and transmit the mutation to their offspring in a dominant manner) [7]. This was 
analyzed using a binomial distribution and a log-likelihood function. 

Other genetic mutations, such as clustering of alleles, might account for autism's increased prevalence [7]. 
Of late, the controversy regarding the mandatory vaccinations and their effects, if any on autism's increase, has 
taken center stage. In the past, vaccines contained mercury [7]. While the mercury has been removed from the 
vaccines, examination of autistic individuals' baby teeth have shown higher mercury content than that measured 
in individuals who have not been diagnosed with autism. 

A.4 Motivation for Study 

The lack of knowledge regarding autism may suggest that it is a relatively modern disorder, however, historical 
descriptions of symptoms similar to those used to diagnose autism date back to the 18th century. Autism was 
identified as a developmental disorder in 1943 by psychiatrist Dr. Leo Kranner [7]. His criteria for diagnosis in­
cluded: lack of affective contact, desire for sameness, fascination with objects, and mutism or non-communicative 
language before 30 months of age. Since Kranner's description, the criteria for diagnosis have been modified 
many times [7]. 

The age and criteria for diagnosis are ever-changing and only partially account for the increased incidence of 
autism within society. Autism is becoming significantly more prevalent with time, especially within the United 
States, as seen in Figure 9. Within 10 years, autism prevalence has risen from 10 ~oo to 1;0 [7]. Another 
explanation and the topic of this research attributes much of the increase to wome~'s growing tendencies to 
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postpone pregnancy. Many social factors accounting for this trend include: the choice to pursue higher education, 
establish a career, and marry later in life [?]. Unfortunately, with delayed maternal age comes susceptibility to 
genetic mutations during fetal development and other complications. The mother's body becomes more fragile 
and she becomes more likely to require a cesarean section [?]. Because maternal age appears to have such 
a significant effect on child birth, the impact of maternal age on the prevalence of autism diagnoses will be 
investigated. Our model is used to estimate the proportion of children who will be diagnosed with autism, given 
their mother's age class, in the United States and California. 

Compared to prior models and their intentions, our model assumes a different role. This model neither 
focuses on a small sample of the population nor does it analyze risk ratios for having a child who will be 
diagnosed with autism; it makes predictions at the population level. It seeks to make a conjecture about which 
maternal ages are more susceptible to having a child who will be diagnosed with autism by using a nonlinear 
model. 

We organized this paper as follows. In Section 2, we discuss the data we collected and analyze its reliability. 
Section 3 gives an overview of the deterministic model we create to analyze the impact of maternal age on the 
increasing prevalence of autism in both California and the United States. The results of this model are detailed 
in Section 4, as is a check of the model's reliability, and projections for the growth of the autistic population 
in the United States and California for years 2010 to 2050. An alternative approach in which we construct a 
linear regression model confirms the findings of our deterministic model; this approach is explained in Section 
5. People influential in the success of this project are acknowledged in Section 6. Following the references, the 
appendix includes the current DSM-IV diagnostic procedure for autism and all relevant figures. 

B The Data 
Our research is driven by available data. Sources report the number of autistic individuals by age (between the 
ages of 6 and 22) who are enrolled in special education programs within public schools per year [?, ?]. The 
maximum number of autistic individuals within the public school system is determined by birth year after some 
reorganization of the data provided. For example, if it is recorded that there are 25 autistic children of age 6 
in 1992 (meaning they were born in 1986), but 30 individuals of age 7 in 1993, it is concluded that there are 
actually 30 autistic children born in 1986. The trend in the autism data provided is for the value to increase 
(as more individuals of the same birth year are diagnosed) and then decrease (as individuals leave the public 
school system). Because this decline is not observed in some of the data, it is realized that after 1990, the 
maximum number of autistic individuals of a given birth year cannot be determined absolutely; the maximum 
value available is therefore used. 

The data set used is underestimated and affected by underreporting [?]. Autistic individuals attending 
private and home schools and those outside of the special education program are not included. Only those who 
meet the eligibility criteria for autistic disabilities are accounted for. This is problematic because the working 
definition of autism varies from state to state, as do diagnostic procedures and the services available to those 
with autism. Despite the limitations of this data, they are the most comprehensive and reliable data available. 
From them, autism's prevalence by age, state and birth year can be estimated. 

