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Abstract 

An SIR epidemiological household model is constructed and studied to understand the effects that clusters 
of unvaccinated individuals have on the disease dynamics' of a population. The model contains two levels of 
mixing where individuals make more intra-household than inter-household contacts. Stochastic simulations and 
numerical solutions are utilized to explore the model. A new extension of the basic reproductive number that 
incorporates more spatial information by predicting the average number of tertiary infections caused by a single 
infected individual is introduced to describe the threshold behavior and severity of an epidemic. Using these 
methods we show that clustering of unvaccinated individuals always leads to more severe epidemics. 

1 Introduction 

Modern vaccination programs have succeeded in reducing or eliminating many infectious diseases around the 
world and are generally regarded as one of the greatest public health achievements of the twentieth century by 
the US Centers for Disease Control and Prevention (CDC) [1,2,3]. Multiple analyses have confirmed that they 
are a cost-effective asset to modern public health policy, and that high vaccination rates for children should be 
a top priority for health officials [4, 5]. 

Despite the success of vaccination initiatives in reducing infectious disease levels worldwide, the topic of vacci­
nation is and always has been controversial for a number of reasons. Some individuals question the government's 
prerogative in mandating vaccinations or suspect the government of financially profiting from mandatory vac­
cination programs [6, 7]. Many question the efficacy and safety of vaccines, often expecting vaccines to provide 
near perfect immunity with little or no risk [8]. According to the CDC, commonly held public misconceptions 
surrounding vaccines include: that diseases had already begun to disappear without the influence of vaccines, 
that the majority of people who catch a disease have been vaccinated, that there are "hot lots" of vaccines 
that have been associated with more adverse events and deaths than others, that vaccines cause many harmful 
side effects, illnesses, and even death, that vaccine-preventible diseases have been virtually eliminated from the 
US, and that administering multiple vaccinations for different diseases simultaneously can overload the immune 
system and increase the risk of harmful side effects [9]. As these vaccine-preventible diseases disappear from 
the public eye, individuals simultaneously forget about the diseases being vaccinated against and believe that 
the risks associated with vaccination exceed those posed by the targeted illness [7, 8, 10]. Finally, controversial 
vaccine-related incidents such as the implied link between an MMR (measles, mumps, rubella) vaccine and 
autism in children and the use of thimerosal, a preservative containing mercury, in vaccine preparations have 
made it difficult to convince some members of the public that vaccines are one of our best lines of defense against 
many serious illnesses [11, 12]. 

The controversy of vaccines has also been fueled in recent years by vocal "anti-vaccination" groups. While 
there have always been critics of the vaccination process, the recent availability of mass media and the Internet as 
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outlets for the dissemination of information has enabled members of these groups to spread their message easily 
and inexpensively. There have been a number of papers published on the mindsets, motivations, and vehicles of 
these groups, and many agree that their arguments, though often based more on emotional appeal and temporal 
correlations than on medical fact, are capable of reaching and influencing a non-negligible proportion of the 
population [10, 13, 14, 15, 16]. 

The net effect of these controversies and this anti-vaccination influence is a growing concern in the medi­
cal community over rising rates of individuals opting out of vaccination. This trend has been most apparent 
in the rising numbers of parents acquiring vaccination exemptions for their children based on their religious, 
philosophical, or personal beliefs. A number of papers have been written studying the effects of these exemp­
tions [17, 18, 19, 20], and a correlation between ease of exemption and pertussis incidence rate by state has 
been demonstrated [21]. (For an overview of the vaccination laws these parents are avoiding, see [22]). It has 
also been noted that homeschooled children are not required to comply with state vaccination laws, providing 
another opportunity for individuals to avoid vaccinating their children in compliance with school entry laws [23]. 

If these unvaccinated individuals were present in sufficiently small numbers and spread randomly throughout 
the population, the effect of herd immunity could still prevent an epidemic. However, there is reason to believe 
that these unvaccinated individuals could be geographically and socially clustered, which could in turn increase 
the risk of an outbreak or epidemic. This clustering could stem from a variety of sources. Many religious 
groups, including the Amish, Christian Scientists, and Jehovah's Witnesses, have resisted vaccination programs 
for religious and philosophical reasons [17, 24]. Socioeconomic standing is also commonly associated with 
disparities in local vaccination rates [25, 26, 27]. The previously mentioned ease of exemption issue has led some 
states in the US to possess lower vaccination rates than others. Finally, ideas from economics and game theory 
have been applied to this situation, with authors suggesting that individuals unsure whether or not to vaccinate 
their children may be influenced by these growing trends in non-vaccination around them [17, 24, 25, 28]. While 
the clustering of unvaccinated individuals has received a fair amount of attention in the medical community, 
to our knowledge, there have been no models built to quantify the increased risks associated with clusters of 
unvaccinated individuals. It is this risk that we explore here. 

While we believe our approach in analyzing clustered unvaccinated individuals is novel, we are building 
on many ideas previously explored in mathematical biology. Our model is an SIR (susceptible -+ infected 
-+ recovered/removed) model, which was proposed in 1927 [29] and has been analyzed extensively in years 
since. To take the effects of vaccination into account, two classes of susceptible are included, an idea that was 
presented at least as early as 1968 [30] and has been analyzed in both deterministic and stochastic settings since 
then [31, 32, 33]. In an attempt to improve upon the common assumption of homogeneous mixing between all 
individuals of the population, we consider a population partitioned into households, where individuals within 
households contact each other at a different (typically much higher) rate than they contact individuals in the 
general population. This approach was first discussed by Rushton and Mautner [34] and has been considered 
extensively in the years since [35, 36, 37, 38, 39,40]. As will be described later in our paper, an infinite system of 
differential equations arises when the moments of the probability distributions describing infectious individuals 
are computed. To truncate this system, moment-closure approximations are used; see [41] for an excellent 
introduction to the topic of moment approximations and [42] for similar approximations to what are used here. 
Finally, suggestions for reducing the impact of clustered unvaccinated individuals on epidemic dynamics are 
included at the end of the paper based on our findings. These suggestions follow an extensive line of public 
health investigation on optimal vaccination strategies in a variety of model settings [40, 43, 44, 45, 46]. 

Section 2 presents the household equations, the measure of clustering of unvaccinated individuals used 
throughout the paper, the moment equations, the moment closure methods used to truncate the infinite system 
of moment equations, and the derivation of the first and second-generation Ro equations for the model. Section 
3 contains an explanation of the methods utilized in studying the behavior of our model. Section 4 contains 
the results, which were found via simulations, numerical solutions, and analysis. In Section 5, we discuss the 
meaning and implications of the results. Finally, in Section 6, we extend our theoretical results to public health 
policy and propose model modifications that could be made in order to analyze more specific scenarios. 
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Monte Carlo Ro simulator converges nicely to the deterministic value of Ro. Thus, we can say that the numerical 
values derived from our analysis line up with our stochastic expectations. 

