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Abstract

Five serotypes of Dengue (DENV1-DENV5), a vector-borne disease transmitted by
two species of mosquitoes, Aedes aegypti and Aedes albopictus, are prevalent in various
tropical and subtropical regions of the world, posing a serious health threat to humans.
Dengue is no longer restricted to tropical regions due to increasing levels of mobility
via travel, migration, or displacement due to con�ict. We use a system of nonlinear or-
dinary di�erential equations to explore the e�ects of rural/urban movement on Dengue
transmission dynamics. The model incorporates movement between rural and urban
regions. The population of hosts is subdivided into susceptible, exposed, infectious,
and recovered classes. Vectors, assumed to remain in a single region, are divided into
rural (Ae. albopictus) and urban (Ae. aegypti) populations. The vector populations
are subdivided into susceptible, exposed, and infectious classes. We compute the basic
reproductive number (R0) for the system with and without movement and use this
key dimensionless parameter to study the e�ects of rural/urban host movement on
Dengue dynamics.
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1 Introduction

Dengue fever is a mosquito-borne viral infection that is endemic in tropical regions world-
wide and may be periodically epidemic in subtropical or temperate regions [11]. It occurs
in over 100 countries, putting over 2.5 billion people at risk of infection, though it is most
common in Central America and Southeast Asia [3, 5]. Classical Dengue Fever (CDF),
the most common form of the disease, usually occurs in people over 15 years of age [13].
Its symptoms can include fever, headache, nausea, and vomiting with a duration of 3-7
days [13]. CDF is usually mild or even asymptomatic [24].

The more severe case, Dengue Hemorrhagic Fever (DHF), usually occurs in children
under 15 years of age (though it may be observed in adults). DHF is associated with
Dengue Shock Syndrome (DSS), and can lead to circulatory failure and death [13,24]. The
factors that cause Dengue patients to contract DHF and DSS are not fully understood;
however, current hypotheses suggest that this more severe form occurs in patients who
have previously recovered from a di�erent serotype of Dengue [11]. DHF and DSS tend to
a�ect two categories of Dengue patients: those who are experiencing a secondary infection
and infants whose mothers were previously infected by Dengue [13].

It is estimated that 50-100 million people contract Dengue yearly, while 250,000-500,000
people su�er from DHF [29]. There are approximately 22,000 deaths annually, mostly
among young children [3].

Dengue is caused by �ve antigenically distinguishable serotypes (DENV1 - DENV5) of
the genus Flavivirus [3,16,24]. Once an individual has been infected by one serotype, they
are permanently immune to that serotype but only temporarily immune to the others [13].
The �fth serotype was very recently discovered, and is the only new serotype found in the
last �fty years. Its discovery has made e�orts to control and vaccinate for Dengue even
more di�cult [22].

There is not yet any speci�c treatment or e�ective vaccine for Dengue, though in some
cases, �uid replacement therapy may be used [3, 16]. Several candidates for a Dengue
vaccine have been clinically tested, but no vaccine has yet been applied on a broad scale
[9, 29]. It is speculated that no vaccine could completely protect against all serotypes
of the disease [16]. Currently, the main focus is on prevention by controlling mosquito
populations and breeding sites [3].

DENV is transmitted by two species of mosquitoes: Aedes aegypti and Aedes albopictus.
Ae. aegypti is the principal vector of Dengue viruses and has adapted to live closely with
humans. This has made Ae. aegypti one of the most e�cient mosquitoes for transmitting
arboviruses, as they feed primarily on humans for blood meals, mostly during the day or
in shaded areas at night [23]. These mosquitoes are highly resilient in both the adult and
juvenile stages; their eggs can survive without water for up to six months [15]. They are
common in urban areas, where they live close to houses and use water-holding containers,
preferably in dark colors, for their reproduction. Their bite is often painless and they move
quickly, though they do not �y very far [32].

Ae. albopictus, also called the Asian Tiger mosquito, is even more dangerous to humans
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and domesticated animals. In addition to feeding on humans for blood meals, it will also
feed on dogs, cats, squirrels, and deer. They are very aggressive all day long and have a
rapid bite [32]. They prefer to use natural locations, such as plants, to lay their eggs [30].
They transmit not only the Dengue virus, but other vector-borne diseases such as West
Nile, Eastern equine encephalitis, and Japanese encephalitis viruses as well [14, 30].

Demographics, social change, infrastructure, and other factors related to urbanization
contribute to the spread of dengue to new populations of mosquitoes [27]. Dengue emerges
in tropical and subtropical areas as they are urbanized [31]. The extreme population growth
that accompanies urbanization causes overcrowding, poor sanitation, and an increased need
for water storage. This environment encourages the breeding of Ae. aegypti (which thrive
in urban areas). Thus, the potential of DENV to spread from city to city via human
displacement is increased [12,31]. These factors have contributed to the rapid evolution of
DENV, causing a serious public health problem [19].

2 Mathematical model

We explore the dynamics of Dengue fever among humans and female mosquitoes of the
species Ae. aegypti and Ae. albopictus. The model is divided into rural and urban pop-
ulations, between which only host movement can occur. These populations are further
subdivided into susceptible, exposed, infectious, and recovered classes. The system is com-
partmentally symmetric, so the principles and patterns for the rural population also apply
to the urban population, and vice versa. However, there are di�erences between some
parameter values due to the di�erent species of vectors, which, although they transmit the
same disease, have di�erent capabilities.