Autism was first included in the Diagnostic and Statistical Manual for Mental Disorders in 1980 [?, ?]. 
Because of its infancy as a recognized disorder, many misdiagnoses have occurred and continue to occur. Also, 
public schools were not required by law to report the number of autistic individuals until 1992; thus, these 
data are further underestimated. By examining the United States as a whole, despite the lack of uniformity in 
diagnosis from state to state, it is believed that excellent diagnostic procedures and states with better record 
keeping will offset the more flawed systems and a nationwide average can be analyzed. 

For California and the United States, census data are used to calculate the total number of offspring expected 
to attend public school based upon their year of birth and the age class to which their mother belongs [?, ?]. 
Information is gathered about the size of the female population for specific age classes and their respective birth 
rates [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. By multiplying these together the expected number of offspring is calculated. 
Multiplying this result by the proportion of children who are enrolled in public school for year i + 6 (this year 
approximates when offspring born in year i would begin entering the public school system), the total number 
of offspring expected to attend public school is found. 

From the data, it is seen that the autistic population and the reproductive female population both increase 
exponentially from 1983 to 1993. Based upon a curve of best fit for the data, the number of autistic individuals 
in the United States is increasing at a rate of approximately 0.197 each year, as seen in Figure 9. The national 
female population is growing at a rate of 0.008 per year. 
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Figure 9: Number of Autistic Individuals Born in the United States in 1983 to 1993 

C The Model: A Deterministic Approach 
It is observed that the number of children being diagnosed with autism within the United States is increasing 
exponentially [?). For the purpose of this project, all possible causes of autism, not linked to maternal age, are 
attributed to the environment. This provides for near isolation of maternal age so that its precise role in the 
increasing prevalence of autism can be examined. The nonlinear model we create to test the hypothesis that 
advancing maternal age is contributing to the increase in the number of individuals being diagnosed with autism 
per year is seen in Equation 23: 

6 

Yi = 2:= Xi,j(3i,jTi"/je"i 

j=l 

(23) 

If we let Xi,j represent the number of females in year i, belonging to age class j; f3i,j be the birth rate in 
year i, unique to women of age class j; Ti be the proportion of offspring born in year i who are expected to 
attend public school; Ij be the age class-specific proportion of offspring who will be diagnosed with autism; and 
a be the contribution of environmental factors to the increase in autism, then Yi will represent the number of 
children born in year i who will be diagnosed with autism, for i = 1, ... , 11. Year 1983 is represented by i = 1 
and year 1993 is represented by i = 11. Exempting Ij and a, our model's parameter values are obtained from 
data collected by various organizations. The years spanned by each age class is shown in Table C. It is assumed 
that only women of these age classes can reproduce. We also assume that the likelihood of a mother sending her 
child to public school is independent of whether or not the child is autistic. This is also independent of which 
age class she belongs to. This means that Ti remains constant for a given year i. 

Table 3: Age Classes 

Age Class j 
Age Range 

Table 4: Definitions 

Yi The number of children born in year i who will be diagnosed with autism 
Xi,j The number of women during the ith year in the jth age class 
f3i,j The birth rate specific to women during year i of age class j 
Ti The proportion of offspring born in year i who will attend public school 
Ij The proportion of offspring born to mothers of age class j who are expected 

to be diagnosed with autism 
a The environmental factor to the increase in autism 

By including an exponential component in our model to account for the increase in autism due to environ­
mental factors (especially misdiagnosis), we eliminate any natural exponential growth in the autistic population 
due to overall growth in the number of females reproducing each year. Because of this, when solving for a, we 
adjust the resultant value by the annual growth of the female population. For example, if a is 0.119 and 0.01 is 
the approximate growth of the female population per year, then 0.01 is subtracted from 0.119 so that the autistic 
population is growing as would be expected, given that the female population is increasing exponentially. The 
final a value that would be used to calculate the I values is therefore 0.109. 