It should be noted that the differences between the numerical solution and the simulation in Figure 3 of our 
model do not impact the value of either the first or second-generation Ro. It may seem like analysis drawn from 
the household equations should not align with the stochastic simulation due to the discrepancies in Figure 3, but 
luckily here the discrepancies do not affect our analysis. This is due to the fact that the simulation and numerical 
solutions deviate from each other long after the time of the initial infection. As can be seen in Figure 3, for 
t < 5 the two curves are nearly indistinguishable from one another. Since numerical solutions and stochastic 
simulations both exhibit the same initial behavior, which is important to Ro, we can safely use our analytically 
derived Ro values when discussing the simulations. 

After verifying that our deterministic expressions for the first and second-generation Ro values align with 
their expected value over many stochastic realizations, it is important to verify that the original epidemiological 
meaning behind Ro as a threshold parameter still holds. By computing values of the first and second-generation 
Ro values which live around the threshold value of 1, we were able to run simulations and observe the resulting 
epidemic behavior. To produce Figures 6-8, we ran many full stochastic simulations with borderline threshold 
parameter values. The general trend shows that the second-generation Ro values are better predictors of whether 
or not an epidemic will occur than the first-generation values. 

It is important to realize that even though the second-generation Ro is deterministically greater than or less 
than 1, this fact will not perfectly predict epidemic behavior. This deterministic second-generation Ro value 
is an average taken over all individuals and households, whereas the outcome of a single infection will depend 
greatly on its starting location. Infectious individuals placed in completely unvaccinated households are more 
infectious than individuals placed in purely vaccinated households due to the spatial structure of the system. 
From the point of view of the entire population, the global Ro is a random variable which depends on the 
initially infected individual. 

Figures 6-8 gave reason to believe that the second-generation Ro was a better predictor of epidemiological 
outbreaks when considering the effect of clustering than the traditional Ro was. Now that our derived expression 
for the second-generation Ro is an adequate measures of the expected severity of an epidemic outbreak, we can 
use it to finally demonstrate the general effect that clustering has on an epidemic. 

Since the second-generation Ro describes the behavior of an epidemic outbreak in our model, we can continue 
analyzing it to determine the impact of increased clustering on epidemics. By first taking the derivative of the 
second-generation Ro with respect to the other parameters, we derived exactly what intuition would suggest. The 
most important final result is that the derivative of the second-generation Ro with respect to Q is always positive 
(Equation (22)). This implies that increasing clustering always increases the value of the second-generation Ro, 
which by the rest of our analysis shows that clustering will always, on average, create larger and more probable 
epidemics when an outbreak occurs. 

The result that we have found for households is analogous to the result that was found in lattice population 
models: that clustering of suitable habitat was found to beneficial to a locally dispersing population [53]. Here 
we see the same effect where increased clustering causes the final proportion of recovered individuals in the 
population to increase. In addition to this, we found the second-generation Ro to be an adequate threshold 
estimator which allows us to predict not only the severity of an epidemic but also the likelihood of an outbreak 
turning into full blown epidemic. 

6 Conclusion 
Some epidemiological models are used to describe the spread of disease in the presence of vaccinated individuals. 
We believe that it would be advantageous to incorporate clustering into these models in order to gain a more 
thorough understand of the effect of the unvaccinated population on disease dynamics, especially considering 
the current trends of clustering mentioned previously. Incorporating clustering into a model is a fairly general 
procedure and could be applied to the many vaccines that are currently under some measure of public scrutiny. 

Our investigation prompted many questions about current and future public health policy. How could the 
medical community target these unvaccinated clusters in order to reduce the chances of an outbreak? When 
and how should school entry vaccination law exemptions be given to avoid clustering of the unvaccinated? 
Perhaps a more involved and taxing exemption process could efficiently reduce a significant portion of the 
school based clustering in many communities. In addition, more involved health education, both at the student 
and parent levels, could change some of the negative attitudes surrounding vaccines. It would be beneficial 
to derive strategies concerning vaccination education that might be implemented to balance the onslaught of 
pseudo-medical information found on the Internet and in popular periodic publications. More future research 
into the matter will be necessary to understand just how the academic and medical communities can impact 
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this troubling trend towards increasing numbers of clusters of unvaccinated individuals. 
There are many modifications that could be implemented to create a more realistic epidemiological model. 

For instance, many vaccine-preventible diseases, including pertussis, measles, mumps, tuberculosis, and small­
pox, have a latent period after initial exposure. An SEIR model could be built with a exposed/latent class 
to include this time delay. Outbreaks of these diseases can last for months, so it could also be worthwhile to 
incorporate population birth and death rates. Perhaps even more worthwhile would be to consider an active 
vaccination program during an epidemic, with unvaccinated individuals becoming vaccinated at a rate related 
to the population infection rate. 

Our spatial structure contained two levels of mixing, but this could be augmented to three or more. This 
extension would permit the modeling of situations such as the mixing of individuals living in dorms within colleges 
within cities or churches within suburbs within larger urban areas. Variable mixing could also be incorporated, 
with mixing between groups i and k occurring at rate aik. This could be used to model geographic spatial 
interactions, where New York and New Jersey would mix more frequently than New York and Arizona, or social 
boundaries where households of similar socioeconomic status would be more likely to interact than with others 
of significantly different socioeconomic status. These or perhaps even more complex contact structures could 
be included in the model [58]. Combining these ideas with a model that does not assume that all households 
are of the same size would allow the model to be applied to specific diseases or geographic locations. Finally, 
reparameterization could be done to force the moment equations to be numerically stable. 

Despite the fact that this model leaves room for these extensions, many important facts concerning the 
behavior of infections exacerbated by clustering have been illuminated. Herd immunity is more easily dimin­
ished in communities with relatively high vaccination rates than many well-mixed models have the ability to 
demonstrate and than most of the general public has cause to believe. Although the effects of clustering on 
epidemiological systems have been hypothesized by many [21, 24, 42, 59, 60], they have not previously been 
quantified, nor have they been applied to current health standards in order to maximize public safety. It now 
has been shown t.hat there is not only an undeniable upward trend in the overall size of an epidemic and the 
level of clustering, but also that clustering allows for epidemics to exist under conditions that would otherwise 
be unfavorable for an outbreak. (Instances of this occurring in various communities around the world have been 
documented in recent years [24,61,62,63,64,65]). All of these results contribute to the mounting evidence that 
clustering and the spatial considerations that it entails are crucial to the study of epidemiological dynamics. 
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2 Model 
Our model is an SIR household model describing the spread of a theoretical epidemic. Consider a population 
consisting of n2 households, each containing nl individuals, such that total population size is nln2 = N. As 
in most household models, individuals within the same household interact with one another at a higher rate 
than they do with individuals in other households. This model is an extension of the SIS model proposed by 
Hiebeler [42]. 

To model the impact of clustered unvaccinated individuals on the spread of an epidemic, we introduce two 
separate classes of susceptible individuals: vaccinated and unvaccinated. Unvaccinated individuals are always 
infected when contacted by an infected individual, and vaccinated individuals are infected at a lower rate which 
is proportional to the efficacy of the vaccine. To simplify the analysis of the system, a number of assumptions are 
made. First, it is assumed that the vaccine in question does not grant perfect immunity, so individuals who have 
been vaccinated can still become infected but will do so at a reduced rate. In reality, no vaccine grants perfect 
immunity one hundred percent of the time it is administered; reported efficacies can range anywhere from 10% 
to 97% effective and depend on a number of factors, including the disease being vaccinated against, the type of 
vaccine administered, the age of the target population, the number of doses administered, and whether or not 
the vaccines are administered during an outbreak [47, 48, 49, 50, 51]. 

