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Abstract: In this study, mathematical models are developed to explore how viral load
variability caused by treatment can influence the prevalence of HIV. Density-independent
and dependent treatment strategies are considered. If the density-independent treatment is
employed, a global forward bifurcation alone can entirely determine the dynamical behavior
of the model. If we introduce the density-dependent treatment, model behaviors tend to be
rather complex. In this case, backward bifurcations are possible. Thus, the outcomes are
also a function of initial data. For both kinds of models, it is shown that HIV treatments
may increase the basic control number, thus, increasing the spread of HIV infections. Using
HIV/AIDS mortality data of China, we estimate a part of our parameters. The model results
support the conclusion that the HIV/AIDS mortality of China will continue increasing if
there in no change in the control strategy.

1 Introduction

AIDS is caused by human immunodeficiency virus (HIV), which is one of the chronic infec-
tious diseases seriously affect human health. There are more than 25 million people died of
AIDS annually, 33.4 million new infected world-wide. Over the past 20 years, the spread of
AIDS in China appears increasing very fast, as can be seen in Figure1. It was estimated
that accumulated HIV infections in China was 780 000; and there were 48000 new infections
in 2011[17].

Currently, there is no cure for HIV infection. In 2013, 12.9 million people living with HIV
were receiving antiretroviral therapy (ART) globally, of which 11.7 million were receiving
ART in low- and middle-income countries. While treatment gives people with HIV infection
a chance for a healthy and prolong life, However, treatment with anti-retroviral (ARV) drugs
can effectively control the virus. It negatively affects the control of transmission dynamics
of the HIV. This is because treating HIV infected individuals leads to a longer lifetime and
as a result creates more chance of transmitting the virus. On the other hand, treatment
can decrease the infectiousness of the HIV infected individual. Our interesting question is
to assess the HIV treatment strategy in the population level and individual level.

A set of mathematical models have been used to link the immunological and epidemio-
logical aspects of HIV in the between- and within-host interaction levels [4, 7]. Beginning
with Sasaki and Iwasa [8], researchers started to conceptually link within-host processes to

125



Figure 1: Annual Mortaility of AIDS in China

between-host processes. The studies of acute infections by Antia [9, 10], and Ganusov [5]
which included various biological aspects such as a host-immune response, host heterogene-
ity, and a threshold mortality function. In 2002, Gilchrist and Sasaki [6] nested a within-host
model within a susceptible-infected- recovery (SIR) epidemic model.

In this study, we try to explore the effects of variable viral load in two groups of treated
and untreated individuals on the transmission dynamics of HIV at between-host level. Under,
a mathematical model to couple the between-host and the within-host model is formulated
in Section 2. A rigorous qualitative analyses of the model under three different assumptions
for treatment function is provided in Section 3. A study about the parameters of within-host
model has impact on the between-host model is provided in section 4. In Section 5 we discuss
about the existence of backward bifurcation and finally, in Section 6 numerical simulations
as well as parameter estimation is carried out.

2 Model Formulation

2.1 A micro-model for HIV

We modify the model from [16] to construct our model for HIV infection within a host
(with/without treatment). The the total number of targeted T-cells at time τ is Ti(τ)
number of the infected T-cells is T ∗

i (τ), and number of the free human immunodeficiency
virus (virions) is Vi(τ), where i=1 is for without treatment and i=2 is for with treatment.
A healthy T-cell (T) becomes infected as a result of the free virions attack according to
the law of mass-action with a rate αpVi. π and d are the birth rate and natural death rate
of the susceptible healthy T-cells, respectively. Infected T-cells decreases due to the either
natural death or the virus infection induced cell death at the rates d and di. Infected target
cells (T ∗

i ) produce free virions at rate nqdi where q is accounting for the effects of pro-tease
inhibitors for the virus. n is number of free virus produced by lysing a T cell. Therefore,
p = q = 1 means that there is no treatment (marked as (T1, T

∗
1 , V1)) and p < 1, q < 1 means

that there is treatment (marked as (T2, I
∗
2 , V2)). Free virions are further cleared at a rate
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Figure 2: Flow Chart

dv by the immune system. Thus, the within-host model with/without treatment is given by
the following system of differential equations.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dTi(τ)

dτ
= π − αpViTi − dTi,

dT ∗
i (τ)

dτ
= αpViTi − (d+ di)T

∗
i ,

dVi(τ)

dτ
= nqdiT

∗
i − dV Vi,

i = 1, 2.