Table 1: State variables
State Variable Description

SHR Population of susceptible hosts in a rural area

EHR Population of exposed hosts in a rural area

IHR Population of infectious hosts in a rural area

RHR Population of recovered hosts in a rural area

SHU Population of susceptible hosts in an urban area

EHU Population of exposed hosts in an urban area

IHU Population of infectious hosts in an urban area

RHU Population of recovered hosts in an urban area

SV R Population of susceptible vectors in a rural area

EV R Population of exposed vectors in a rural area

IV R Population of infectious vectors in a rural area

SV U Population of susceptible vectors in an urban area

EV U Population of exposed vectors in an urban area

IV U Population of infectious vectors in an urban area
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Figure 1: Transmission dynamics for rural (R) and urban (U) host populations.

The total host (H) population, NH , is constant, while the host subpopulations, NHR

and NHU , are not constant when movement occurs. The vector (V ) subpopulations, NV R

and NV U , are constant. We assume that vectors do not move between populations, due to
their limited �ight range.

The susceptible classes, SHR and SHU , are increased by a constant birth rate µHNH

and a factor of movement fR(I ,N )SHR or fU (I ,N )SHU . This class is decreased by
individuals who die of natural causes or move away, and individuals who become exposed
at the constant rates βR and βU , which describe the transmission rates of DENV from the
proportion of infectious vectors ( IV RNV R

and IV U
NV U

) to susceptible hosts.
Once a susceptible host is bitten by an infectious vector, they may become exposed to

Dengue. The rates of transmission of Dengue from infectious vectors to susceptible hosts
di�er between rural and urban areas because the Ae. albopictus, which is found in rural
areas, and Ae. aegypti, which is found in urban areas, have di�erent biological properties
that a�ect the overall rate of Dengue transmission. The exposed classes, EHR and EHU ,
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consist of individuals who are in the latency period as a result of DENV infection. Indi-
viduals in these classes cannot infect susceptible vectors. Research suggests that latency
periods last between three to �ve days [21]. While in the exposed classes, individuals are
asymptomatic and are not aware that they have the virus, so they are assumed to move
as if they were uninfected. The exiting rate α is de�ned as the rate at which individuals
complete the incubation period, become infectious, and begin to experience symptoms.

Individuals in the infectious classes, IHR and IHU , can transmit the disease to suscep-
tible vectors. Once an individual progresses to the infectious class, their rate of movement
may be a�ected by the symptoms they experience, so the movement rates, γR(I ,N ) and
γU (I ,N ), is proportional to the movement rates of the uninfectious classes. We assume
that some proportion p ∈ [0, 1], of the infectious individuals remain mobile enough to move
normally, while (1− p) are too ill to move as they ordinarily would. The infectious period
of Dengue fever lasts an average of six days before individuals enter the recovered classes,
RHR and RHU , at the recovery rate δ [10].

The recovered classes consist of individuals who are permanently immune to the par-
ticular serotype of Dengue. Since they can neither infect nor be infected by vectors, the
rural/urban movement between these classes is omitted from the model for the sake of
simplicity.

Figure 2: Transmission dynamics for rural and urban vector populations.

The vector's subpopulations are compartmentally symmetric, as patterns and ideas
hold true for both the urban and rural species, though the experimentally determined
values of these parameters di�er between the species. µV R and µV U are the rates at which
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vectors mature into adults, become susceptible to DENV, and enter the classes SV R and
SV U , respectively. The rates of entry into the exposed classes, EV R and EV U , are φR and
φU , respectively. These are the transmission rates as a susceptible vector bites an infectious
host, so this rate also depends on the proportion of infectious hosts ( IHRNHR

and IHU
NHU

). We
assume that only the proportion p of infectious hosts who are mobile are available to be
bitten by the vectors. That is, the proportion (1 − p) of infectious hosts who are too ill
to be mobile will be isolated, bedridden, or hospitalized, and vectors will be unable to
bite them. After the blood meal from an infectious host is consumed, the vector enters a
latency stage, in which they are exposed to DENV but cannot transmit the disease. The
exposed classes are decreased by natural death and progression (at rates θR and θU ) to the
infectious classes, IV R and IV U . Extrinsic incubation lasts ten days, on average, before the
vector becomes infectious. Since the vector's lifespan is approximately two to three weeks,
it is important to consider the exposed class because some mosquitoes will die before they
can progress to the infectious class. Due to their relatively short lifespan, vectors remain
infectious for life and never recover.

The system of nonlinear ordinary di�erential equations for our model is given by

S′HR = µHNHR − βR
IV R
NV R

SHR − fR(I ,N )SHR + fU (I ,N )SHU − µHSHR,

E′HR = βR
IV R
NV R

SHR − αEHR − fR(I ,N )EHR + fU (I ,N )EHU − µHEHR,

I ′HR = αEHR − δIHR − γR(I ,N )IHR + γU (I ,N )IHU − µHIHR,
R′HR = δIHR − µHRHR,

S′HU = µHNHU − βU
IV U
NV U

SHU + fR(I ,N )SHR − fU (I ,N )SHU − µHSHU ,

E′HU = βU
IV U
NV U

SHU − αEHU + fR(I ,N )EHR − fU (I ,N )EHU − µHEHU ,

I ′HU = αEHU − δIHU + γR(I ,N )IHR − γU (I ,N )IHU − µHIHU , (1)

R′HU = δIHU − µHRHU ,
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S′V R = µV RNV R − φRp
IHR
NHR

SV R − µV RSV R, (2)

E′V R = φRp
IHR
NHR

SV R − θREV R − µV REV R,

I ′V R = θREV R − µV RIV R,

S′V U = µV UNV U − φUp
IHU
NHU

SV U − µV USV U ,

E′V U = φUp
IHU
NHU

SV U − θUEV U − µV UEV U ,

I ′V U = θUEV U − µV UIV U ,
where

NHR = SHR + EHR + IHR +RHR, (3)

NHU = SHU + EHU + IHU +RHU ,

NV R = SV R + EV R + IV R,

NV U = SV U + EV U + IV U .