It is also assumed that there is no incubation period, so infected individuals can immediately infect susceptible 
individuals. Vaccinated and unvaccinated individuals are equally infective once infected. Once an individual is 
infected, he infects people independently and at a constant rate over the course of his infection period. There 
are also no deaths due to infection. Finally, it is assumed that there is no vaccination during the outbreak; the 
initial distribution of vaccinated individuals determines the vaccination status of the system. 

2.1 The Household Equations 

Let Uk(t), Vk(t), h(t), and Rk(t) represent the proportion of individuals of household k at time t who are 
unvaccinated, vaccinated, infected, and recovered (immune), respectively. Then the dynamics are described by 
the following set of equations: 

dUk dt = -[</>(1 - a)Ukh + </>aE[I]Uk] (1) 

dVk ill = -(1- p)[</>(l- a)Vkh + </>aE[I]Vk] (2) 

dh dt = </>(1 - a)h(Uk + (1 - P)Vk) + </>aE[I] (Uk + (1 - p)Vk) - J-lh (3) 

dRk _ I 
dt - J-l k (4) 

where k = 1,2, ... , n2, </> is the per capita infection rate of the disease, J-l is the per capita recovery rate, and p is 
the efficacy of the vaccine. If p = 1, the vaccine provides perfect immunity, and p = 0 implies that vaccinated 
and unvaccinated individuals are equally susceptible. The parameter a is the proportion of global infection 
events. If a = 1, then all events are global and the household system becomes a traditional well-mixed SIR 
model, and when a = 0 there is no interaction between households. Let E[I] denote the average proportion of 
infected individuals at time t, where the average is taken over the n2 households. Then 

E[I] = ~ f Ik(t) 
n2 k=l 

E[U] and E[V] are similarly defined as the average proportion of unvaccinated and vaccinated individuals in the 
population at time t, respectively. By assuming that the timescale of a single epidemic outbreak is relatively 
short, we assume that the total population N remains fixed, and natural births and deaths are neglected. Since 
the population is constant, then Uk + Vk + Ik + Rk = 1 for each household, so we can do without Equation (4) 
when analyzing the system. Thus, the k-household dynamics are governed by three equations, that is, we have 
a system of 3n2 equations describing the disease dynamics for the entire population. Also note that, for any 
time t, we have E[U] + E[V] + E[I] + E[R] = 1. Finally, we assume that nl is sufficiently large to use continuous 
state variables for Uk(t), Vk(t), h(t), and Rk(t). In the case when nl is small, a branching process is typically 
used [38, 52]. 
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2.2 Initial Conditions 
Let U(t), V(t), and 1(t) be sets of the proportions Uk(t), Vk(t), and h(t), respectively, for k = 1, ... ,n2. The 
initial household distributions are thus given by U(O), V(O), and 1(0). We can average over all households to 
compute the mean proportions of unvaccinated, vaccinated, and infected individuals, denoted E[U(O)], E[V(O)], 
and E[1(0)], respectively. These average values are important initial conditions for our household system, and 
we use special notation to denote them: 

Uo = E[U(O)] = proportion of the total population initially unvaccinated 

Vo = E[V(O)] = proportion of the total population initially vaccinated 

Note that when our household system is initially constructed, there are no infected individuals present. With 
these initial conditions defined, we can now derive the most important initial condition of our model: Q, the 
measure of clustering of unvaccinated individuals. 

2.3 Initial Clustering 
To study the impact of clustering of unvaccinated individuals on the dynamics of an epidemic, we need to 
consider the initial distribution of unvaccinated individuals within the system of households. When introducing 
an infected individual into a susceptible population, it should be intuitive that an outbreak is more likely to 
occur in a household with a high initial proportion of unvaccinated individuals than in a household with a high 
proportion of vaccinated individuals. Because this infected individual can be introduced into any household, 
we'd like to be able to quantify the overall disparities in initial conditions among households i.e. how clustered 
unvaccinated individuals are in the population. 

A recent approach by Becker and Dietz used mean and variance to quantify differences in household com­
position [36]. In our model, we have already defined the mean of interest as Uo, and we can begin by using 
the variance of U(O) to measure the clustering of unvaccinated individuals within our system of households. 
Consider the bounds of the variance of U(O): 

Dividing by E[U(O)]: 

Adding E[U(O)]: 

Let us now define the value Q as: 

0::; Var(U(O)) ::; E[U(O)]- E[U(0)]2 

0::; Var(U(O)) < 1 - E[U(O)] 
E[U(O)] -

E[U(O)] < Var(U(O)) + E[U(O)] < 1 
- E[U(O)] -

Q = Var(U(O)) E[U(O)] = E[U(O?]- E[U(OW E[U(O)] = E[U(0)2] 
E[U(O)] + E[U(O)] + E[U(O)] 

(5) 

(6) 

The value Q still contains the same information as the variance of U(O), but it is a more intuitive expression 
for measuring clustering in our model. This is because Q can be interpreted in a probabilistic sense: Q is the 
probability that a randomly selected neighbor (individual from the same household) of a randomly selected 
unvaccinated individual is also unvaccinated [42]. Thus, higher values of Q signify a greater degree of clustering 
of unvaccinated individuals. Based on the bounds established in Equation (5), the extreme cases are Q = E[U] 
and Q = 1. In the former case, every household contains exactly Uo proportion of unvaccinated individuals 
i.e. unvaccinated individuals are distributed uniformly among the households. In the latter case, Uo proportion 
of the households are completely unvaccinated. Using Q, we can now precisely describe the initial clustering 
present in our model. 

Before we can either numerically solve or simulate our model, we must have an initial distribution of un­
vaccinated and vaccinated individuals among the households. A computer script was written to create this 
distribution, and uses a method similar to an algorithm used previously to generate heterogeneous lattice land­
scapes [53]. The algorithm works as follows: first, the desired proportion of unvaccinated individuals is specified 
(Uo), as is the ultimate desired level of clustering (Q). Also specified are nl and n2. Next, n2 households are 
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created, each containing proportion Uo of unvaccinated individuals and proportion (1 - Uo) = Vo of vaccinated 
individuals. Since there is no variance among households in terms of proportion unvaccinated, the current Q 
value, which will be denoted Q*, is equal to Uo. 

In order to move this current Q* closer to the desired Q, two households are selected at random and their 
proportions of unvaccinated individuals are compared. If Q* is less than Q, we move an unvaccinated individual 
from the household with the lower proportion of unvaccinated individuals to the household with the higher 
proportion of unvaccinated individuals. To keep household sizes the same, we then move a vaccinated individual 
from the household with the higher proportion of unvaccinated individuals to the household with the lower 
proportion of unvaccinated individuals; in effect, we have swapped an unvaccinated individual and a vaccinated 
individual between these two households in a way that puts more unvaccinated individuals into the same 
household. On the other hand, if Q* is greater than Q, we simply swap two individuals in the opposite direction 
- move an unvaccinated individual into the household with the lower proportion of unvaccinated individuals 
and replace him with a vaccinated individual. (Since the initial Q* is equal to its lower bound, the swaps will 
almost always tend to increase Q*.) After every swap, Q* is recomputed and compared to Q, and this entire 
swapping process is repeated until the current Q* is within some specified tolerance, E, of Q. At this point, we 
have created a system of households with the desired level of clustering and Q* = Q. 