(2.1)

2.2 A Macro-model for HIV with density-dependent/independent
treatment strategy

The HIV between-host model to be considered here is formulated by dividing the total sex-
ually active population (in particular, in China) at time t into compartments of susceptible,
S(t), infected without treatment, I1 and infected with treatment, I2. The population of
susceptible individuals (S) is increased by the recruitment of new sexually active individuals
into the current population of susceptible individuals at a rate Λ. It is further decreased by
infection, following effective contacts with infected individuals, I1 and I2, at rates of c1β1I1
and c2β2I2, respectively. Here, βi, for i=1,2 denote the transmission probability of infected
individuals without and with treatment, respectively. c1 and c2 are accounting for the num-
ber of effective contacts per year. The population is also decreased by natural death at a rate
μ. The population of infected individuals without treatment is decreased due to the either
natural death or disease-induced death at rates μ and μ1. It is further decreased due to the
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treatment at a rate f(I1), where, f(I1) is variable based on the number of infections varies. If
the size of the infected individuals is small then it is reasonable to assume that each infected
individual has a higher chance of receiving treatment. As a result from [13], we suppose that
f(I1) is a linear function of the number of infected individuals so that f(I1) = γI1 which is
referred as density-independent treatment strategy. If the pool of infected individuals is large
enough then limited health infrastructure and budgets prevent us from providing treatment
for all infected individuals. Hence, we consider the reduction in per-capita treatment rate
so that f(I1) =

A
B+I1

which is referred as density-dependent treatment strategy, we also con-

sider another density-dependent treatment strategies: f(I1) = α1 + α2e
−γI1 . Similarly, the

population of the infected individuals with treatment is decreased due to the either natural
death or disease-induced death at rates μ and μ1. Thus, the between-host model is given by
the following system of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= Λ− c1β1SI1 − c2β2SI2 − μS,

dI1(t)

dt
= c1β1SI1 + c2β2SI2 − (μ+ μ1)I1 − f(I1)I1,

dI2(t)

dt
= f(I1)I1 − (μ+ μ2)I2.

(2.2)

Since the within-host interactions are happening in the different time scale (τ) than the
between-host level interactions (t), the following function make a link between them as the
Figure 2.

βi = β̂i lim
T→∞

∫ T

0
Vi(τ)dτ

T
, i = 1, 2.

The variables and parameters are tabulated in Table 2.

3 Analysis of the Coupled-Model with Density-independent

Treatment

3.1 Basic analysis

In this section we consider the density-independent treatment strategy, that is, f(I1) = γ.
So, the between-host model (2.2) can be rewritten as the following

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= Λ− c1β1SI1 − c2β2SI2 − μS,

dI1(t)

dt
= c1β1SI1 + c2β2SI2 − (μ+ μ1)I1 − γI1,

dI2(t)

dt
= γI1 − (μ+ μ2)I2.

(3.1)
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It is easy to show that the trajectories starting in Ω will stay for forward time, where

Ω = {(S, I1, I2) ∈ R
+
3 : S + I1 + I2 ≤ Λ/μ}. (3.2)

Now, let us show Ω is positive invariant. The rate of change of the total populations (N =
S + I1 + I2) is given by

dN

dt
= Λ− μN.

Hence, it follows for comparison theorem [18] that

N(t) ≤ N(0)e−μt +
Λ

μ
[1− e−μt].

All parameters of the model are non-negative, with the death rates μ, μ1, μ2, recruitment
terms Λ and transmission coefficients β1, β2 together with the contact rates c1 and c2 positive.
Furthermore, each of the total sub-populations (is assumed to be positive for t = 0. Since Ω is
positively invariant and it is sufficient to study the model in Ω. The disease-free equilibrium
(DFE) of the model (3.1), obtained by the setting the right-hand side of the equations in
the model to zero, is given by (3.1)

E0 = (Λ/μ, 0, 0). (3.3)

Using the next generation operator method, the matrices F (of the new infection terms) and
V (of the transition terms) associated with the model (3.1) are given, respectively, by

F =

(
Sβ1c1 Sβ2c2
0 0

)
,

V =
(

μ+ μ1 + γ 0
−γ μ+ μ2

)
.