With this model, our main goal is to analyze the e�ect of human movement on the
transmission dynamics of Dengue. For the sake of comparison, we �rst analyze the system
for a case in which there is no movement between the rural and urban areas.

In this case, we analyze the complete system as two independent systems where the
rural population is a�ected by Ae. albopictus and the urban population is a�ected by Ae.

aegypti. These particular vectors are selected for these areas because they are observed to
prefer those respective habitats. Since these two models are compartmentally symmetric,
we �rst analyze the zero-movement model as consisting of only one host population and
one vector population, each with a constant population.

In the second case we consider constant movement. In this model, we consider di�erent
scenarios for the rural and urban populations due to the fact that the species of vectors
that are native to each area have di�erent qualities. We assume that the urban and rural
host populations are not constant (due to movement between them), but that the total
host population is constant. We de�ne movement rates as a constant that designates the
base rate of movement. In this case, the movement rates between the susceptible classes
are equal to the movement rates between the exposed classes, since an exposed individual
is asymptomiatic and will not show a change in behavior. However, the movement rates
between the infectious classes are a reduced rate. We assume that some proportion (1− p)
of the infectious population is too ill to move normally, and so they are removed from the
movement rates. We assume that the same constant p applies in both the rural and urban
populations, as the severity of illness will not change with respect to location.

The �nal case introduces non-constant functions to describe the movement rates. These
functions are de�ned as fR(I ,N ) and fU (I ,N ), where fR is the rate of rural to ur-
ban movement, fU is the rate of urban to rural movement, I = (IHR, IHU ), and N =
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(NHR, NHU ). We consider the change in movement rate to depend on the relative propor-
tions of infectious populations. We assume that when there are no infectious hosts, the
movement rates are equal to the constant movement rates CR and CU , while the presence
of infectious individuals will modify these base rates. We assume that when there is an
increased proportion of infectious hosts in the rural area, movement towards the rural area
is less likely and movement away from the rural area is more likely; the equivalent is true
for an increased proportion of infectious hosts in the urban area. We analyze functions
that modify the base movement rates and describe the rates in terms of the proportions
of infectious hosts to the total population in each area. We use this proportion, rather
than the raw number of infectious individuals, because the rural and urban populations
are likely to be very di�erent in total size.

3 Descriptions and Values for Variables and Parameters

The following parameter values are based on experimental data from previous research
where referenced.

Table 2: Parameters
Parameter Description Units

µH Host natural mortality rate Time−1

µV R Vector mortality rate in rural areas Time−1

µV U Vector mortality rate in urban areas Time−1

βR Transmission rate for rural hosts Time−1

βU Transmission rate for urban hosts Time−1

φR Transmission rate for rural vectors Time−1

φU Transmission rate for urban vectors Time−1

α Rate of advancement from exposed to infectious hosts Time−1

θR Rate of advancement from rural exposed to infectious vectors Time−1

θU Rate of advancement from urban exposed to infectious vectors Time−1

δ Host recovery rate Time−1

CR Rate of rural → urban movement in disease-free case Time−1

CU Rate of urban → rural movement in disease-free case Time−1

p Proportion of infectious hosts that are mobile Dimensionless
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Table 3: Parameter values
Parameter Mean Minimum Maximum Reference

µH
1/75∗365 days [7]

µV R 1/21 1/42 1/14 [2, 6, 20]

µV U 1/14 1/42 1/8 [8, 18, 26]

α 1/5 1/7 1/4 [17, 25]

θR 1/10 1/14 1/7 [2]

θU 1/10 1/14 1/7 [4, 17]

δ 1/6 1/12 1/4 [1, 10]

p 0.9 0 1

CR 0.42 0 1

CU 0.24 0 1

4 Mathematical Analysis

4.1 Zero Movement

4.1.1 System Equations

In the �rst and most simple case, we examine the system without movement, that is, where

fR(I ,N ) = fU (I ,N ) = 0.

No movement between rural and urban populations implies the existence of two inde-
pendent compartmentally symmetric systems. This allows us to analyze a model for the
transmission of Dengue in a single area and with a particular kind of mosquito.

We denote by NH and NV the total host and vector population sizes, respectively, with
NH = SH + EH + IH + RH and NV = SV + EV + IV . We assume constant sizes for NH
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and NV . The model for the single-patch model is given by

S′H = µHNH − β
IV
NV

SH − µHSH (4)

E′H = β
IV
NV

SH − αEH − µHEH

I ′H = αEH − δIH − µHIH
R′H = δIH − µHRH

S′V = µVNV − φp
IH
NH

SV − µV SV

E′V = φp
IH
NH

SV − θEV − µVEV

I ′V = θEV − µV IV ,

where
NH = SH + EH + IH +RH and NV = SV + EV + IV .

4.1.2 Variables and Parameters

Since the systems with zero movement are compartmentally symmetric, they use the pa-
rameters for a single system regardless of rural or urban location. All the parameters in
this system are nonnegative and they allow that if the initial values

(SH(0), EH(0), IH(0), RH(0), SV (0), EV (0), IV (0)) ∈ R7
+

then the solutions remain in this region for t ≥ 0.

4.1.3 Equilibria and Stability

We use the next generation operator method to calculate the basic reproductive number
for the case in which there is no movement. By calculating the spectral radius FV −1

using the methods outlined by van der Drische and Watmough [28], the basic reproductive
number is given by

R̃0 = ρ(FV −1) =

√
β

δ + µH
· φp
µV
· θ

µV + θ
· α

α+ µH
.