This algorithm is a simplified version from Hiebeler, where our Uo and Q are equivalent to Hiebeler's Po and 
qss in both use and interpretation [53]. However, our system is less spatially structured than a lattice landscape. 
Hiebeler's original algorithm uses the notion of adjacency of sites to define clustering, but here we have defined 
adjacency of individuals to mean that they both belong to the same household. This change of definition is 
used because there are no spatial relationships within a single household, so the most that can be said about 
the spatial correlation between individuals is whether or not they belong to the same household. 

To illustrate this notion of Q, consider the examples of systems of households in Figure 1. Each system was 
generated with constant Uo = 0.25 but varying Q values of 0.255, 0.3, 0.5, and 1.0, respectively. When Q is 
near Uo, the unvaccinated individuals of the population are distributed approximately homogeneously among 
households. As the value of Q increases, the majority of unvaccinated individuals become markedly clustered 
into a smaller number of households. 
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Q =0.255 Q=0.3 

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 

Households Households 

Q=0.5 Q= 1.0 

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 

Households Households 

Figure 1: A graphical illustration of Q, the overall measure of clustering of unvaccinated individuals in a population. 
In each system of 400 households with 400 individuals each, 25% of individuals are unvaccinated (Uo = 0.25). 
However, as Q is increased, the unvaccinated individuals become increasingly clustered into the same households. 
For Q = 0.255, unvacinated individuals are distributed essentially homogeneously throughout the households. 
For Q=0.3 and 0.5, increasingly large disparities in non-vaccination levels arise between households. For Q=l, 
theoretically any household containing one unvaccinated individual must be full of unvaccinated individuals. Those 
households pictured with both vaccinated and unvaccinated individuals present in the case of Q=l exist because 
the algorithm stops within E of Q*=l. 

2.4 Moment Equations 

When considering the entire system of household equations, one must keep track of 3n2 equations. An alternative 
approach is to consider the entire system by writing differential equations which describe the change in the 
expected value of U, V, and I, where the expectation is taken over all households [41,42, 54]. The equations 
can be derived via the following process: 

d d 1 n2 1 n2 d d 
-E[U] = -(- "'Uk) = (- L -Uk) = E[-Uk] 
dt dt n2 L..t n2 dt dt 

k=l k=l 
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By the same process, equations for the derivative of the expected value of V and I can be computed. The entire 
system can thus be reduced to: 

!E[U] = -(cP(l- a)E[UI] + cPaE[I]E[U]) 

!E[V] = -(1- p)(cP(l- a)E[VI] + cPaE[I]E[V]) 

!E[I] = cP(l- a)(E[UI] + (1 - p)E[VI]) + E[I] (cPa(E[U] + (1- p)E[V]) - p,) 

(7) 

(8) 

(9) 

These moment equations reduce the original system of household equations by a factor of n2, a significant 
improvement. However, this simplification is not without a cost because these three moment equations do not 
form a closed system, indicated by the presence of the joint moment terms E[U I] and E[V I]. Equations for 
these two jOint moments are as follows (see Appendix A for derivations): 

! E[U I] = - cP(l - a)E[I2U]- cPaE[I]E[U I] + cP(l - a)(E[U2 I] + (1 - p)E[U IV]) 

+ cPaE[I] (E[U2] + (1- p)E[UV]) - p,E[UI] (10) 

!E[VI] = - (1- p)cP(l- a)E[I2V]- cPaE[I]E[VI] + cP(1- a) (E[UIV]) 

+ (1 - p)E[V2 I]) + cPaE[I](E[UV] + (1 - p)E[V2]) - p,E[V I] (11) 

Within these equations, we see three new second-order moments; {E[UV], E[U2], E[V2]}. We also see a 
number of third-order moments arise, which are the terms that will eventually be approximated using first 
and second order moments. First, equations for these three new joint moments are given (see Appendix A for 
derivations) ; 

d 
dt E[UV] = - (1 - p)cP(1- a)E[UIV]- cPaE[I]E[UV]- cP(l- a)E[UIV] 

- cPaE[I]E[UV] 

! E[U2] = - cP(1- a)E[U2 I] - cPaE[I]E[U2] 

!E[V2] = - 2(1- p)cP ((1- a)E[V2 I] + aE[I]E[V2J) 

(12) 

(13) 

(14) 

In these five equations for the second-order moments, we see five third-order moments; E[I2U], E[I2VJ, 
E[U2IJ, E[V2IJ, and E[U IV]. Explicitly finding equations for these moments would produce fourth-order mo­
ments, which would in turn produce fifth-order moments, etc. Instead of considering an infinite system of 
moment equations, we use the following moment-closure approximations [42] (see Appendix B for derivations): 

E[UIV] ~ E[UI]E[UV] 
E[U] 

E[U2 I] ~ E[U
2
]E[U I] 

E[U] 

E[I2V] ~ E[V 1]2 
E[V] 

E[V2I] ~ E[VI]2 
E[I] 

E[I2U] ~ E[U 1]2 
E[U] 

Substituting these approximations back into Equations (10-14) and combining them with Equations (7-9), we 
have the final eight-dimensional system of moment equations for this model: 

7 



! E[U] = - (¢(1 - a)E[U I] + ¢aE[I]E[U]) 

! E[V] = - (1 - p)(¢(1 - a)E[VI] + ¢aE[I]E[V]) 

! E[I] =¢(1 - a)(E[UI] + (1 - p)E[VI]) + E[I](¢a(E[U] + (1- p)E[V]) - p,) 

.iE[IU] ~ - ¢(1 - a) E[IU]2 _ ¢aE[I]E[IU] + ¢(1 _ a) (E[U
2
] E[IU] + (1 _ p) E[IU]E[UV]) 

dt E[U] E[U] E[U] 

+ ¢aE[I] (E[U2] + (1 - p)E[UV]) - p,E[IU] 

.iE[IV]~-(I- )"'(1- )E[IV]2 _'" E[I]E[IV] "'(1- ) (E[IU]E[UV] (1- )E[VI]2) 
dt p 'I-' a E[V] 'l-'a + 'I-' a E[U] + p E[I] 

+ ¢aE[I](E[VU] + (1 - p)E[V2]) - p,E[IV] 

.iE[UV] ~ - (1- p)¢(I- a)E[IU]E[UV] - ¢aE[I]E[UV]- ¢(1- a)E[IU]E[UV] - ¢aE[I]E[UV] 
& E~ E~ 

.i E[U2] ~ _ ¢(1 _ a) E[U
2
]E[IU] - ¢aE[I]E[U2] 

dt E[U] 

! E[V2] ~ - 2(1 - p)¢ ((1 - a) Efr~]2 + aE[I]E[V2]) 

Thus, this system of differential equations describes the approximate behavior of the entire system of households. 
Both household and moment systems are solved numerically, and the results of these solutions are discussed in 
later sections of the paper. 