Thus, the basic control number of the model (3.1), defined by Rc = ρ(FV−1) (where ρ is the
spectral radius of the next generation matrix FV−1), is given by

Rc = ρ(FV−1) =
Λ

μ

(
c1β1

μ+ μ1 + γ
+

c2β2

μ+ μ2

γ

μ+ μ1 + γ

)
(3.4)

Theorem 3.1. The DFE, E0, of the model (3.1) is locally asymptotically stable (LAS) if
Rc < 1, and unstable if Rc > 1.

If there is no treatment, that is, γ = 0, then the basic reproduction number is

R0 =
Λ

μ

(
c1β1

μ+ μ1

)
.

Thus,

Rc −R0 =
Λ

μ

(
c1β1

μ+ μ1 + γ
+

c2β2

μ+ μ2

γ

μ+ μ1 + γ
− c1β1

μ+ μ1

)

=
Λ

μ

γ

μ+ μ1 + γ

(
c2β2

μ+ μ2

− c1β1

μ+ μ1

)
.
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If c2β2
μ2

> c1β1
μ1

, then Rc > R0 . It is shown that HIV treatments may increase the basic

control number and the incidence of HIV if c2β2
μ2

> c1β1
μ1
.

Following, the possible existence of an endemic equilibrium of the density-independent treat-
ment model (3.1) when the infected components are non-zero is explored. Let,

E1 = (Ŝ, Î1, Î2) (3.5)

be an arbitrary endemic equilibrium of the model (3.1), where Ŝ, Î1 and Î2 are obtained
from setting the right-hand side of the equations in the model (3.1) to zero, given by

Ŝ =
(μ+ μ2)(μ1 + μ+ γ)

c1β1(μ+ μ2) + c2β2γ
, Î1 = Rc − 1, Î2 =

γ(Rc − 1)
μ+ μ2

.

Thus, endemic equilibrium E1 exists whenever Rc > 1.

3.2 Asymptotic stability of equilibria

3.2.1 Global stability of the infection-free equilibrium E0

Following theorem guarantees global asymptotic stability of the infection-free equilibrium
E0 of density-independent treatment model 3.1.

Theorem 3.2. The disease-free equilibrium E0 of density-independent treatment model (3.1)
is globally asymptotically stable in Ω whenever Rc < 1 and unstable whenever Rc > 1.

Proof. Consider the following global Lyapunov function

V (S, I1, I2) = I1 +
μ+ μ1 + γ

γ

[
1− Λ

μ

(
c1β1

μ+ μ1 + γ

)]
I2. (3.6)

For
Λ

μ

(
c1β1

μ+ μ1 + γ

)
< Rc < 1, so that V ≥ 0.

The derivatives of V (S, I1, I2) along the positive solution of equation (3.1) is

V̇ (S, I1, I2) = c1β1SI1 + c2β2SI2 − (μ+ μ1 + γ)I1

+
μ+ μ1 + γ

γ

[
1− Λ

μ

(
c1β1

μ+ μ1 + γ

)]
[γI1 − (μ+ μ2)I2] . (3.7)

Since S < Λ
μ
, simplifying equation (3.7), we get

V̇ <

[
c2β2

Λ

μ
− (μ+ μ2)

γ
(μ+ μ1 + γ)(1− Λ

μ

c1β1

μ+ μ1 + γ
)

]
I2

=
μ+ μ2

γ
(μ+ μ1 + γ)

[
Λ

μ

c2β2γ

(μ+ μ2)(μ+ μ1 + γ)
+
Λ

μ

c1β1

(μ+ μ1 + γ)
− 1

]

=
μ+ μ2

γ
(μ+ μ1 + γ)[Rc − 1]I2.

Since S, I1, I2 > 0, then if Rc < 1, V̇ (S, I1, I2) < 0. Thus, all solution trajectories in Ω
approach the infection free equilibrium E0.
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3.2.2 Local stability of the endemic equilibrium E1

Theorem 3.3. If Rc > 1, then the endemic equilibrium E1 is locally asymptotically stable
in Ω.

Proof. The Jacobian matrix of the system (3.1) at (3.3) is

J =

⎡
⎢⎢⎢⎣

−Λ
Ŝ

−c1β1Ŝ −c2β2Ŝ

Λ

Ŝ
− μ c1β1Ŝ − γ − μ− μ1 c2β2Ŝ

0 γ −μ− μ2

⎤
⎥⎥⎥⎦ ,

Hence, it follows from Routh Hurwitz criterion of polynomial of degree 3:

let ω1 = −|J |, ω2 = −Trace(J) and ω3 =

[
j11 j12
j21 j22

]
+

[
j22 j23
j32 j33

]
+

[
j11 j13
j31 j33

]
.