The �rst term, β
δ+µH

, is the probability of transmission when a vector bites a susceptible

host. Secondly, φpµV is the transmission rate to the infectious vector class when a susceptible

vector bites an infectious host. θ
µV +θ denotes the probability that an exposed vector will
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survive the extrinsic incubation period and become infectious. Lastly, α
α+µH

expresses the
probability that an exposed host survives the incubation period and becomes infectious.

Proposition 4.1. System 4 has a disease free equilibrium, DFE = (NH , 0, 0, 0, NV , 0, 0).
If R̃0 > 1, there is a unique endemic equilibrium END = (S∗H , E

∗
H , I

∗
H , R

∗
H , S

∗
V , E

∗
V , I

∗
V ) in

R7
+.

Proof. From the �rst seven equations, the equilibrium points satisfy the following condi-
tions:

SH =
NHNV µH

NV µH + I∗V β
, (5)

EH =
NHβµH

(α+ µH)(NV µH + βI∗V )
I∗V ,

IH =
α

α+ µH
· β

δ + µH
· NH

NV µH + βI∗V
I∗V ,

RH =
α

α+ µH
· β

δ + µH
· δNH

NV µH + βI∗V
I∗V ,

SV =
µVNV

µV + α
α+µH

· β
δ+µH

· φpµH
NV µH+βI∗V

I∗V
,

EV =
NV αβµHµV φp

(θ + µV )((α+ µH)(δ + µH)(NV µH + βI∗V )µV + αβµHφpI∗V )
I∗V .

From the last equation of the system, the equilibrium points satisfy

(NV µHµV (µHµV (δ + µH)(θ + µV ) + α(µV (θ + µV )(δ + µH)− βθφp)) IV
+ (βµV (θ + µV )(µHµV (δ + µH) + α(µV (δ + µH) + µHφp))) I

2
V = 0. (6)

From 6, if I∗V = 0, then I∗H = 0. Substituting these values in (5) proves that DFE exists.
For the endemic case, suppose now that I∗V 6= 0. Then 6 has a positive solution

I∗V =
NV µH (βφpθα− (δ + µH)µV (θ + µV )(α+ µH))

β(δ + µH)µV (θ + µV )(alpha+ µH) + µH(theta+ µV )βφpα
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if R̃0 > 1. Thus, the END exists only if R̃2
0 > 1 and is given by

S∗H =
NH

R̃2
0

(
β + µHR̃

2
0(1 +

µV
θ )

β + µH(1 +
µV
θ )

)
,

E∗H = (R̃2
0 − 1) · NH

R̃2
0

· µH
α+ µH

· β

β + µH(1 +
µV
θ )

,

I∗H = (R̃2
0 − 1)

NH

R̃2
0

· α

α+ µH
· β

δ + µH

(
µH

β + µH(1 +
µV
θ )

)
,

R∗H = (R̃2
0 − 1)

NH

R̃2
0

· α

α+ µH
· β

δ + µH

(
δ

β + µH(1 +
µV
θ )

)
,

S∗V =
β + µH(1 +

µV
θ )

β + µHR̃2
0(1 +

µV
θ )

,

E∗V = (R̃2
0 − 1)

µV
θ
· NV µH

β + µHR̃2
0(1 +

µV
θ )

,

I∗V = (R̃2
0 − 1)

NHµH

β + µHR̃2
0(1 +

µV
θ )

.

Theorem 4.2. The disease free equilibrium DFE is locally asymptotically stable in R7
+

when R̃0 < 1, and unstable if R̃0 > 1.

Proof. The local stability of DFE is determined by the Jacobian matrix of the system.
The Jacobian matrix of (4) is

JDFE =



µH 0 0 0 0 0 0
0 −α− µH α 0 0 0 0

0 0 −δ − µH δ −NV pφ
NH

NV pφ
NH

0

0 0 0 −µH 0 0 0
0 0 0 0 −µV 0 0
0 0 0 0 0 −θ − µV θ

−NHβ
NV

NHβ
NV

0 0 0 0 −µV


,

in which case the eigenvalues are given by

−µH ,−µV ,−µH ,

together with the solutions to the polynomial

(λ+ α+ µH)(λ+ δ + µH)(λ+ µV )(λ+ θ + µV )− pαβθφ = 0. (7)
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Rearranging equation (7), we obtain

R̃2
0 =

(
λ+ δ + µH
δ + µH

)(
λ+ µV
µV

)(
λ+ θ + µV
θ + µV

)(
λ+ α+ µH
α+ µH

)
=

(
λ

δ + µH
+ 1

)(
λ

µV
+ 1

)(
λ

θ + µV
+ 1

)(
λ

α+ µH
+ 1

)
.

From this equation, we notice that if the roots of (7) have nonnegative real parts, then
every term in R̃2

0 ≥ 1 is greater than or equal to 1, which implies that R̃2
0 ≥ 1. This

implies, R̃2
0 ≥ 1⇒ R̃0 ≥ 1. Thus, if R̃2

0 < 1, the roots of equation (7) must have negative
real parts. Hence, we have local stability at the DFE.

Theorem 4.3. The endemic equilibrium is locally stable in R7
+ when R̃0 > 1.