2.5 First and Second-Generation Ro 
The basic reproductive number Ro is a classic component of epidemic modeling and is generally defined as 
the expected number of secondary infections an infected individual will create when placed into a population 
consisting entirely of susceptible individuals [55, 56, 57]. In our model, a single infectious individual placed into 
household k can initiate four types of infection events: long-distance unvaccinated, long-distance vaccinated, 
local unvaccinated, and local vaccinated. Based on the parameters of the model, we can compute the expected 
number of each type of event this individual will propagate. The sum of these four quantities is the total 
expected number of secondary infections caused by the initial infected individual when beginning in household 
k: 

RO,k = taE[U] + ta(1 - p)E[V] + t(1- a)Uk + t(1- a)(l - p)Vk 
p, P, P, p, 
'--..,.--' "-v-" '----v-"' ' v ' 

long-dist. U's long-dist. v's local D's local V's 

To find the equation for the traditional first-generation Ro, take the expected value over all households: 

E[Ro,k] = (~) (a(E[U] + (1- p)E[V]) + (1- a)(E[U] + (1- p)E[V])) 

Substituting in E[U(O)] = Uo and E[V(O)] = Vo, we have: 

= (~) (Uo + (1- p)Vo) 

= (~) (Uo+(I-p)(I-Uo)) 

= (~) (l-p(I-Uo)) = RO(l) 

(15) 

(16) 

While this is certainly a useful equation to consider, it fails to incorporate the clustering of unvaccinated 
individuals present in the population. For clustering to playa role, we consider the fact that each secondary 
infected individual can, in turn, create tertiary infections of four types: long-distance unvaccinated, long-distance 
vaccinated, local unvaccinated, and local vaccinated. The expected number of tertiary infections created by each 
secondary infected individual are as follows: 
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Long-dist. U's: (~) a (E[U] + (1 - p)E[V]) + (1- a) (QulU + (1 - P)QvlU) 

Long-dist. V's: (~) a (E[U] + (1 - p )E[V]) + (1 - a) (QulV + (1 - P)QvlV) 

Local U's: (~) a (E[U] + (1- p)E[V]) + (1- a) (Uk + (1- p)Vk) 

Local V's: (~) a (E[U] + (1- p)E[V]) + (1- a) (Uk + (1- P)Vk) 

(17) 

(18) 

(19) 

(20) 

In Equations (17-20), the notation QxlY is used to denote the conditional probability of choosing an individ­
ual of type X from a given household, given that an individual of type Y was previously selected from the same 
household. These probabilities relate directly to the clustering of unvaccinated (and implicitly, unvaccinated) 
individuals. Using Equation (6) as an example, we have the following formulas: 

E[U2] E[V2] E[UV] E[UV] 
QUlu = E[U] ,QvlV = E[V] ,Qvlu = E[U] ,QulV = E[V] 

To compute the "second-generation Ro" for the kth household, denoted Rb2k, compute the product of each 
corresponding component of Equation (15) and its corresponding equation in 'Equations (17-20). This gives: 

Rb~k = (~) 2 [aE[U] {a (E[U] + (1 - p)E[V]) + (1- a) (Qulu + (1 - P)QvlU)} 

+ a(1- p)E[V] {a (E[U] + (1 - p)E[V]) + (1 - a) (QulV + (1 - P)QvlV)} 

+ (1- a)Uk {a (E[U] + (1- p)E[V]) + (1- a) (Uk + (1- P)Vk)} 

+(1 - a)(1 - P)Vk {a (E[U] + (1 - p)E[V]) + (1 - a) (Uk + (1 - P)Vk)}] 

Note that there are four terms which have the common factor a (E[U] + (1 - p)E[V]). Factoring this term out 
and rearranging the remaining terms, we have 

Rb~k = a (~) RO,k(E[U] + (1- p)E[V]) 

+ (~) 2 (1 _ a) {aE[U2] + a(1 _ p)E[UV] + a(1 - p)E[UV] + a(1 _ p)2 E[V2] 

+(1 - a)U~ + (1 - a)(1 - p)Uk Vk + (1- a)(1- p)Uk Vk + (1 - a)(1 - p)2V,?} 

This expression is still in terms of k, but taking the average over all households gives 

E[Rb~k] = (~) Rb1)a(E[U] + (1- p)E[V]) + (~) 2 (1- a)E[U2] + 2(1- p)E[UV] + (1- p)2 E[V2] 

which can be rewritten as 

E[R~~k] = (~) 2 (a(E[U] + (1 _ p)E[V])2 + (1 _ a)(E[U2] + 2(1 _ p)E[UV] + (1 _ p)2 E[V2])) 

Since E[U(O?] = UoQ, E[U(O)V(O)] = Uo(1 - Q), and E[V(0)2] = E[(1 - U(0))2] = 1 - Uo(2 - Q), this reduces 
to 

(21) 

where Equation (21) is our final equation for the second-generation Ro. 
It is important to recognize that the second-generation Ro given in Equation (21) is a slight overestimate. 

When computing the traditional first-generation Ro, the assumptions are made that the primary infected indi­
vidual is counted as both an infected individual as well as a susceptible individual, and furthermore that the 
population is large enough to ensure that the primary infected individual does not attempt to infect the same in­
dividual more than once. We take this one step further for the second-generation Ro by applying these same two 
assumptions to every secondary infected individual in the population. For reasonable first and second-generation 
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Ro values and sufficiently large households, the true values and our computed values given by Equations (16) 
and (21) should be very similar. 

Even in the case when true values and computed values differ by a non-negligible amount, we believe that 
from a public health policy perspective, it is probably better to overestimate these values than to underestimate 
them. While overestimating these values may occasionally result in preparing for an epidemic that is of a smaller 
magnitude than anticipated, this outcome is far better than under-preparing for an epidemic that is much more 
serious than predicted. Given reasonable parameter values, however, this should not be an issue. 

3 Methods 

3.1 Numerical Solutions 
Numerically solving the 3n2 household differential equations may seem like a daunting challenge, but because of 
the symmetry and simplicity of our deterministic model and the speed of modern computers, this system takes 
only a fraction of a second to solve. Our numerical solutions were obtained using MATLAB's ode45 ordinary 
differential equation solver. Solving this system gives us values for Uk, Vk, h, and Rk for each household over 
the course of the epidemic. Taking these values and computing the expected value of each class over time 
yields E[U], E[V], E[I], and E[R] as functions of time, which can be graphed and provide a perspective on the 
epidemic's course from the point of view of the population. We also attempted to numerically solve the system 
of eight moment equations. 

3.2 Stochastic Initial Conditions 
Even though numerically solving the system of household equations is a purely deterministic process, every run 
of the numerical solution is unique because the initial conditions of the differential equations are stochastic. 
First, the household algorithm described in Section 2.3 produces systems of households which are randomly 
generated with specified Uo and Q values. Next, two important new initial conditions are specified: the number 
of households which will initially contain infected individuals (82 ) and the number of individuals within each of 
these households to be initially infected (81). These 82 households are chosen randomly from the n2 possible 
households, and then 81 out of n1 individuals from each household are randomly infected, with no preference 
given to vaccinated or unvaccinated individuals. Without clustering to consider, this would not cause any 
difference between runs, but because clustering is present, different initial conditions will produce different 
epidemic outcomes. To account for stochastic disparities, we complete multiple runs of each numerical solution, 
average the runs together, and give an indication of the amount of variability within the repeated runs. 