The summation over j for each i value generates a system of 11 equations of 7 unknowns. To be biologically 
feasible, certain restrictions exist on the values that a and Ij can assume. The proportion of offspring born to 
women of age class j who will be diagnosed with autism, Ii> must lie between 0 and 1. In the case of the United 
States (1983-1993), the environmental contribution to autism's increase, a, must lie between 0.008 and 0.197, 
where 0.008 is the growth of the female population and 0.197 is the observed growth in the autistic population. 
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For California, a is contained within the interval (0.021, 0.220). This variation in the values a can assume makes 
our model nonlinear. However, for ease of analysis, we force our model to be linear by fixing a. To determine 
the best value at which we fix a, we use MATLAB to test a values in the ranges given, incrementing the value 
by 0.001. Each a value produces values for 'Yj and generates an exponential curve that estimates the growth in 
autism. With this in mind, the best a value and the one that relays the correct information about the extent 
that maternal age is impacting the increase in autism, is the one that generates the curve that best reflects the 
observed growth in autism. MATLAB is used to find each a value, display resultant 'Yj values calculated using 
the method of nonnegative least squares, and evaluate the error associated with each choice. The method of 
nonnegative least squares is used to guarantee that the values for 'Yj are nonnegative and therefore provide for 
biological interpretation. The error is calculated according to the method of mean square error, which is one 
of many methods that could be used to calculate the deviation of the model's values from the observed. Error 
must be minimized to achieve accuracy in applying our model. Once the a with the smallest error is found, 
the growth in the female population is subtracted from its value. We then take the 'Yj values that correspond 
to this new a value and we are able to see how women are affected by their age in their likelihood of having a 
child who will be diagnosed with autism. 

D Results and Analysis 

D.l California: A Rather Ideal Locale for Autism Study 
More so than most states, California takes great interest in autism [?, ?, ?]. Because of this, autism data is 
well maintained through the Department of Developmental Services and much autism research is being done 
within the state. In an epidemiology report prepared by the University of California, Davis confirmed that 
from 1983 to 1993, the increase in autism was fairly independent of misclassification into other developmental 
disorder categories (i.e. mental retardation), younger diagnosis age, and influx of residents seeking better autistic 
care services [?]. The number of autistic individuals is shown in Figure 10. Because diagnosis standards were 
consistent, it is expected that autism in California has a lower overall environmental component than can be 
expected for the United States [?]. 

Figure 10: The Number of Autistic Individuals Born in California in 1983 to 1993 

Table 5: 'Y Values for California 

Age ~lass I ~ I ~ I ~ I ~ I ~ I 0.2~71 

From MATLAB we calculate a to be 0.090 as seen in Figure 11. The resultant 'Y values are shown in 
Table 5. For women of ages 40-44, the proportion of their offspring expected to be diagnosed with autism is 
0.2071, provided maternal age is the only contributing factor. However, because maternal age is not the only 
contributing factor, these numbers simply show that women of ages 40-44 are more likely to have an autistic 
child than if they are susceptible to environmental factors alone. The other age classes appear unaffected. 

Figure 11: Mean Square Error vs. a for California 

In comparing the Mean Square Error of 83.8639 to the data, it is seen that the error is rather insignificant as 
the number of autistic individuals for years 1983-1993 range from 280 to 2248. Thus, the'Y values are reasonable 
because they provide results that do not stray too far from the observed data. 
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D.2 United States: 1983-1993 
We perform a similar study for the United States. It is expected that the a value should be larger than 
California's because within the United States diagnosis is changing more rapidly than in California. Since 
diagnosis is nonuniform across the United States and the exponential component adjusts for uniform diagnosis, 
a higher Mean Square Error is expected [?]. For the United States a is found to be 0.114, as seen in Figure 12. 
The respective 'Y values are shown in Table 6. 

Figure 12: Mean Square Error vs. a for the United States 

Table 6: I Table Values for the United States 

6 
0.1218 

Since the Mean Square Error is 540.1421 and the range of data is 2573 to 16759, the error is insignificant. 
Similarly to the California data, this verifies that the model is reasonable since it also does not stray too much 
from the observed data. The error in the United States however, is much larger than California's error; this 
explains why there is now a value associated with the age class consisting of ages 35-39. Despite this, a trend 
still exists within the United States supporting the notion that with advancing maternal age comes increased 
susceptibility to having an autistic child. 