Proof. The Jacobian matrix associated with this equilibrium is

JEND =



− R̃0µHω
ψ

(R̃0−1)βθµH
ψ 0 0 0 0 0

0 −α− µH α 0 0 0 0

0 0 −δ − µH δ −NV pωφ
NH(ψ)

NV pωφ
NHψ

0

0 0 0 −µH 0 0 0
0 0 0 0 −µV − ε

ϕω
ε
ϕω 0

0 0 0 0 0 −θ − µV θ

− NHβψ

NV R̃0ω

NHβψ

NV R̃0ω
0 0 0 0 −µV


,

where

ω = βθ + µH(θ + µV ),

ψ = βθ + R̃2
0µH(θ + µV ),

ϕ = R̃2
0(α+ µH)(δ + µH),

ε = (R̃2
0 − 1)α β θ φ p µH ,

with eigenvalues given by −µH ,−µV , and eigenvalues for which the real part is negative if
R̃0 > 1.

The model exhibits a forward bifurcation. The stable endemic equilibrium exists only
when R̃0 > 1.

4.2 Movement cases

We now consider the change in movement rates, which depend on the relative proportions
of infectious populations. We assume that an increasing proportion of infectious hosts in a
rural area will make movement towards the rural area less likely and movement away from
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Figure 3: Bifurcation with parameters µH = 0.0000365297, µV = 0.047619, φ = 0.33,
α = 0.25, θ = 0.1, δ = 0.166667, p = 0.9, and varied β.

the rural area more likely; the same is true for the urban area. It is important to note
that we are considering the proportions of infectious populations, not the raw amount of
infectious individuals, as the rural and urban populations are likely to be very di�erent in
total size.

fR(I ,N ) = CR

(
1−

(
IHU
NHU

− IHR
NHR

))
fU (I ,N ) = CU

(
1−

(
IHR
NHR

− IHU
NHU

))
At the DFE, this function models movement at the constant rates CR and CU . When
the infectious class exists, the movement is modeled as a threatening factor. In other
words, movement is altered by an individual's perception of the infectious proportions of
the populations (assuming an accurate perception). Using the next generation operator
method, which implies stability at the DFE, we calculate R0.

R0 =
1

2

(
R̃2

0R
+ R̃2

0U

)
+

√
1
4

(
CU+α+µH

CR+CU+α+µH
R̃2

0R
− CR+α+µH

CR+CU+α+µH
R̃2

0U

)2
+
(
CRR̃2

0R

)(
CU R̃2

0U

)
.

We are able to rewrite R0 in terms of R̃0R and R̃0U . This helps when trying to recognize
the e�ect of adding movement to the system. The �rst term,

1

2
(R̃2

0R
+ R̃2

0U
),
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is the weighted average of the contribution of the two independent systems where there is
no movement.

1
4

( CU+α+µH
CR+CU+α+µH

R̃2
0R
− CR+α+µH

CR+CU+α+µH
R̃2

0U

)2
demonstrates the proportions of subpopulations that are moving. Lastly,(

CRR̃
2
0R

)(
CU R̃

2
0U

)
is the interaction of moving population.

5 Numerical Simulations

5.1 Deterministic model

In this part, several simulations are done on the deterministic model to show the role
of movement between subdivided populations is introduced as a constant or a function
dependent on the infectious proportion of the population. The section is organized as
follows. The simulations done for the case without movement are illustrated �rst. Then,
we include a constant rate of movement. Finally, simulations are presented for the case in
which movement is determined by a function. We show the population dynamics presented
for the rural and urban areas when R2

0 < 1 and when R2
0 > 1 for each case.

5.1.1 Case without movement

In this section, we discuss the meaning of a numerical simulation of the system when no
movement occurs between the urban and rural populations. The systems are compartmen-
tally symmetric (disregarding the numerical transmission rates) and are independent of
one another. The dynamics of rural hosts and vectors are examined and later compared to
the urban hosts and vectors. This interpretation will contribute to the conclusions drawn
about the e�ects of rural/urban movement on DENV transmission dynamics.

15



Rural Host and Vector with R̃2
0 < 1

Figure 4: Infectious and exposed rural hosts
where R̃2

0 < 1 and φ = .03
Figure 5: Infectious and exposed rural vectors
where R̃2

0 < 1 and φ = .03

When R̃2
0 < 1, the exposed and infectious classes of both hosts and vectors approach 0.

The simulation begins with one infectious host in an otherwise completely susceptible pop-
ulation at 0 days. As time progresses, the infectious and exposed populations for hosts
approach the DFE. Simultaneously, the vector class, which begins with 0 infectious vec-
tors, initially increases but, as time progresses, also approaches the DFE. This illustrates
the local stability of the DFE.
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Rural Host and Vector with R̃2
0 > 1

Figure 6: Top Left: Time interval (0, 365) of infectious and exposed in rural for R̃2
0 > 1 for

host. Top Right: Time interval (50,000, 70,000) of infectious and exposed in rural for R̃2
0 > 1 for

host. Bottom Left: Time interval (0, 365) of infectious and exposed in rural for R̃2
0 > 1 for vector.

Bottom Right: Time interval (50,000, 70,000) of infectious and exposed in rural for R̃2
0 > 1 for

vector.

When R̃2
0 > 1, the system reaches an epidemic relatively quickly. The di�erences in the

time and magnitude of the exposed and infectious classes are a result of transmission and
survival rates, since they are species speci�c. In the left side of the Figure 6 does not
clearly demonstrate the e�ect of R2

0 > 1, but the right side is a modi�ed version for time
at 50, 000− 70, 000 days. It shows the smaller outbreaks and how, as time progresses, the
magnitudes of the outbreaks decrease. The simulation continues until the exposed and
infectious hosts reach an endemic equilibrium. Also, Figure 6 demonstrate the incidences
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of DENV as time progresses in a rural population where R̃2
0 < 1, as time progresses, the

disease continues to exist with the magnitudes of the subsequent epidemics decreasing over
time. For this scenario, the transmission rates for rural susceptible hosts and vectors, βR
and φR, are both set equal to 0.33. While the transmission rates for the susceptible urban
host and vector, βU and φU , are both set equal to 0.31. All other parameters are speci�c
to the host and vector species.