Since,

ω1 =

(
Λ

Ŝ
− μ

)
Ŝ(μ+ μ2)(μ1 + μ+ γ) > 0 since

Λ

Ŝ
> μ,

ω2 =
Λ

Ŝ
+ γ + 2μ+ μ1 + μ2 − c1β1Ŝ > 0 since γ + μ+ μ1 > c1β1Ŝ from model (3.1),

ω3 =
Λ

Ŝ
(γ + 2μ+ μ1 + μ2) +

Λ

Ŝ
(μ+ μ2) + (

Λ

Ŝ
− μ)c1β1Ŝ > 0,

and

ω2ω3 =

(
Λ

Ŝ
+ γ + 2μ+ μ1 + μ2 − c1β1Ŝ

)(
Λ

Ŝ
(γ + 2μ+ μ1 + μ2)− c1β1Ŝ

)

>

(
Λ

Ŝ
− μ

)
Ŝ(μ+ μ2)(μ1 + μ+ γ) = ω1,

we deduce that the three roots of the characteristics polynomial of (3.8) are negative.

3.2.3 Global stability of the endemic equilibrium E1

The following theorem shows global asymptotic stability of the endemic equilibrium E1 of
of the model (3.1).

Theorem 3.4. The endemic equilibrium E1 of the density-independent treatment model (3.1)
is globally asymptotically stable in Ω whenever Rc > 1.

Proof. Let consider the following global Lyapunov function for E1 = (S̄, Ī1, Ī2),

V2(S, I1, I2) = (S − S̄)− S̄ ln
S

S̄
+ (I1 − Ī1)− Ī1 ln

I1
Ī1
+A

[
(I2 − Ī2)− Ī2 ln

I2
Ī2

]
. (3.8)

Assume A =
α2S̄

μ+ μ2

, then computing the derivative of V along the trajectories of the system
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given by (3.1), we obtain

dV

dt
= (Λ− c1β1SI1 − c2β2SI2 − μS)− S̄

S
(Λ− c1β1SI1 − c2β2SI2 − μS)

+ (c1β1SI1 + c2β2SI2 − (μ+ μ1 − γ)I1)

− Ī1
I1
[c1β1SI1 + c2β2SI2 − (μ+ μ1 − γ)I1]

+
α2S̄

μ+ μ2

[
(γI1 − (μ+ μ2)I2)− Ī2

I2
(γI1 − (μ+ μ2)I2)

]
. (3.9)

We have,

Λ = c1β1S̄Ī1 + c2β2S̄Ī2 + μS̄

(μ+ μ1 + γ) = c1β1S̄ + c2β2S̄
Ī2
Ī1

μ+ μ2 =
γĪ1
Ī2

Thus,

dV

dt
= c1β1S̄Ī1 + c2β2S̄Ī2 + μS̄ − μS

− S̄

S
[c1β1S̄Ī1 + c2β2S̄Ī2 + μS̄ − c1β1SI1 − c2β2SI2 − μS]

−
(
c1β1S̄ + c2β2S̄

Ī2
Ī1

)
I1 − Ī1

I1

[
c1β1SI1 + c2β2SI2 − (c1β1S̄ + c2β2S̄

Ī2
Ī1
)I1

]

+
α2S̄

μ+ μ2

[
(γI1 − (μ+ μ2)I2)− Ī2

I2
(γI1 − (μ+ μ2)I2)

]

= μS̄

(
2− S̄

S
− S

S̄

)
+ c2β2S̄Ī2

(
3− S̄

S
− I1Ī2

Ī1I2
− SĪ1I2

S̄I1Ī2

)

+ c1β1S̄Ī1

(
2− S̄

S
− S

S̄

)
. (3.10)

Applying the inequality of arithmetic and geometric means, for non-negative real numbers
a1, a2, ...an,

a1+a2+...+an
n

≥ (a1a2...an)
1
n , we obtain

2 ≤ S̄

S
+

S

S̄
and 3 ≤ S̄

S
+

I1Ī2
Ī1I2

+
SĪ1I2
S̄I1Ī2

.