D.3 Comparison 
The 'Y values can now be used to test the reliability of the model by predicting the number of autistic children 
within the United States and California from 1994 to 2000 [?]. United States census data allow for the calculation 
of the number of offspring and matrix multiplication predicts the number of autistic individuals expected to enter 
the special education program within the public school system. Predictions will be made using two methods, 
one in which it is assumed that environmental factors remain constant after 1992 (a = 0) and one in which the 
effects of environmental factors increase exponentially. 

D.3.1 California 

Using 'Y values from the California table and assuming a is zero, the predicted number of autistic individuals 
for years 1994-2000 and the deviation from the actual data is given in Table 7. Also, the equation used for the 
predictions follows: 

6 

"" X' .(3. 'T,'''''e'''i ~ 'l,J 't,) 'lIJ 

j=l 

for i = 1...7, where i = 1 denotes year 1994 and i = 7 denotes year 2000. 

(24) 

Table 7: Observed/Predicted Autistic Population for California in the Absence of Environmental Factors (a = 0). 

Year Observation Prediction 
1994 2501 2259.2 
1995 2592 2374.7 
1996 2758 2523.4 
1997 3023 2595.7 
1998 3200 2689.7 
1999 3328 2719.3 
2000 3465 2975 
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Figure 13: Predicted Autistic Population for California, 1994 to 2000 (a = 0) 

The Mean Square Error is 449.89, and as seen in Figure 13, the number of autistic births per year increases 
from 2501 to 3465 over this time period; hence the error is reasonable. The predicted values consistently 
underestimate the actual number of autistic individuals within California. Since the Mean Square Error is 
reasonable, the expected values are relatively close to the original data. 

D.3.2 The United States 

Using I values for the United States and assuming that a is zero, the predicted number of autistic individuals 
for years 1994-2000 and the observed population values are seen in Table 8 and in Figure 14. 

Table 8: Observed/Predicted Autistic Population Values for the United States in the Absence of Environmental 
Factors (a = 0) 

Year Observation Prediction 
1994 17744 19300 
1995 19715 20140 
1996 20034 21150 
1997 21425 22020 
1998 22163 23000 
1999 21292 23980 
2000 21315 29950 

Figure 14: Predicted Autistic Population for the United States, 1994-2000 (a = 0) 

The Mean Square Error for this data set is 3799.2 and seen in Figure 14 the number of autistic individuals 
from 1994 to 2000 ranges from 17744 to 21315. This shows that despite relatively large population values, the 
error is too great to conclude that the model is accurate without incorporating increasing environmental factors. 
A contributing factor to this error is the absence of a true peak in the data for the number of autistic individuals; 
it is quite likely that many autistic individuals are unaccounted for due to under-reporting. 

D.3.3 Varying a 

When running the California simulations in MATLAB, the best a value is 0.029, as seen in Figure 15. The 
corresponding Mean Square Error is 127.1652. The predicted values are shown in Table 9. From this, we can 
conjecture that environmental factors are still having an effect on the prevalence of autism. 

For the United States, the best a value is found to be zero. The analysis has been detailed above. 

DA Projections 

Now that the model shows some semblance of reliability, projections for the years 2010-2050 can be made. Using 
census population projections for California, the projected birth rates and the projected rates of public school 
enrollment using a best fit line, the following changes in the prevalence of autism are projected and shown in 
Figure 16. Projections for the United States are made using the same process as was used for California. This 
is illustrated in Figure 17. 