Urban Host and Vector with R̃2
0 < 1

Figure 7: Time interval (0, 200) representation
of infectious and exposed host class in the urban
for R̃0 < 1

Figure 8: Time interval (0, 200) representation
of infectious and exposed vector class in urban for
R̃0 < 1

It can be seen in Figure 7 that the urban population of exposed and infectious hosts
when R̃2

0 < 1 approaches the DFE. This follows the proof from the analytic analysis in the

previous section when we show that the DFE is locally asymptotically stable when R̃0 < 1.
The e�ective transmission rate β used is 0.03 for this scenario. The urban population of
the vector when R̃2

0 < 1 approaches the DFE as well while the exposed class and infectious
class have di�erent timing and magnitudes for the epidemic.
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Urban Host and Vector with R̃2
0 > 1

Figure 9: Top Left: Time interval (0, 365) of infectious and exposed in Urban for R̃2
0 > 1 for host.

Top Right: Time interval (50,000, 70,000) of infectious and exposed in Urban for R̃2
0 > 1 for host.

Bottom Left: Time interval (0, 365) of infectious and exposed in Urban for R̃2
0 > 1 for vector.

Bottom Right: Time interval (50,000, 70,000) of infectious and exposed in Urban for R̃2
0 > 1 for

vector

5.1.2 Case with constant movement

We consider the case when we have constant movement between the population. Also, we
assume that these constant do not change in the course of the epidemic. Numerical results
show that when R0 < 1, the host and vector do not move through the system and remain
susceptible. As in the urban area, the rural area also reaches a disease free equilibrium.
Since DENV dies out, the system reaches a disease free equilibrium for this serotype, this
is, the infectious and exposed states decrease and eventually go to zero.

In the rural area, the disease follows a similar pattern to that of the urban area. Over
time, the disease reaches an endemic equilibrium for both the host and the vector. The
number of individuals in the exposed and infectious classes decrease over time, and a�ect
the rural area to smaller degree.

When R0 > 1, the system eventually reaches an endemic equilibrium. The numerical
simulations show future outbreaks, though they are smaller and occur with decreasing
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magnitude over time. Similarly with hosts, when R0 > 1, the system reaches an endemic
state. The di�erences in the time and magnitude of the exposed and infectious classes are
a result of transmission and survival rates. Due to their short lifespan, as compared with
that of a host, the vector moves through the system much more quickly. Again, as time
approaches in�nity, future outbreaks will lessen in both frequency and intensity.
In the rural area, the disease follows a similar pattern to that of the urban area. Over
time, the disease reaches an endemic equilibrium for both the host and the vector. The
number of individuals in the exposed and infectious classes decrease over time, and a�ect
the rural area to smaller degree.

5.1.3 Case with function dependent movement

In this section, we show numerical simulations of the system with a change in the movement
rates. The movement between the populations is analyzed with respect the proportion of
the respective population. The dynamics between rural and urban population are com-
pared. We consider the movement functions de�ned by

fR(I,N) = CR

(
1−

(
IHU
NHU

− IHR
NHR

))
and

fU (I,N) = CU

(
1−

(
IHR
NHR

− IHU
NHU

))
.

Rural Host and Vector with R2
0 < 1

Figure 10: Time interval (0, 200) representation of infectious and exposed vectors in rural for
R0 < 1, φR = φU = .03 and βR = βU = .09
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If R0 < 1, the disease transmission reach 0 cases for host and vector population in the
infectious and exposed states. The susceptible states (host and vector) reaches the total of
population while the other cases go to 0, this is, we have stability in the DFE. We show
two simulations with R0 < 1, in two of them the DFE is reached relatively quickly.

Rural Host and Vector with R0 > 1

Figure 11: Top Left: Time interval (0, 365) of infectious and exposed in rural for R0 > 1 for
host. Top Right: Time interval (50,000, 90,000) of infectious and exposed in rural for R0 > 1 for
host. Bottom Left: Time interval (0, 365) of infectious and exposed in rural for R0 > 1 for vector.
Bottom Right: Time interval (50,000, 90,000) of Infectious and exposed in rural for R0 > 1 for
vector

When R0 > 1 the epidemic is presented in a short period of time although the infectious
does not reach the zero value in rural nor urban population, this is a consequence of
transmission and survival rates in the vector. In both cases, the transmission rate for host
and vector are equal in the each area, βR = φR = .33 and βU = φU = .31. We assume
in this case a greater transmission rate for the rural population, which is a�ected by the
Ae. aegypti. The di�erent magnitudes and initial times are exposed in order to show the
convergence of infectious and exposed states to the endemic equilibrium. In the right side
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of the Figure 5.1.3 we show extension extensions in time of of the left side, in these plots
we observe a oscillated convergence to the endemic point where the amplitude decrease
when t→∞. Also, we note that the convergence in the rural vector is faster that the host
population, this is result of the survival rates.