3.3 Stochastic Simulation 
A stochastic simulation of our theoretical epidemic was programmed in MATLAB. The simulations are com­
putationally slower than numerically solving the system of household equations, but they give a much more 
realistic description of the dynamics of an epidemic as it spreads through the spatial structure of the households 
for a number of reasons. In the stochastic simulations, household sizes are specified, whereas no such specifica­
tion is made for the household equations. More importantly, however, events are discrete and random in the 
stochastic simulations, whereas they are continuous and completely deterministic in the household equations. 
For the same exact parameter values, initial conditions, and household distribution, the ode45 solutions will be 
the same every time, whereas the stochastic simulations will vary based on the outcomes of random events. This 
latter case is more realistic when considering the spread of disease in a dynamic population, and so stochastic 
simulations are favored over numerical solutions for analyzing the model and understanding the phenomenon 
under consideration. . 

3.4 Monte Carlo Second-Generation Ro Simulator 
Using the traditional interpretation of first-generation Ro, it is possible to stochastically compute Ro by intro­
ducing one infected individual into a population of susceptible individuals and counting the number of secondary 
infections that are propagated. Repeating this process many times and averaging the results should produce 
an accurate first-generation Ro. Much in the same way, it is also possible to stochastically compute second­
generation Ro by introducing an infected individual into an entirely susceptible population and counting the 
number of tertiary infections produced indirectly by the initially infected individual. Again, the average of many 
repetitions should result in an accurate second-generation Ro. Using this Monte Carlo method, we are able to 
verify the formulas given by Equations (16) and (21). 
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4 Results 

4.1 Epidemic Progression Visualized 
In Figure 2 we can see the progression of an epidemic with respect to the proportion of each type of individual in 
every household. As the epidemic proceeds it is clear that households which contain more unvaccinated people 
are much more vulnerable to the epidemic. From these snapshots it is obvious that clusters of unvaccinated 
individuals pose a problem because the epidemic can grow quickly through local infection events. 

t=O t=4.117 t = 11.104 

t = 18.626 t = 28.744 t = 55.530 

Figure 2: A sequence of images displaying the entire course of a stochastic simulation over time. The simulation 
consisted of 300 households, each with 300 individuals. Initial conditions were Uo = 0.5 and Q = 0.8, with 5 
randomly-selected households each having 20 infectious individuals. Parameter values were ¢ = 2, JL = 1, P = 0.6, 
and a = 0.05. Within each image, each column represents a household. Within a household, individuals (arranged 
from top to bottom) are: black = unvaccinated; dark gray = vaccinated; light gray = infectious; white = recovered. 
Note that the left-right order of the households has been sorted according to the number of vaccinated individuals 
initially present. At the end of the simulation, the number of resistant individuals who have been infected in a 
given household is inversely statistically related to the initial number vaccinated there. 
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4.2 Comparing Numerical Solutions and Stochastic Simulations 

Our next result in Figure 3 demonstrates the connection between the original deterministic model given by 
Equations (1-4) and the stochastic simulation of the system as a continuous-time Poisson process with the 
time between events being exponentially distributed. The numerical solution for the specified parameter values 
predicts a larger and faster epidemic, whereas the simulation realizes a smaller and slower epidemic. The final 
proportion of individuals in each class is the same in both the numerical solutions and the stochastic simulations. 
Clearly there are differences in the processes, but since they predict the same initial and final values, we will 
consider them equivalent for our purposes. 
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Figure 3: The above plots contain the resulting curves of both the numerical solution of the system of household 
equations and the corresponding stochastic simulations. The curves were obtained using 400 households, each with 
400 individuals. Initial conditions were Uo = 0.5 and Q = 0.8, with five randomly-selected households each having 
five infected individuals. The epidemic parameter values were a = 0.1, ¢ = 3, fJ = 1, and p = 0.5. Each subplot 
contains the curve of one of the state variables E[UJ,E[V],E[IJ, or E[R]. Each curve is the resulting average of twenty 
runs of the simulation or numerical solutions exclusively. Error bars were plotted showing ± one standard deviation 
of the runs. The differences between the simulations and the numerical solutions is most notable in their transitory 
behavior during the epidemic. The simulations lag the numerical solutions, but when the epidemic does die out, 
both systems' state variables reach the same final values. The reason for this time difference is believed to be due to 
spatial correlations seen in the stochastic simulation, which are absence in the numerical solution, but this was not 
investigated further because the beginning and final behavior of the system is currently the only thing of interest. 
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4.3 The Effects of Varying Q (Stochastic Simulations) 
In Figure 4, we can see the effect of changing the clustering for a single set of initial parameter values, as 
predicted by repeated simulation. Increasing clustering results in a non-trivial increase in the final size of the 
epidemic. Also, the results show that for moderate levels of clustering there is tremendous variability. This 
implies that the epidemic's outcome is sensitive to variations in the stochastic initial conditions within the 
middle range of Q values. 
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Figure 4: The final proportion of recovered individuals after the epidemic occurs as the amount of clustering is 
varied from its minimum value to its maximum value. The curve was generated from stochastic simulations using 
400 households, each with 400 individuals. Initial conditions were Uo = 0.2 with five randomly-selected households 
containing 5 infected individuals each. Parameters were ¢ = 3, /1- = 1, P = 0.5, and a = 0.1. The amount of 
clustering Q varied from 0.2 to 1.0, its minimum and maximum values. Each data point is the average of 40 
simulations and the errorbars show ± one standard deviation of the sampled simulations for each data point. It is 
clear that as clustering increases the final proportion of recovered increases, therefore clustering does cause larger 
epidemics. It should also be noticed that there is much more viability in the results for small values of Q, this is 
probably due to the increase in variability in the stochastic initial conditions for those small values of Q. 
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4.4 Stochastically Verifying First and Second-Generation Ro Equations 

Using a Monte Carlo simulation, we were able to repeatedly infect a susceptible population with a single 
infected individual and count the number of secondary and tertiary infections which that individual caused in 
his infectious lifetime. By sampling many populations, as displayed in Figure 5, we can see that averaging values 
over repeated simulations produces estimates of the first and second-generation Ro values that almost exactly 
match those predicted by Equations (16) and (21), respectively. 
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Figure 5: First and second generation Ro values were stochastically simulated in a system of 200 households, 
each with 200 individuals, as follows: a system of households was generated with initial proportion of unvaccinated 
individuals = 0.2, Q = 0.8, and epidemic parameters a=O.l, ¢ = 2, f.1, = 1, and p = 0.5. One individual was randomly 
selected and infected, and the number of secondary and tertiary infections caused by the infected individual was 
counted. All individuals were reset to susceptible, and this process was repeated an additional 999 times. The 
average number of secondary and tertiary infections was then computed for the 1000 individuals. This process of 
sampling was repeated for 100,000 randomly generated systems of households, and the histograms of the data are 
plotted above. For the first-generation Ro, the simulated mean was 1.2001 with variance of 0.0028; Equation (16) 
predicts a value of 1.2. For the second-generation Ro, our simulations produced a mean of 1.5484 with a variance 
of 0.0093, and deterministically, Equation (21) predicts a value of 1.5484. Thus, it is quite clear that the derivation 
of the first and second-generation Ro values from our system of household equations are the true expectation of an 
epidemic's Ro values averaged over all stochastic realizations. 
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4.5 Threshold Behavior for First and Second-Generation Ro 
Epidemic theory suggests that Ro is one of the most important values in assessing epidemic dynamics of a 
population. "In the stochastic model, the epidemic never takes off if Ro ::; 1 and it takes off with a non­
zero probability if Ro > I" [38]. However, the second-generation Ro is at least as important to consider in a 
household setting with clustering. To illustrate the importance of R~2), stochastic simulations were performed 
using predetermined parameter values such that: 