Hence, each item of (3.10) is negative, and as a result dV
dt
≤ 0. That is, the endemic

equilibrium E1 is globally asymptotically stable whenever it comes to exist. This completes
the proof.

4 Micro Parameters Influence Basic Control Number

To show the influence of the within-host model to between-host model, we consider the
dynamic of within-host model, according to[16],
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the disease free equilibrium and endemic equilibrium of within-host model without treatment
is given following

(T̂1, T̂ ∗
1 , V̂1) = (

π

d
, 0, 0), (T̃1, T̃ ∗

1 , Ṽ1) =

(
dv(d+ d1)

αnd1
,

R0,1 − 1
rd1α(d+ d1)

,
R0,1 − 1

αdv(d+ d1)

)
,

where basic reproduction number

R0,1 =
αnd1π

ddv(d+ d1)
.

the disease free equilibrium and endemic equilibrium of within-host model with treatment is
given following

(T̂2, T̂ ∗
2 , V̂2) = (

π

d
, 0, 0), (T̃2, T̃ ∗

2 , Ṽ2) = (
dv(d+ d2)

αpqnd2
,

R0,2 − 1
nd2αp(d+ d2)

,
R0,2 − 1

αpdv(d+ d2)
)

where basic reproduction number

R0,2 =
αnd2πpq

ddv(d+ d2)
.

If V → V ∗, then the linkage function can be expressed by

β(V ) = β̂ lim
T→∞

∫ T

0
V (τ)dτ

T
= β̂V ∗.

Using the basic control number in section (3.1), we can obtain the following result

(1) If R0,1 < 1 and R0,2 < 1, then
Rc = 0.

(2) If R0,1 > 1 and R0,2 < 1, then

Rc =
Λ

μ

[
c1β̂

R0,1−1

αdv(d+d1)

μ+ μ1 + γ

]
.

(3) If R0,1 > 1 and R0,2 > 1, then

Rc =
Λ

μ

[
c1β̂

R0,1−1

αdv(d+d1)

μ+ μ1 + γ
+

c2β̂
R0,2−1

αpdv(d+d2)

μ+ μ2

γ

μ+ μ1 + γ

]

=
Λ

μ

[
c1β̂

R0,1−1

αdv(d+d1)

μ+ μ1 + γ

]
+
Λ

μ

[
c2β̂

μ+ μ2

γ

μ+ μ1 + γ

(
nqd2π

ddv2(d+ d2)2
− 1

αpdv(d+ d2)

)]
.

Thus, the basic reproduction number of the within-host model can determine the dynamics
of the between-host model, and the parameter of within-host model can also influence the
between-host model. p and q are parameters of treatment, the smaller value of p, q, the
better effect of treatment, the smaller of basic control number.
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5 Analysis of the Model with Density-dependent Treat-

ment

In this section, we considered the non-linear treatment strategy given by f(I1) =
A

B + I1
.

Thus, system (2.2) becomes:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= Λ− c1β1SI1 − c2β2SI2 − μS,

dI1(t)

dt
= c1β1SI1 + c2β2SI2 − (μ+ μ1)I1 − AI1

B+I1
,

dI2(t)

dt
= AI1

B+I1
− (μ+ μ2)I2.

(5.1)

5.1 Disease free equilibrium (DFE)

5.1.1 Local stability

The model (5.1) has an DFE, obtained by setting the right hand side of equations in (5.1)
to zero, given by

E1
0 = (S∗, I∗1 , I

∗
2 ) = (Λ/μ, 0, 0).

Similarly as in section 3, the local stability is obtained using the next generation matrix. We
thus obtain the basic control number (of the model (5.1)) as

R1
c =

Λ

μ

[
c1β1

μ+ μ1 +
A
B

+
c2β2

μ+ μ2

A
B

μ+ μ1 +
A
B

]
.

Hence, E1
0 is locally asymptotically stable in Ω whenever R1

c < 1.