Urban Host and Vector with R0 < 1

Figure 12: Time interval (0, 365) representation
of infectious and exposed host class in the Urban
for R0 < 1

Figure 13: Time interval (0, 365) representation
of infectious and exposed vector class in the Ur-
ban for R0 < 1

In the �gures above the urban populations (host and vector) are shown. Infectious and
exposed states reach the disease free equilibrium ast → ∞, which is stable for R0 < 1.
The transmission rate βR, βU , φR and φU change in each case, using βR = φR = .09 and
βR = φR = .15 in the �rst graph, and βR = φR = .09 and βR = φR = .15 in the second
one. We also show two di�erent time scales in order to analyzed the convergence time with
respect to transmission rates.
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Urban Host and Vector with R0 > 1

Figure 14: Top Left: Time interval (0, 365) of infectious and exposed in Urban for R0 > 1 for
host. Top Right: Time interval (40,000, 60,000) of infectious and exposed in Urban for R0 > 1 for
host. Bottom Left: Time interval (0, 365) of infectious and exposed in Urban for R0 > 1 for vector.
Bottom Right: Time interval (40,000, 60,000) of infectious and exposed in Urban for R0 > 1 for
vector

In the plots above the transmission rates are βR = φR = .33 and βR = φR = .31. In both
cases the infectious and exposed states converge to the endemic equilibrium. Both reach
the maximum value in the infectious states in a relatively short time.

The maximum number of infectious cases is small with respect to the initial conditions
for the two populations.
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6 Stochastic Simulations

6.1 Zero Movement

Figure 15: Infectious and exposed hosts, vectors where R̃0 < 1 and R̃0 > 1

In this section, simulations are done using a stochastic Markov process. The deterministic
model is matched closely by the stochastic models, which suggests that the parameter
values are accurate means. Stochastic models were used only for the zero movement case.
Infectious and exposed classes for hosts and vectors were examined for cases where R0 < 1
and where R0 > 1. Stochastic models for the more complicated cases are not included as
they are extremely computationally expensive and ine�cient.

7 Cumulative Plots

Finally, we assess the cumulative amounts of infectious hosts for several scenarios. Initially,
we consider the cases in which R0 < 1 for �ve simulations. The �rst simulation concerns a
single population of 10,000 hosts with no movement. The other four simulations concern
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Figure 16: Cumulative infectious cases for multiple scenarios where the DFE is locally
asymptotically stable.

two host populations between which movement occurs. The two populations are a rural
population of 2,000 hosts and an urban population of 8,000 hosts. The second and third
simulations consider cases of constant movement. In the second simulation, movement
in both directions is equal, that is, CR = CU , while in the third simulation, CR > CU .
Similarly, the last two simulations describe a case in which movement follows the functions
described above, where movement is equal or preferential in the fourth and �fth simulations,
respectively. When R0 < 1, all cases show stability at the disease free equilibrium, so
the disease dies out and the cumulative cases of infection reach a maximum and plateau
there. All scenarios reach their respective plateaus at approximately the same time. The
total cases of infection are greatest for the zero movement case and least for the cases of
preferential movement, but in all cases, the total infectious cases are between 0.4 and 1.6
cases.

Next, we consider the same scenarios for the case in which R0 > 1. When R0 > 1, all
cases show stability at the endemic equilibrium, so the disease persists as new susceptible
individuals enter the population and become infectious. In all cases, the disease eventu-
ally a�ects e�ectively every member of the population, so the cumulative infectious cases
approach and plateau at 10,000 cases (the total host population for all simulations). The
scenarios reach this plateau at slightly di�erent times. The case of a single patch with
zero movement is the �rst to reach the plateau, while the cases which include preferential
movement are the last to reach the plateau. This is reasonable, as an outbreak spread more
quickly in a single population of 10,000 than an outbreak which began in one population
and took time to travel to another population via host movement.

Analysis of the total infectious cases suggests while movement has some e�ect on the
severity (when R0 < 1) and speed (when R0 > 1) of a Dengue outbreak, it causes minimal
practical change. The greatest e�ect of host movement is its ability to spread Dengue to
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Figure 17: Cumulative infectious cases for multiple scenarios where the endemic equilib-
rium is stable.

new areas, rather than its ability to change other qualitative traits of an outbreak.

8 Discussion

The purpose of this paper is to model the spread of Dengue fever, taking into consideration
movement between rural and urban areas. It is assumed that urban and rural vectors do
not leave their respective areas and will only bite mobile hosts. The total populations of
vectors, NV R and NV U , are constant, as is the total population of hosts, NH . The host
subpopulations, NHR and NHU , are not constant when movement occurs. It is assumed
that exposure to DENV does not impede or change movement in the host, but some
proportion of the infectious class is immobile and therefore also unable to be bitten by and
infect susceptible vectors. The model considers only one serotype, to which all recovered
hosts are permanently immune. Finally, the model considers the populations of hosts and
vectors to be homogeneously mixed, so that any mobile host has an equal probability of
being bitten by any vector in that area.

In the deterministic model, the simulations show that when R0 < 1, DENV reaches
the disease free equilibrium for both the host and vector. The infectious and exposed
classes slightly increase, but infectious individuals leave the class via recovery or natural
death before infecting an average of one host or vector. Also, the deterministic models
demonstrate the existence of an endemic equilibrium. At the endemic equilibrium, the
disease is present in the population but does not cause disturbance. Many subtropical
and temperate regions undergo seasonal endemics; however, with an increased tendency
for hosts to travel, this can quickly lead to an epidemic in multiple areas. The numerical
simulations suggest that over a very long time period, the outbreaks of Dengue become
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more infrequent and decrease in magnitude. Damping oscillations occur as the populations
approach the endemic equilibrium, when R0 > 1.

In addition to the deterministic model, we also constructed a stochastic model in order
to con�rm the accuracy of our parameters by adding randomness to the model. The
deterministic model is used to make predictions based on average parameters and the
schematics of the system. This type of model allows us to understand the basic dynamics
of transmission where the state variables follow a �ow chart and depend on previous states.
On the other hand, the stochastic model incorporates a memoryless tool that contributes to
the model's realistic outputs. The transmission rates of Dengue between hosts and vectors
are dependent on random occurrences, which is re�ected in the stochastic model. Finally,
it allows us to observe many di�erent qualitative outcomes as well as the probabilities of
each outcome. Plotting the stochastic and deterministic models together shows that the
deterministic model is the approximate average of the stochastic plots, which supports the
accuracy of our model.