Over the next 50 years, it is projected that the autistic population will continue to grow in both California 
and the United States. California will have a net increase between 2010 and 2050 of 5,106 autistic individuals, 
while the United States autistic population will increase by nearly 192,050 individuals. 
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Figure 15: Mean Square Error vs. a for California 

Table 9: Prediction Table for the California with a = .029 with Mean Square Error of 127.1652 

Year Observation Prediction 

1994 2501 2325.7 
1995 2592 2516.5 
1996 2758 2752.7 
1997 3023 2915.0 
1998 3200 3109.4 
1999 3328 3236.1 
2000 3465 3644.5 

D.5 The Model: A Linear Regression Approach 
In this section we will perform hypothesis tests to discern the affects of maternal age on the prevalence of 
autism is by taking a linear regression approach. This approach has the potential to confirm the results of the 
deterministic model. Note that by using linear regression, the values given for "Ij may not be biology feasible (in 
that they are not contained within the interval [0,1]). The possibility also exists that there will be no noticeable 
trend in the "Ij values. In fact, if from our data we can show that any error is randomly and normally distributed, 
then the resultant values for "Ij should be similar to the results obtained if we were to use the method of regular 
least squares. The linear regression model is shown in Equation 25. 

6 

Yi = po + 2: Xi,jPj + Ei 

j=l 

(25) 

If we let Xi,j represent the number of offspring born in year i to mothers of age class j who are expected 
to attend public school in year i + 6, pj be the effect of maternal age of mother in age class j, and Ei be the 
error in estimating the number of autistic children each year, then Yi, is the number of children born in year i 
who will be diagnosed with autism. The response (or dependent) variable is Yi and the predicted variables (or 
independent) are Xl, X2, ... ,X6. These parameters are organized in Table 8. 

Table 10: Definitions 

)Ii The number of children born in year i who will be diagnosed with autism 
Xi,j The number of offspring in year i to mothers of age class j who will attend 

public school 
Ei The difference between the predicted and observed values 

The first thing to be tested with our linear regression approach is if there is a correlation between maternal 
age and the number of offspring diagnosed with autism. Our null hypothesis is: Ho : PI = P2 = ... = P6 = O. 
If we are able to reject this hypothesis (show that at least one Pi is not equal to zero), then we will have 
statistically proven that maternal age is indeed playing a role in the prevalence of autism. Using MINITAB 
we obtain the regression equations for the United States (Equation 26) and California (Equation 27) and their 
respective P-values. 

The regression equation for the United States is 

Y = -26328 - .Ol77xI + .028x2 - .0099x3 + .0047x4 + .0548x5 + .238x6. (26) 

The regression equation for California is 

Y = 711.5 + .0063xI + .00669x2 - .0156x3 - .0307x4 + .0976x5 + .084x6. (27) 
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Figure 16: Projected Autistic Population from 2010-2050 Born in California 

Figure 17: Projected Autistic Population from 2010-2050 Born in the United States 

The P-values obtained for both California and the United States are 0.000. Since these P-values are small, 
we reject the null hypothesis. In addition to this, we can conclude that each age classes has a varying role as 
seen in examining the coefficients of Xj in the regression equations. For example, Xl is playing a negative role 
in the prevalence of autism in the United States. This means that for every unit by which Xl is increased, the 
population of autistic individuals will decrease by the coefficient of Xl. Note that MINITAB also generates graphs 
of the residuals, as shown in Figure 18 and in Figure 19, (figures for California are located in the Appendix). 
We are able to conclude that the error is independently and identically distributed, meaning that the obtained 
Pj values would have also resulted if we had used the method of regular least squares. It is observed that the 
Pj coefficients do not follow a trend. Despite this, they do show that each age class plays a relevant role in 
contributing to the prevalence of autism. Because of this, we can conclude that our deterministic model is valid. 
We do not utilize linear regression or use regular least squares to solve for our "fj values in the deterministic 
model because by using non-negative least squares, we are able to obtain solutions that are biologically feasible. 

Another hypothesis further confirms that maternal age is playing a role in the increasing prevalence of 
autism. In this case, we see if the Pi values are equivalent. The null hypothesis is: Ho : PI = P2 = ... = P6. If 
we can reject this hypothesis (show that at least two P values are not equal), then this further emphasizes that 
maternal age is affecting the number of offspring who will be diagnosed with autism. The reduced model for 
this hypothesis is shown in Equation 28. 