5.2 Existence of backward bifurcation

In this section, we investigate the existence of backward bifurcation using the theorem [11].
The epidemiological consequence of the backward bifurcation phenomenon in disease trans-
mission models is that having the associated reproduction number of the model less than
unity, while necessary, is no longer sufficient for effective disease control. In a backward
bifurcation situation, effective community-wide control of the disease (when Rc < 1) is de-
pendent on the initial size of the sub-population of the model. Thus, backward bifurcation
makes effective disease control difficult. It is instructive, therefore, to explore the possibility
of backward bifurcation in the model (5.1).
We use the following Theorem to study the backward bifurcation

Theorem 5.1. [11] Consider a system of ordinary differential equations

dx

dt
= f(x, φ), f : Rn ×R→ Rnand f ∈ C2(Rn ×R), (5.2)

with a parameter φ, Assumed that:
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1. 0 is an equilibrium of the system, f(0, φ) ≡ 0 for all φ; and

2. Zero is a simple eigenvalue of A = Dxf(0, 0) = ( ∂fi
∂xi
(0, 0)) and all other eigenvalues of

A have negative real parts

Let W = [w1, w2, ...wn]
T and V = [v1, v2, ..., vn] be a right and a left eigenvector matrix A,

respectively, associated to eigenvalues zero and fk(x, φ) be the kth com-ponent of f(x, φ).
Then the local dynamics of system around the equilibrium point 0 is totally determined by
the signs of a and b below:

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0),

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).

Particularly, if a > 0 and b > 0, then a backward bifurcation accurs at φ = 0 for system
(5.2).

We use c1 as the bifurcation parameter and apply Theorem (5.1) to model (5.1) to
determine the bifurcation at Rc = 1. the left and right eigenvectors of the Jacobian matrix
evaluated at the infection-free equilibrium and at R0 = 1 are as follows:

W = [− Λ

μ2
(
B

A
c1β1(μ+ μ2) + c2β2),

B(μ+ μ2)

A
, 1]T , V = [0, 1, 0].

Hence,

a = 2
(μ+ μ2)

2

A
− 2Λ

μ2

(
B

A
c1β1(μ+ μ2) + c2β2

)
(c1β1 + c2β2),

b =
Λ

μ

B(μ+ μ2)

A
β1

Since b is always positive, it follows that the bifurcation type depends on the sign of a. It
can be shown that a is positive whenever the following inequality holds:

μ2(μ+ μ2)
2 > Λ(B1c1β1(μ+ μ2) + Ac2β2)(c1β1 + c2β2). (5.3)

From Theorem (5.1), the model (5.1) undergoes a backward bifurcation at Rc = 1 whenever
the inequality (5.3) holds. We state the following results:

Theorem 5.2. Suppose the inequality (5.3) holds. Then at R1
c = 1, the model (5.1) has a

backward bifurcation.
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Figure 3: Backward bifurcation of parameter values set Λ = 1, μ = 1/30, μ1 = 1/12, μ2 =
100, β1 = 2.5, β2 = 9.8, A = 0.5, B = 0.5, c2 = 0.5. Blue represent stable equilibrium, red
represent unstable.

5.3 Analysis of the model with different density-dependent treat-
ment strategies

We considered the non-linear treatment strategy given by f(I1) = α1+α2e
−γI1 . Thus, system

(2.2) becomes:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= Λ− c1β1SI1 − c2β2SI2 − μS,

dI1(t)

dt
= c1β1SI1 + c2β2SI2 − (μ+ μ1)I1 − (α1 + α2e

−γI1)I1,

dI2(t)

dt
= (α1 + α2e

−γI1)I1 − (μ+ μ2)I2.

(5.4)

The basic control number of model (5.4) is given by:

R∗
c =

Λ

μ

[
c1β1

μ+ μ1 + (α1 + α2)
+

c2β2

μ+ μ2

α1 + α2

(μ+ μ2 + α1 + α2)

]
.

so that E2
0 is locally-asymptotically stable in Ω whenever R∗

c < 1.
Similarly, the left and right eigenvectors of the another density-dependent treatment is given
by :

W =

[
Λ

μ2
1

[
c1β1(

μ+ μ1

α1 + α2

) + γ

]
,
μ+ μ2

α1 + α2

, 1

]T
, V = [0, 1, 0].
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Hence, the bifurcation coefficients is given as:

a = 2α1γ

(
μ+ μ2

α1 + α2

)2

− 2Λ

μ2

[
c1β1(

μ+ μ1

α1 + α2

) + c2β2

]2

b = β1
Λ

μ

μ+ μ2

α1 + α2

.

Clearly, b is always positive. It can be shown that a is positive whenever the following
inequality holds:

α1γμ
2(μ+ μ2)

2 > Λ [c1β1(μ+ μ1) + c2β2(α1 + α2)]
2 (5.5)

Theorem 5.3. Suppose the inequality (5.5) holds or a > 0. Then at R∗
c = 1, the model

(5.4) has a backward bifurcation.