In conclusion, we notice that the transmission rates β and φ are directly proportional
to R0, such that an increase in the transmission rates will result in an increase in R0.
We modeled the dynamics of Dengue transmission with host movement between rural and
urban areas and observed the e�ects on transmission between the hosts and the stationary
vectors. We conclude that while movement between rural and urban areas does not have a
notable e�ect on the speed or severity of a Dengue outbreak in one area, host movement is
solely responsible for the spread of Dengue to new areas and populations. Analysis of the
system both with and without movement did not reveal a major change in transmission
dynamics due to the addition of movement.

For future studies, we will model movement with time-dependent rates. In the future,
we also would consider the potential e�ects of a vaccination, for which we would need to
take into account all separate serotypes of DENV. If multiple serotypes are included in a
future model, we would also consider instances of DSS as a result of secondary infection,
as well as disease-related death.
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A.10 Appendix

In this appendix we give some mathematical results that are not shown in the previous
sections.

A.10.1 Basic Reproductive Number

A.10.1.1 Case without movement

To �nd the reproductive number R̃0, we follow the Next Generation Operator Matrix
Method [28]. F represents the rate of the new infections caused by transition to theinfected
group. V represents the rates of transfer of individuals into or out of the infected classes
by other means. This is,

F =


βSH

IV
NV

φSV p
IH
NH

0
0

 and V =


αEH + µHEH
θEV + µVEV

−αEH + δEV + µHEV
θEV + µV IV

 .

The partial derivatives of each matrix are taken with respect to the variables representing
the new exposed and infectious classes. Both matrices will be evaluated at the DFE,
resulting in

F =


0 0 0 β SHNV
0 0 φp SVNV 0

0 0 0 0
0 0 0 0

 and V =


α+ µH 0 0 0

0 θ + µV 0 0
−α 0δ + µH 0 0
0 −θ 0 µV

 .

We determine the spectral radius of FV −1. Then, the basic reproductive number is

R̃0 = ρ(FV −1) =

√
β

δ + µH
· φp
µV
· θ

µV + θ
· α

α+ µH

A.10.1.2 Constant movement case: fU (I,N) = CU and fR(I,N) = CR.

We use the next generation operator matrix method to calculate the basic reproductive
number and analyze local stability of the DFE. The vector X consists of infected classes
and Y of all other classes are given by:
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X =



EHR
EHU
EV R
EV U
IHR
IHU
IV R
IV U


and Y =



SHR
SHU
SV R
SV U
RHR
RHU

 ,

where dx
dt = F(X,Y ) + V(X,Y ). We calculate F , which consists of the newly infectious

rates, and V, which consists of rates of transfer in and out of the infectious classes by other
means. Following this method, we have:

F =



βRSHR
IV R
NV R

+ (CREHR + CUEHU )
(
IHU
NHU

)2
βUSHU

IV U
NV U

(CREHR + CUEHU )
(
IHR
NHR

)2
φRpSV R

IHR
NHR

φUpSV U
IHU
NHU

CRpIHR
(
IHU
NHU

)2
+ CUpIHU

(
1 +

(
IHU
NHU

)2)

CUpIHU
(
IHR
NHR

)2
+ CRpIHR

(
1 +

(
IHR
NHR

)2)
0

0


and

V =



(CREHR + CUEHU )
(
IHR
NHR

)2
+ (α+ CR + µH)EHR − CUEHU

(CREHR + CUEHU )
(
IHU
NHU

)2
+ (α+ CU + µH)EHU − CREHR

(θR + µV R)EV R

(θU + µV U )EV U

CUpIHU
(
IHR
NHR

)2
+ CRpIHR

(
1 +

(
IHR
NHR

)2)
− αEHR + (δ + µH)IHR

CRpIHR
(
IHU
NHU

)2
+ CUpIHU

(
1 +

(
IHU
NHU

)2)
− αEHU + (δ + µH)IHU

−θREV R + µV RIV R

−θUEV U + µV UIV U



.
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Then, we take the partial derivatives with respect to the infectious classes, X, and evaluate
at the DFE.

F =



0 0 0 0 0 0 βR
NHR
NV R

0

0 0 0 0 0 0 0 βU
NHU
NV U

0 0 0 0 φRp
NV R
NHR

0 0 0

0 0 0 0 0 φUp
NV U
NHU

0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


and

V =



CR + α+ µH −CU 0 0 0 0 0 0
−CR CU + α+ µH 0 0 0 0 0 0
0 0 θR + µV R 0 0 0 0 0
0 0 0 θU + µV U 0 0 0 0
−α 0 0 0 δ + µH 0 0 0
0 −α 0 0 0 δ + µH 0 0
0 0 −θR 0 0 0 µV R 0
0 0 0 −θU 0 0 0 µV U


.

The next generation matrix is FV −1 where ρ(FV −1) is the basic reproduction number,
R0. The R0 is given by:

R0 =
1

2

(
R̃2

0R
+ R̃2

0U

)
+

√
1
4

(
CU+α+µH

CR+CU+α+µH
R̃2

0R
− CR+α+µH

CR+CU+α+µH
R̃2

0U

)2
+
(
CRR̃2

0R

)(
CU R̃2

0U

)

where

R̃2
0R

=
βR

µH + δ
· φRp
µV R

· θR
µV R + θR

· α

α+ µH

R̃2
0U

=
βU

µH + δ
· φUp
µV U

· θU
µV U + θU

· α

α+ µH
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