i) first-generation Ro < I, second-generation Ro < 1 

ii) first-generation Ro < I, second-generation Ro > 1 

iii) first-generation Ro > I, second-generation Ro > 1 

Working with Equations (16) and (21), it is obvious that there are many combinations of 4;1, f.1., p, (X, Uo, and 
Q that will result in first and second-generation Ro values in the above desired ranges. For this reason, the 
biologically-feasible parameter values in Table 1 were chosen. 

I ¢=2 I f.1.=1 I p=081 
ex = 0.1 Uo = 0.2 Q = 0·.8 

Table 1: Biologically feasible epidemic parameters used as a starting point in the investigation of threshold behavior. 

One parameter was then changed while the others were held constant to yield first and second-generation Ro 
in ranges i-iii above. The parameter values that were changed and the resulting first and second-generation Ro 
values from Equations (16) and (21) are given in Table 2. 

Parameter Changed New Value First-Cen Ro Second-Cen Ro 
¢ 2.00 0.72 0.7949 
¢ 2.51 0.9036 1.2521 
¢ 3.00 1.08 1.7885 

P 0.88 0.5920 0.6850 
p 0.66 0.9440 1.0793 

P 0.44 1.2960 1.7633 
Uo 0.15 0.64 0.6343 
Uo 0.30 .88 1.12 
Uo 0.45 1.12 1.6173 

Table 2: Changes made to Table 1 parameters values and the resulting first and second-generation Ro values used 
to investigate epidemic behavior near threshold parameter values. It should be clear that for each parameter, the 
first Ro values satisfy condition i, the second Ro values satisfy condition ii, and the third Ro values satisfy condition 
IlL 

For each of the above parameter values, 5000 full simulations were run in a system with nl = n2 = 200 and 
with 5 randomly-selected households each containing 5 randomly selected individuals. For each simulation, the 
proportion of the total population in the recovered class (Le. the proportion of people affected by the epidemic) 
was recorded. The resulting histograms of these simulations are given in Figures 6-8. For condition i, the 
systems behave as we would expect: most of the epidemics do not progress to a substantial size. Condition iii 
also behaves according to epidemic theory, with a majority of the epidemics increasing to a substantial size. The 
interesting behavior occurs for condition iij even though first-generation Ro is less than I, a majority of epidemics 
reach a fairly substantial size. These simulations reveal the importance of considering the second-generation Ro 
value in a system of households with clusters of unvaccinated individuals. 
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) = 1.2521 

Figure 6: The outcomes of 5000 full epidemic simulations in a system of 200 households with 200 individuals, 
with 5 randomly-selected households each containing 5 randomly-selected individuals. a) </;=2, J.L=1, p=0.8, a=O.l, 
Uo=0.2, Q=0.8. As predicted by epidemic theory, a majority of epidemics failed to grow substantially large. b) 
</;=2.51, J.L=1, p=0.8, a=O.l, Uo=0.2, Q=0.8. Even though first-generation Ro < 1, most of the epidemics grow 
substantially large. c) </;=3, J.L=1, p=0.8, a=O.l, Uo=0.2, Q=0.8. As predicted by epidemic theory, most epidemics 
grow quite large. 
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p=0.88, RbI) = 0.5920, Rb2
) = 0.6850 p=0.66, RbI) = 0.9440, Rb2
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Figure 7: The outcomes of 5000 full epidemic simulations in a system of 200 households with 200 individuals, with 
5 randomly-selected households each containing 5 randomly-selected individuals. a) </;=2, J.L=1, p=0.88, a=O.l, 
Uo=0.2, Q=0.8. As predicted by epidemic theory, a majority of epidemics failed to grow substantially large. b) 
</;=2, J.L=1, p=0.66, a=O.l, Uo=0.2, Q=0.8. Even though first-generation Ro < 1, a majority of the epidemics 
grow substantially large. c) </;=2, J.L=1, p=0.44, a=O.l, Uo=0.2, Q=0.8. As predicted by epidemic theory, most 
epidemics grow quite large. 
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Uo=.15, R~l) = 0.64, R~2) = 0.6343 Uo=.30, R~l) = 0.8800, R?;) = 1.12 Uo=.45, R~l) = 1.12, R~2) = 1.6173 

Figure 8: The outcomes of 5000 full epidemic simulations in a system of 200 households with 200 individuals, 
with 5 randomly-selected households each containing 5 randomly-selected individuals. a) ¢=2, JL=l, p=0.8, a=O.l, 
Uo=0.15, Q=0.8. As predicted by epidemic theory, a majority of epidemics failed to grow substantially large. b) 
¢=2, JL=l, p=0.8, a=O.l, Uo=0.30, Q=0.8. Even though first-generation Ro < 1, a majority of the epidemics 
grow substantially large. c) ¢=2, JL=l, p=0.8, a=O.l, Uo=0.45, Q=0.8. As predicted by epidemic theory, most 
epidemics grow quite large. 

4.6 Second-Generation Ro Sensitivity Analysis 

Given the expression for Rb2
) in Equation (21), it is instructive to verify that changing various epidemic pa­

rameters affects the second-generation Ro in the expected way. We do so by taking the partial derivative with 
respect to the epidemic parameters of interest and qualitatively analyzing the resulting behavior. 

8R(2) ( c/» 
8¢ = 2 fL2 ((pUo + (1 - p))2 + (1- a)Uo/(Q - Uo)) 2 0 

Since c/> is present only in the first term, Rb2) and c/> are positively correlated. So as infection rates increase, we 
would expect the average number of tertiary infections to increase. 

8R(2) (c/>2) 8~ =-2 fL3 {(pUo+(1-p))2+(1-a)Uop2(Q-Uo)} 

With the only fL term in the denominator, it is clear that increasing recovery rate will cause Rb2
) to decrease 

and vice versa. 

8R(2) (c/»2 ( c/»2 8~ = / P, Uo(Uo - Q) = - PfL Var(U) ::; 0 

For positive parameter values, this partial derivative is always negative for Q > Uo, which implies that a and 
Rb2

) are negatively correlated. If no clustering is present in the unvaccinated population, then V ar(U (0)) = 0 
(2) 8R(2) 

and a would not effect the value of Ro because ~ = o. 

8R(2) (c/»2 
8; = p, ( - 2p[Uo2 - 2Uo + 1 + UoQ(1- a) + aUo2] + 2Uo - 2) 

The only term involving p is negative, so as the vaccine becomes more effective, Rb2
) decreases. 
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8R(2) (if» 2 

8(l0 = p -;;, (2(1- p) + pQ(l- a) + pauo) 

This partial derivative is always non-negative, so Uo and R~2) are positively correlated. This makes sense, since 
we would expect the potential for epidemic to be greater in a population with a greater initial proportion of 
individuals unvaccinated. 