Figure 4: Backward bifurcation of the parameter values set Λ = 1, μ = 1/30, μ1 =
1/12, μ2 = 20, β1 = 1.5, β2 = 0.5, γ = 20, α1 = 4.8113, α2 = 0.3539, c2 = 0.01. Blue
represent stable equilibrium, red represent unstable.

6 Parameter Estimation and Prediction

The adjusted natural death rate is 0.0213 according to[14], with the available data for the
mortality data from 2008 to 2014 in China [12], we use Markov chain Monte Carlo (MCMC)
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method to estimate the other parameter, which are tabulated in (1). Figure 5 shows that
the model solution fits the data and the model estimate HIV/AIDS mortality of China
will continue increasing if there is no change in the control strategy. Using the estimated
parameter values in Table (1) and the formula [13],we are able to estimate the average
prolong lifespan in China.The estimated 3.4036 years.That means the ART treatment can
prolong infectious lifespan.

Figure 5: Data Fitting

Table 1: Estimated Parameters

Parameter Λ c1β1 c2β2 μ1 μ2 γ
Estimated value 113425.3 4.7319× 10−7 1.6087× 10−8 0.2052 0.1066 0.3181

7 Sensitivity Analysis

To assess the impact of the sensitivity of each parameter of the model (3.1) on the numerical
simulation results generated, a global sensitivity analysis is carried out using Latin Hyper-
cube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC) on the basic control
number Rc of model (3.1). Figure (6) shows c1, c2, β1, β2 has positive correlation to Rc, the
other parameter has negative correlation to Rc, and the parameter c1, β1 and γ are the key
parameters that influence Rc and the total number of infected individuals.
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Figure 6: Sensitivity Analysis of Rc

8 Conclusion and Discussion

In this study, we use a new deterministic mathematical model to explore how viral load
variability caused by treatment can influence the prevalence of HIV in a population. We
proposed two treatment strategies, density-independent/ dependent treatment. Some of the
main theoretical and epidemiological findings of this study are summarized below

(1) The disease-free equilibrium of model (3.1) is globally asymptotically stable whenever
the associated basic control number Rc is less than unity.

(2) The endemic equilibrium of model (3.1) is globally asymptotically stable whenever the
associated basic control number Rc is bigger than unity.

(3) Under some circumstance, HIV treatments may increase the incidence of HIV.

(4) Density-dependent treatments lead to bi-stability. Thus, we do not know the outcome
if we only know information on Rc. Actually, we have shown that initial values are
critical to the outcomes.

(5) Micro parameters influence basic control number which can be expressed explicitly.

(6) Parameter estimation and prediction shows the following.

(a) The average life time of HIV patients after treatment is increased by 3.4036 years.

(b) According to the present treatment policy, if we do not make some change, the
HIV/AIDS mortality of China will continue increasing.

(7) Sensitivity analysis of the model (3.1) to variability in each parameter show that

(a) The parameter c1, β1 and γ are the key parameters that influence Rc and the
total number of infected individuals.

(b) Sensitivity analysis of model (5.4) and model (5.1) is same as model (3.1).
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Symbol Description

Variables

S Susceptible individuals
I1 Untreated-infected individuals
I2 Treated-infected individuals
T1 Healthy targeted T-cells without treatment
T2 Healthy targeted T-cells with treatment
T ∗
1 Infected T-cells without treatment

T ∗
2 Infected T-cells with treatment

V1 Virions without treatment
V2 Virions with treatment

Parameters

Λ Recruit rate
β1 Infection rate (without treatment)
β2 Infection rate (with treatment)
μ1 Disease death rate of untreated people
μ2 Disease death rate of treated people
γ Treatment rate
π Rate of supply of T cells from precursors
d Nature death rate of T-cell
α Infection rate of virus
di Disease death rate of infected cells
n No. of free virus produced by lysing a T cell
p Treatment efficiency
q Treatment efficiency

Table 2: Description of variables and parameters of the treatment models given by (2.1) and
(2.2).

Parameter Units Values References
π mm−3day−1 20 [1]
d day−1 0.02 [3]
α mm−3day−1 0.0002 [3]
di day−1 0.24 [3]
p – 0.3 [15]
q – 0.3 [15]

Table 3: Parameter values
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