6 

Yi = Po + 2:Xi,jPj + Ei, Cp = H (28) 
j=l 

where, 

C~[~ 
-1 0 0 0 0 

] , p ~ [p, ... ",]" and H ~ [0· .. 0]'. 
1 -1 0 0 0 
0 1 -1 0 0 
0 0 1 -1 0 
0 0 0 1 -1 

Because we know the response and predicted variables, the C matrix, (3 matrix, and the H matrix, we can 
apply the F-test which is seen in Equation 29. 

SSE(R)-SSE(F) 

F= __ ~~s~~ __ 
SSE (F) 

n-p 

(29) 

Since the proper matrices were configured from our response and predicted variables we are able to use 
MATLAB to do the proper matrix multiplication. The resultant F- and P-values are shown in Table 11. 

Table 11: F- and P-values for the United States and California obtained from MINITAB 

F-value P-value 
United States 247.32 0.00001 

California 269.588 0.00001 

The resultant P-values obtained from the F-test are small; thus, we can reject our null-hypothesis and 
conclude that there exists at least two unequal Pj values. From this, we can more strongly assert that maternal 
age is in fact contributing to the increase in the prevalence of autism. 
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Figure 18: Residuals vs. Fit Graph for the United States 

Figure 19: Normal Probability Plot for the United States 

E Conclusion and Discussion 
We seek to determine whether or not advancing maternal age is playing a role in the increasing prevalence of 
autism. To do this we construct a nonlinear deterministic model from which we are able to estimate parameter 
values corresponding to the proportion of offspring who are expected to be diagnosed with autism, given that 
their mother belongs to a specific age class [1, 1, 1J. Analyzing California and the United States, the model is 
kept at the population level. Maternal age is separated from environmental factors, providing for a more focused 
analysis. It is found that as mother's age, their susceptibility to having a child who would be diagnosed with 
autism increases dramatically. The results show a recurring trend that support the idea that, in the absence of 
environmental factors, increased maternal age increases a woman's susceptibility to having an autistic child. In 
California, a state that is fairly advanced and consistent in its diagnosis of autism, women of age class 40-44 
have a 20.71 percent chance of having an autistic child [1J. For the United States, values are found for both the 
35-39 year age class (3.64 percent) and the 40-44 year age class (12.18 percent). Despite the appearance of a 
value in the age class 35-39, it is believed that the 40-44 year age class is the only one of significance and that 
the value for the 35-39 year age class can be attributed to error in the data set. Because of this, it can also be 
concluded that maternal age has little or no perceivable impact on the likelihood of having an autistic child for 
women of ages 15-39. After checking the reliability of our model, we are able to make projections about the 
prevalence of autism in future populations. It is projected that autism will continue to increase over the time 
spanning 2010-2050. 

We construct a linear regression model as another way to determine whether or not maternal age impacts 
the likelihood of having a child who will be diagnosed with autism. Two hypotheses are tested and the results 
obtained confirm the results of our deterministic model; that is, maternal age does indeed playa role in the 
increasing prevalence of autism. It is important to note that as much as we tried to isolate maternal age by 
attributing all other causes to the environment, we cannot be certain that we actually succeeded in doing so. 
There are many other factors that could be contributing to the values associated with each age class; for instance, 
if it is paternal age rather than maternal age affecting the number of offspring being diagnosed with autism, 
our model would report similar findings. Therefore, because autism is likely caused by multiple factors other 
than maternal age, the results of this study allow for the suggestion that maternal age should be more closely 
studied so as to determine its precise role in the increasing prevalence of autism. 

As evidenced by this project, much remains to be learned about autism. To expand upon this research, it 
would be interesting to see if women in the age class 45-49 have a greater susceptibility than those of age class 
40-44, if the impact of maternal age varies by nation or race or even if paternal age has a greater impact than 
maternal age [1J. Also, a sibling study that examines the increased risk associated with having an older brother 
or sister who is autistic would be a beneficial and intriguing avenue to pursue. To pursue this research however, 
would require data collection methods to be much improved over their current state, especially with regard to 
the autistic population. If data is collected on the mother's age when she gave birth to a child diagnosed with 
autism, better statistical studies could be done to determine if maternal age is playing the role suggested by 
this research. Also, a standardized diagnosis system needs to be implemented. Much work remains to be done 
in this field and it is hoped that this paper inspires many others. 
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