8R(2) (if» 2 
_0_ = _ (Uo/(l - a)) 
8Q J-l 

(22) 

This partial derivative is always non-negative, so clustering and R~2) are directly proportional. This finding 
agrees with the trend seen in Figure 4 and demonstrates analytically that increased clustering leads to greater 
second-generation Ro values, which in turn create larger and more probable epidemics. 

4.7 Numerically Solving the Moment Equations 
All attempts to numerically solve the system of moment equations failed. The exact reason why the system is 
so numerically unstable is not precisely known. An investigation of why the equations failed numerically was 
not undertaken because it is not necessary to answer our question about clustered unvaccinated individuals. 
We believe, however, that the first problem with the system is that when it is solved, some of the moments 
become negative and other moments become divergent, tending towards either positive or negative infinity. 
These degenerative behaviors, which are biologically unfeasible, are probably caused by the fact that at times, 
the higher order moments, being many orders of magnitude smaller than lower order moments, tend towards 
zero in such a way that our numerical method will overstep the moments' proper bounds. 

In previous work [42], drastic measures were taken to ensure that the system of moment equations could 
be numerically solved by reparameterizing the equations so that each of the moments were kept within their 
correct bounds on the interval [0,1]. However, this was not seen as worthwhile in order to answer our question 
about clustering. It would be interesting to continue working with the moment equations because they pose an 
interesting view of the system. If the moment equations could be made to be well-behaved, then they could be 
integral to understanding the dynamic of spatial correlation as they change through the course of an epidemic. 

5 Discussion 

We had hypothesized that groups of unvaccinated individuals within a contained geographic or social population 
could serve as a likely starting point for an outbreak and significantly affect epidemiological dynamics, even while 
the vaccination rate of the greater population remains constant. Our system of household equations describes 
a simplified system of such a partitioned population, and our model represents a simple generic epidemic. 

Taking our basic model of household equations, we developed a stochastic simulation for a more realistic 
representation of the theoretical epidemic under consideration. In Figure 3, we can see that the stochastic 
simulation and the numerical solution of the household equations vary in their transient behavior, but their 
initial and final states are equal to one another. Since our model is not fitted to specific data, we assume 
that the stochastic simulations are a more realistic interpretation of the epidemic because interactions between 
households and individuals occur as random events instead of as deterministic flows. Also, the simulations allow 
us to consider populations which are smaller than those that might be necessary to satisfy all of the assumptions 
required for a continuous differential equation model. 

Using the stochastic simulations, it was straightforward to simulate systems of households with identical 
epidemic parameters and initial vaccination coverage levels while varying the amount of clustering. As is shown 
in Figure 4, clustering does increase the size of the recovered class at the end of epidemic. An exhaustive search 
of the parameter space could have been carried out to understand the effect of clustering in all possible cases. 
Instead, a more general result came from reverting back to the household equations and analytically deriving 
both the first and second-generation Ro equations (Equations (16) and (21)). These two expressions are tools 
that allow us to measure the secondary and tertiary impact of a disease prescribed by a specific infection rate, 
recovery rate, vaccine efficacy, proportions of long-term and short-term interactions, and the level of clustering 
of unvaccinated individuals. 

The first step in exploring the importance of the first and second-generation Ro equations with respect to our 
system was to stochastically simulate both Ro values using a Monte Carlo method. We found that by taking a 
sufficiently large number of samples, our simulation's computed Ro values converged to the predicted Ro values 
that we get from Equations (16) and (21). Figure 5 clearly shows that the average of many realizations of the 
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A Derivations of Moment Equations 
The second-order moment equations given in Section 2.4 are derived as follows. 

:tE[UIj =E[:tUI] 

=E[IdU U dI ] 
dt + dt 

= - ¢(1 - a)E[I2Uj- ¢aE[IjE[U Ij + ¢(1 - a)(E[U2 I] + (1 - p)E[U IV]) 

+ ¢aE[I] (E[U2] + (1- p)E[UV]) - /LE[UI] 

!E[VI] =E[! VI] 

=E[I
dV 

V
dI

] dt + dt 
= - (1 - p)¢(1 - a)E[I2V] - ¢aE[I]E[V I] + ¢(1 - a)(E[U IV] + (1 - p)E[V2 I]) 

+ ¢aE[I](E[UV] + (1- p)E[V2]) - /LE[VI] 

!E[UV] =E[!UV] 

=E[U
dV 

V
dU

] dt + dt 
= - (1- p)¢(1- a)E[UIV]- ¢aE[I]E[UV]- ¢(1- a)E[UIV]- ¢aE[I]E[UV] 

~E[U2] =2E[U
dU

] 
dt dt 

=2E[-¢(1 - a)IUU - ¢aE[I]UU] 

= - ¢(1 - a)E[U2 I] - ¢aE[I]E[U2] 

~E[V2] =2E[VdV] 
dt dt 

= - 2(1 - p)¢ ((1 - a)E[V2 I] + aE[I]E[V2J) 
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B Derivations of Moment Closure Approximations 
The moment-closure approximations given in Section 2.4 are below, and the following conventions are used: 
E[XYZ] is the expectation of choosing three individuals from one household, one being of type X, one of type 
Y, and one of type Z. In the probabilities, each * is a place holder and denotes choosing either an Unvaccinated 
individual (U), a vaccinated individual (V), or an infected individual (I) without preference. In this way, for 
example, P( * * VIIU *) reads as "the probability you choose a V from a particular household given that you 
have already selected one I and one V from that same household". In each approximation we can assume that 
P(X **1 * Y Z) ~ P(X **1 * Y *) since there is little difference between the probability of choosing an X individual 
given a Y and a Z individual from the same household and the probability of choosing an X individual given a Y 
individual and another unspecified indivdual from the same household. To make this assumption, we must first 
assume two proportions to be independent for each distinct approximations. These proportional assumptions 
can be seen below with their corresponding approximations. 

E[IUV] =P(IUV) = P(IU*)P(* * VIIU*) 

~P(IU*)P(* * VI * U*) 
P(IU)P(UV) E[IU]E[UV] 

~ P(U) = E[U] 

E[U2 I] =P(UUI) ~ P(UU*)P(* * II * U*) 
~ P(UU)P(IU) _ E[UU]E[IU] 
~ P(U) - E[U] 

E[I2V] =P(IIV) ~ P(I * V)P(*I * I * *V) 

~P(IV)P(IV) _ E[IV]2 
~ P(V) - E[V] 

E[V2 I] =P(VV 1) ~ P( * V 1)P(V * *1 * *1) 
~P(V1)P(IV) _ p(V1)2 E[VI]2 
~ P(I) - P(1) E[I] 

E[I2U] =P(IIU) ~ P(I * U)P(*I * I * *U) 

~P(IU)P(IU) _ E[IU]2 
~ P(U) - E[U] 

It is assumed that that I and V are independent. 

It is assumed that I and U are independent. 

It is assumed that I and I are independent. 

It is assumed that V and V are independent. 

It is assumed that I and I are independent. 
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